Climate change and its impact on the change of rice production and related industries in Al-Qadisiyah Governorate for the 2022 Agriculture season, using digital processing of Sentinel-2 data

  • Ahmad S. Yasien Al-Gurairy .
  • Hassan H. Abd Al kadhim Aljashamy . جامعة القادسية كلية الاداب

Abstract

The process of monitoring any crop, nowadays and determining its needs is still facing a great difficulty in developing countries due to the lack of data. Therefore, remote sensing data of multiple spectra and different times are effective tools to support monitoring systems and recognize the needs of plants in appropriate time.

           The present study uses multi-source data Sentinel 2, Landsat 7 & 8, which are multi-Bands to determine the adequacy of irrigation water for rice. By using the Band–Ratio method, researchers are able to analyze spectral information.

          In the same vein, researchers used Sentinel 2 data as a basis of medium spatial and spectral accuracy to monitor the farms in the territory rice of Iraq in Al-Qadisiyah Governorate. The results of the digital analysis indicate that the crop does not get sufficient irrigation water. As a result, the expected yield is currently estimated at 450 kg/acre only, which is a very low level of productivity as a direct result of climate change and draught in addition to unfair water policies of the upstream countries (Turkey & Iran). Therefore, we find that the danger of climate change and its effects seems to be evident through its impact on the productivity of this important strategic crop for the Iraqi people.

         Moreover, this method can contribute to estimating the irrigation time and determining the area that can be successfully cultivated of rice or other crops during the dry season. The phenological dataset can also be used with multi-source remote sensing data to explore the crop area and monitor its condition during the season.

References

1. Abbas Fadhel Al Saadi, (1990). Food Security in Iraq: Reality and Ambition, Baghdad, University of Baghdad, p. 233. (Arabic).
2. Abdul-Qadir, A. M., & Al-Jaf, A. A. (2009). Digital processing of Landsat images to detect iron and kaolin deposits in selected sites in the Western Desert of Iraq. Iraqi J. Sci. (Baghdad Univ., Baghdad, Iraq), 50(4), 519-532. (Arabic) [Google Scholar]‏
3. Adamo, N., & Al-Ansari, N. (2020). The Sumerians and the Akkadians: the forerunners of the first civilization (2900-2003BC). Journal of Earth Sciences and Geotechnical Engineering, 10(3), 17-39 [Google Scholar].‏
4. Ahmad, I., Ghafoor, A., Bhatti, M. I., Akhtar, I. U. H., & Ibrahim, M. (2014). Satellite remote sensing and GIS-based crops forecasting & estimation system in Pakistan. Crop monitoring for improved food security [Google Scholar].
5. Al-Gurairy Ahmad S. Yasien & Al-Edami Rahman Rabat (2023). Geographical survey to explore minerals & clays economic-industrial deposits in different geomorphological units in Al-Qadisiyah Governorate using digital processing of Landsat 7,8 and Sentinel-2 – Iraq. Journal College of Arts – Baghdad University, Baghdad-Iraq, 144 (March – in publishing) (Arabic).
6. Al-Gurairy Ahmad S.Y., 2000. The Geomorphological Characteristics of the Stream of Euphrates River and Tow Branches Al-Atshan and Al-Sebil Between Al-Shannafia and Al-Samawa, College of Arts – University of Baghdad, Baghdad, Iraq, p.162 (Arabic) [Google Scholar].
7. Arsalan A. Al-Jaf and Mohammad A. Al-Azawy, (2010). Integration of Remote Sensing Images and GIS Techniques to Locate the Mineral Showings in Halabja Area, NE Iraq. Iraqi Bulletin of Geology and Mining, Volume (6), Issue (1), P. 31- 46 (Arabic) [Google Scholar] محمد عبد المحسن العزاوي, & أرسلان احمد الجاف. (2010). مكاملة نظم المعلومات الجغرافية مع مرئيات التحسس النائي لتحديد الشواهد المعدنية في منطقة حلبجة، شمال شرق العراق. Iraqi Bulletin of Geology and Mining, 6(1). ‏
8. Atzberger, C. (2013). Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote sensing, 5(2), 949-981 [Google Scholar].
9. Bernier, J., Atlin, G. N., Serraj, R., Kumar, A., & Spaner, D. (2008). Breeding upland rice for drought resistance. Journal of the Science of Food and Agriculture, 88(6), 927-939 [Google Scholar].‏
10. Crowley, J. K., Brickey, D. W., & Rowan, L. C. (1989). Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth images. Remote Sensing of Environment, 29 (2), 121-134.‏ [Google Scholar]
11. Dodds, F., & Bartram, J. (Eds.). (2016). The water, food, energy and climate Nexus: Challenges and an agenda for action. Routledge [Google Scholar].‏
12. Fernandez-Beltran, R., Baidar, T., Kang, J., & Pla, F. (2021). Rice-yield prediction with multi-temporal sentinel-2 data and 3D CNN: A case study in Nepal. Remote Sensing, 13(7), 1391[Google Scholar].‏
13. Ghosh, P., Mandal, D., Bhattacharya, A., Nanda, M. K. and Bera, S., 2018, Assessing Crop Monitoring Potential of Sentinel-2 in a Spatio-Temporal Scale. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 425, 227-231[R.G].
14. Giovos, R., Tassopoulos, D., Kalivas, D., Lougkos, N., & Priovolou, A. (2021). Remote sensing vegetation indices in viticulture: a critical review. Agriculture, 11(5), 457 [Google Scholar]. ‏
15. Karem Dragh Mohamed, (2014). The Territory of Rice agriculture in Al- Najaf and Al- Qadisiyah governorates. Geographical Research Journal, Issue (19), 197-219 (Arabic) [Google Scholar].
16. Khudair Abbas Hamied (1997), The Conditioning System for the Rice Crop, Technical and Extension Bulletin issued by the General Authority for Agricultural Extension and Cooperation, Baghdad, p. 402. (Arabic).
17. Khush, G. S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant molecular biology, 59(1), 1-6 [Google Scholar].‏
18. Kuenzer, C., & Knauer, K. (2013). Remote sensing of rice crop areas. International Journal of Remote Sensing, 34(6), 2101-2139 [Google Scholar].‏
19. Lima, T. A., Beuchle, R., Langner, A., Grecchi, R. C., Griess, V. C., & Achard, F. (2019). Comparing Sentinel-2 MSI and Landsat 8 OLI imagery for monitoring selective logging in the Brazilian Amazon. Remote Sensing, 11(8), 961.‏ [Google Scholar].
20. Mars, J. C., & Rowan, L. C. (2011). ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7(1), 276-289.‏ [Google Scholar]
21. Muhammad Ali Kadhem & Redha Sahib Abu Hamad (2012). Rice cultivation in Iraq between reality and prospects. The Islamic college university journal, (17) (Arabic) [Google Scholar].‏ أ. د. رضا صاحب أبو حمد, & أ. م. د. محمد علي كاظم. (2012). Rice cultivation in Iraq between reality and prospects. The Islamic college university journal, (17). ‏
22. Muhammad Ali Kadhem (2011). The extent of the possibility of continuing rice cultivation in the governorates of Najaf and Qadisiyah. Kufa studies center journal, 2011, Volume 1, Issue 21, Pages 287-334. (Arabic) [Google Scholar]
23. Nasirzadehdizaji, R., Balik Sanli, F., Abdikan, S., Cakir, Z., Sekertekin, A., & Ustuner, M. (2019). Sensitivity analysis of multi-temporal Sentinel-1 SAR parameters to crop height and canopy coverage. Applied Sciences, 9(4), 655 [Google Scholar].‏
24. Normile, D. (1997). Yangtze seen as earliest rice site. Science, 275(5298), 309-309 [Google Scholar]. ‏
25. Nutrient data laboratory. United States Department of Agriculture. Retrieved August 10, 2016 [site].
26. Omar, S. C., Shaharudin, A., & Tumin, S. A. (2019). The status of the paddy and rice industry in Malaysia. Khazanah Research Institute. Kuala Lumpur [Google Scholar].‏
27. Onojeghuo, A. O., Blackburn, G. A., Wang, Q., Atkinson, P. M., Kindred, D., & Miao, Y. (2018). Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. International journal of remote sensing, 39(4), 1042-1067 [Google Scholar].‏
28. Ott, N., Kollersberger, T. and Tassara, A., 2006. GIS analyses and favorability mapping of optimized satellite data in northern Chile to improve exploration for copper mineral deposits. Geological Society of America Geosphere, Vol.2, No.4, p. 236 – 252. http://geosphere.geoscienceworld.org/cgi/content/abstract/2/4/236. [Google Scholar]
29. Qusai Qassem Al-Klidar, Falih Hassan Alwan & Wael Shamil (2014). Economic forecasts for rice production and consumption in Iraq for the period 2012-2020. Journal of Baghdad College of Economic Sciences University, Issue 42, Pages 1-16. (Arabic) [Google Scholar].
30. Salma Abdul Razak Abdul, Ahmad Hammoud Muheisen (2016). Geographical Analysis in the Effecency of Rice Agriculture in Khmas. Basic Education College Magazine For Educational and Humanities Sciences, Issue (29), 178-195 (Arabic) [iasj].
Published
2023-02-16
How to Cite
., A. S. Y. A.-G., & ., H. H. A. A. kadhim A. (2023). Climate change and its impact on the change of rice production and related industries in Al-Qadisiyah Governorate for the 2022 Agriculture season, using digital processing of Sentinel-2 data. Al-Qadisiyah Journal For Humanities Sciences, 25(4), 510-543. Retrieved from https://journalart.qu.edu.iq/index.php/QJHS/article/view/585
Section
Articles