The Completion of \oplus-measure

Noori F. AL-Mayahi
Mathematical Department
Science College
AL-Qadisya University

Mohammed J. M. AL-Mousawi
Mathematical Department
Education College
Thi-Qar University

1- Abstract

The theory of measure is an important subject in mathematics; in Ash [4,5] discusses many details about measure and proves some important results in measure theory.

In 1986, Dimiev [7] defined the operation addition and multiplication by real numbers on a set $E = (-\infty, 1) \subseteq \mathbb{R}$, he defined the operation multiplication on the set E and prove that E is a vector space over \mathbb{R} and for any $a > 1$ E_a is field, also he defined the fuzzifying functions on arbitrary set X.

In 1989, Dimiev [6] discussed the field E_a as in [7] and defined the operations addition, multiplication and multiplication by real number on a set of all fuzzifying functions defined on arbitrary set X, and also defined \oplus-measure on a measurable space and proved some results about it.

we mention the definition of the field E_a, and the fuzzifying functions on the arbitrary set X also we mention the definition of the operations.

Definition (1.1.1) [7]:

Let $(\mathbb{R}, +, \cdot)$ be a field of real numbers with usual order and $E = (-\infty, 1) \subseteq \mathbb{R}$, we introduce the operations addition \oplus and scalar multiplication \odot on the set E as follows:

For any $x, y \in E$ and $\lambda \in \mathbb{R}$ we have

$x \oplus y = x + y - xy$,

$\lambda \odot x = 1 - (1 - x)^\lambda$.

Proposition (1.2) [7]:

The set E with the operations \oplus, \odot and the relation order, represent ordered linear space.

Definition (1.3) [6]:

Let $a > 1$, we introduce an operation multiplication on the set E as follows

For any $x, y \in E$ we have $x \circ y = 1 - a^{\log_a(1-x)\log_a(1-y)}$.
Proposition (1.4) [6]:
The set E with the operations \oplus, \circ is a field which is denoted by E_a.

Remark (1.5):
Let $x, y \in E_a$, we denote $x \Theta y = x \oplus (-w) \circ y$ and $\Theta_ax = (-w) \circ x$ where $w = 1 - a^{-1}$ the unit element in the field E_a.

Definition (1.6)[6]:
Let X be arbitrary set, the map $f : X \rightarrow E_a$ is said to be E_a-valued fuzzifying function.

2- \oplus - Measure:
In this section we mention the definition of \oplus–measure on a measurable space and proved some results about it, also we defined \oplus–outer measure and proved some results about it.

Definition (2.1)[5]:
A collection F of subsets of a set Ω is said to be:
a) σ-ring if
1- $\phi \in F$, where ϕ is empty set.
2- if $A,B \in F$ then $A|B \in F$.
3- if $\{A_n\}$ is a sequence of sets in F then $\bigcup_{n=1}^{\infty} A_n \in F$.
b) σ-field (or σ-algebra) if
1- $\Omega \in F$.
2- if $A \in F$ then $A^c \in F$.
3- if $\{A_n\}$ is a sequence of sets in F then $\bigcup_{n=1}^{\infty} A_n \in F$. A measurable space is a pair (Ω,F) where Ω is a set and F is σ-ring or σ-field and a measurable set is a subset A of Ω such that $A \in F$.

Definition (2.2) [6]:
Let (Ω, F) be a measurable space, a fuzzifying function $\mu : F \rightarrow E_a$ is said to be:
1- \oplus-additive if $\mu(A \cup B) = \mu(A) \oplus \mu(B)$ for every disjoint sets A, B in F.
2- Accountability \oplus-additive if $\mu(\bigcup_{n=1}^{\infty} A_n) = \oplus_{n=1}^{\infty} \mu(A_n)$ for every disjoint sequence $\{A_n\}$ of sets of F.
3- \oplus-measure, if μ is accountability \oplus- additive and non-negative
The triple (Ω,F,μ) is called a space with \oplus-measure.

Theorem (2.3):
Let (Ω,F,μ) be a space with \oplus- measure and $A, B \in F$ then:
1- $\mu(\phi) = 0$.
2- $\mu(A) = \mu(A \cap B) \oplus \mu(A \cap B^c)$.
3- $\mu(A \cup B) \oplus \mu(A \cap B) = \mu(A) \oplus \mu(B)$.
4- if $A \subseteq B$ then:
 (a) $\mu(B|A) = \mu(B) \oplus (-w) \circ \mu(A)$.
 (b) $\mu(A) \leq \mu(B)$.
Proof:
1- Since $A = A \cup \emptyset$ and $A \cap \emptyset = \emptyset$.

 $\mu(A) = \mu(A \cup \emptyset) = \mu(A) \oplus \mu(\emptyset)$.

 Since E_a is a field $\Rightarrow \mu(\emptyset) = 0$.

2- Since $A = (A \cap B) \cup (A \cap B^c)$.

 and $(A \cap B) \cap (A \cap B^c) = \emptyset$.

 $\Rightarrow \mu(A) = \mu((A \cap B) \cup (A \cap B^c))$.

 $= \mu(A \cap B) \oplus \mu(A \cap B^c)$.

3- Since $A \cup B = (A \cap B^c) \cup B$ and $(A \cap B^c) \cap B = \emptyset$.

 $\Rightarrow \mu(A \cup B) = \mu((A \cap B^c) \cup B)$

 $= \mu(A \cap B^c) \oplus \mu(B)$.

 $\mu(A \cup B) \oplus \mu(A \cap B) = (\mu(A \cap B^c) \oplus \mu(B)) \oplus \mu(A \cap B)$.

 $= (\mu(A \cap B^c) \oplus \mu(A \cap B)) \oplus \mu(B)$.

 $= \mu(A) \oplus \mu(B)$.

4- (a) Since $A \subseteq B \Rightarrow B = A \cup (B \setminus A)$ and $A \cap (B \setminus A) = \emptyset$.

 $\mu(B) = \mu(A \cup (B \setminus A))$.

 $= \mu(A) \oplus \mu(B \setminus A)$.

 Since E_a is a field $\Rightarrow \mu(B \setminus A) = \mu(B) \oplus (\omega) \cdot \mu(A)$.

 (b) Since $\mu(B \setminus A) \geq \omega$ from (a) we get that $\mu(A) \leq \mu(B)$.

Definition (2.4):
Let (Ω, \mathcal{F}) be a measurable space and let the fuzzifying $\mu : \mathcal{F} \rightarrow E_a$ be a \oplus– additive, we say that μ is :

1. \oplus–continuous from below at $A \in \mathcal{F}$ if $\mu(A_n) \rightarrow \mu(A)$.

 For every non–decreasing sequence $\{A_n\}$ of sets in \mathcal{F} which converge to A (i.e $A_n \uparrow A$).

2. \oplus–continuous from below at $A \in \mathcal{F}$ if $\mu(A_n) \rightarrow \mu(A)$.

 For every non-increasing sequence $\{A_n\}$ of sets in \mathcal{F} converge to A (i.e $A_n \downarrow A$).

3. \oplus–continuous at $A \in \mathcal{F}$ if it is continuous at A from above and from below.

Theorem (2.5):
Let μ be \oplus– additive fuzzifying function on measurable space (Ω, \mathcal{F}), then the following are valid.

1- If μ is countable \oplus–additive, then μ is \oplus–continuous at A for all $A \in \mathcal{F}$.

2- If μ is \oplus–continuous from below at every $A \in \mathcal{F}$, then μ is countable \oplus–additive.

3- If μ is continuous from above at \emptyset then μ is countable \oplus–additive.
Proof:

1- Let \(\{A_n\} \) be an increasing sequence of sets in \(\mathcal{F} \) which converge to \(A \), i.e \(A_n \uparrow A \).

(a) Let \(B_1 = A_1, B_n = A_n |_{A_{n-1}} \) \(\forall n \geq 2 \).

\[
B_n \cap B_m = \varnothing, \forall n \neq m \quad \text{and} \quad \bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n = A.
\]

\[
\mu(A) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = \mu(A_1) \oplus \left(\bigoplus_{N=2}^{\infty} \mu(B_n) \right).
\]

\[
\Rightarrow \mu(A_1) \oplus \left(\bigoplus_{n=2}^{\infty} \mu(A_n |_{A_{n-1}}) \right).
\]

\[
\mu(A) = \mu(A_1) \oplus \lim_{K \to \infty} \left(\bigoplus_{n=2}^{K} \mu(A_n |_{A_{n-1}}) \right) = \lim_{K \to \infty} \mu(A_K).
\]

\[
\Rightarrow \mu \text{ is } \oplus-\text{continuous from below at } A \in \mathcal{F}.
\]

(b) Suppose that \(A_n \downarrow A \rightarrow A_1|_{A_n} \uparrow A|_{A} \).

\[
\Rightarrow \mu(A_1|_{A_n}) \rightarrow \mu(A_1|_{A}) \Rightarrow \mu(A_n) \rightarrow \mu(A).
\]

So \(\mu \text{ is } \oplus-\text{continuous from above at } A \in \mathcal{F} \).

From (a) and (b) we get that \(\mu \text{ is } \oplus-\text{continuous at } A \in \mathcal{F} \).

2- Let \(\{A_n\} \) be a disjoint sequence of sets in \(\mathcal{F} \), and \(A = \bigcup_{n=1}^{\infty} A_n \).

Put \(B_n = \bigcup_{i=1}^{n} A_i \Rightarrow B_n \in F \Rightarrow B_n \uparrow A \).

Since \(\mu \text{ is } \oplus-\text{continuous from below at } A \in \mathcal{F} \).

\[
\Rightarrow \mu(B_n) \rightarrow \mu(A).
\]

Since \(\mu \text{ is } \oplus-\text{additive} \Rightarrow \mu(B_n) = \mu\left(\bigcup_{i=1}^{n} A_i\right) = \bigoplus_{i=1}^{n} \mu(A_i).
\]

\[
\Rightarrow \bigoplus_{i=1}^{n} \mu(A_i) \rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) \Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \bigoplus_{n=1}^{\infty} \mu(A_n).
\]

So \(\mu \text{ is countable } \oplus-\text{additive} \).

3- In the notation of (2) put \(C_n = A|_{B_n} \Rightarrow C_n \in \mathcal{F}, n=1,2, \ldots \).

\[
\Rightarrow C_n \downarrow \varnothing.
\]

\[
\Rightarrow \mu(C_n) \rightarrow \mu(\varnothing) = 0 \Rightarrow \mu(A|_{B_n}) \rightarrow 0.
\]

\[
\mu(A) = \bigoplus_{i=1}^{n} \mu(A_i) \oplus \mu(C_n).
\]

So that \(\mu(A) = \bigoplus_{i=1}^{\infty} \mu(A_i) \).
3- The completion of Θ-measure

In this section we construct the completion of Θ-measure.

Definition (3.1)

Let (Ω, F) be a measurable space with F a σ-ring and μ is Θ-measure on F, $E \in F$ is said to be μ-null set if $\mu(E) = 0$. The Θ-measure μ is said to be complete on F if F contains the subsets of every μ-null sets.

Theorem (3.2):

Let (Ω, F, μ) be a space with Θ-measure where F is σ-ring and $N_\mu = \{ E : E \subseteq A \in F \text{ and } \mu(A) = 0 \}$ then N_μ is a σ-ring.

Proof:

1- Clearly $\varnothing \in N_\mu$.

2- Let $E_1, E_2 \in N_\mu \Rightarrow$ there exists $A_1, A_2 \in F$ such that $E_1 \subseteq A_1, E_2 \subseteq A_2$ and $\mu(A_1) = 0, \mu(A_2) = 0$.

$E_1|E_2 \subseteq E_1 \subseteq A_1 \in F$ So $E_1|E_2 \in N_\mu$.

3- Let $\{E_i\}$ be a sequence of sets in N_μ $i = 1, 2, \ldots \Rightarrow$ there exist a sequence $\{A_i\}$ $i = 1, 2, \ldots$ of sets in F such that $E_i \subseteq A_i$ and $\mu(A_i) = 0$.

$\bigcup_{i=1}^{\infty} E_i \subseteq \bigcup_{i=1}^{\infty} A_i$ Since F is σ-ring $\Rightarrow \bigcup_{i=1}^{\infty} A_i \in F$.

$\mu(\bigcup_{i=1}^{\infty} A_i) \leq \bigoplus_{i=1}^{\infty} \mu(A_i) = 0 \Rightarrow \mu(\bigcup_{i=1}^{\infty} A_i) = 0$.

So $\bigcup_{i=1}^{\infty} E_i \in N_\mu$ therefore N_μ is σ-ring.

Theorem (3.3):

Let (Ω, F, μ) be a space with Θ-measure where F is a σ-ring, define $\overline{F} = \{(E \cup E_i) - E_2 : E \in F, E_i, E_2 \in N_\mu \}$ then $A \in \overline{F}$ iff there exist sets $M, N \in F$ such that $M \subseteq A \subseteq N$ and $\mu(N - M) = 0$.

Proof:

Let $M, N \in F$ and $M \subseteq A \subseteq N$ such that $\mu(N - M) = 0$, so $A = (N \cup \varnothing)-(N-A)$.

Since $N - A \subseteq N-M \in F$ and $\mu(N - M) = 0$.

$\Rightarrow N - A \in N_\mu$.

Therefore $A \in \overline{F}$.

Suppose that $A \in \overline{F}$.

Then $A = (E \cup E_i) - E_2$, $E \in F, E_i, E_2 \in N_\mu$.

Therefore there exist $A_1, A_2 \in F$ such that $\mu(A_1) = 0$ and $E_i \subseteq A_1, E - A_2 \subseteq A \subseteq E \cup A_i$.

$E \cup A_i, E - A_2 \in F$ and

$\mu((E \cup A_i) - (E - A_2)) = \mu((A_1 + E) \cup (A_2 \cap E)).$

$= \mu((A_1 - E)) \oplus \mu(A_2 \cap E).$

Since $A_1 - E \subseteq A_i$ and $A_2 \cap E \subseteq A_2$.

$\Rightarrow \mu(A_1 - E) = 0 \rightarrow \mu(A_2 \cap E) = 0$.

So $\mu((E \cup A_i) - (E - A_2)) = 0$.
Corollary (3.4):
Let \((\Omega, \mathcal{F}, \mu)\) be a space with \(\oplus\)-measure where \(\mathcal{F}\) is \(\sigma\)-ring then \(A \in \mathcal{F}\) iff \(A = E \cup M\), \(E \in \mathcal{F}\) and \(M \in \mathcal{N}\).

Proof:
Suppose that \(A \in \mathcal{F}\).
By theorem (1.3.3) there exist \(M, N \in \mathcal{F}\) such that \(N \subset A \subset M\) and \(\mu(M - N) = 0\)
\[A = N \cup (A - N), N \in \mathcal{F}.
\]
Since \(A - N \subset M - N \in \mathcal{F}\) and \(\mu(M - N) = 0\).
\[\Rightarrow A - N \in \mathcal{N}.
\]
Conversely suppose \(A = E \cup M\), \(E \in \mathcal{F} \wedge M \in \mathcal{N}\).
\[\Rightarrow A \in \mathcal{F}.
\]

Corollary (3.5):
Let \((\Omega, \mathcal{F}, \mu)\) be a space with \(\oplus\) -measure where \(\mathcal{F}\) is \(\sigma\)-ring then \(A \in \mathcal{F}\) iff \(A = E - D\) with \(E \in \mathcal{F}\) and \(D \in \mathcal{N}\).

Proof:
Suppose that \(A \in \mathcal{F}\).
\[\Rightarrow \text{There exist } M, N \in \mathcal{F} \text{ such that } M \subset A \subset N.
\]
and \(\mu(N - M) = 0\).
\[A = N - (N - A), N \in \mathcal{F}.
\]
Since \(N - A \subset N - M \in \mathcal{F}\) and \(\mu(N - M) = 0\).
\[\Rightarrow N - A \in \mathcal{N}.
\]
Conversely suppose that \(A = E - D\) where \(E \in \mathcal{F}\) \(\wedge\) \(D \in \mathcal{N}\).
\[\Rightarrow A = (E \cup \phi) - D, \phi \in \mathcal{N}.
\]
\[\Rightarrow A \in \mathcal{F}.
\]

Theorem (3.6):
Let \((\Omega, \mathcal{F}, \mu)\) be a space with \(\oplus\) -measure where \(\mathcal{F}\) is a \(\sigma\)–ring then \(\mathcal{F}\) is \(\sigma\)-ring.

Proof:
1-clearly \(\phi \in \mathcal{F}\).
2-Let \(\{A_i\}_{i=1}^\infty\) be a sequence of sets such that \(A_i \in \mathcal{F} \Rightarrow A_i = M_i \cup N_i\) where \(M_i \in \mathcal{F}\) and \(N_i \in \mathcal{N}\).
\[\bigcup_{i=1}^\infty A_i = \bigcup_{i=1}^\infty (M_i \cup N_i).
\]
\[= (\bigcup_{i=1}^\infty M_i) \cup (\bigcup_{i=1}^\infty N_i).
\]
Since \(\mathcal{F}\) and \(\mathcal{N}\) are \(\sigma\)-ring.
\[\Rightarrow \bigcup_{i=1}^\infty M_i \in \mathcal{F}_1
\]
\[\bigcup_{i=1}^\infty N_i \in \mathcal{N}.
\]
So \(\bigcup_{i=1}^{\infty} A_i \in \overline{F} \).

3- Let \(A, B \in \overline{F} \) from Corollary (1.3.4) we obtain \(A = M_1 \cup N_1 \quad B = M_2 \cup N_2 \).

\[
A - B = (M_1 \cup N_1) - (M_2 \cup N_2).
\]

\[
= ((M_1 - M_2) - N_2) \cup ((N_1 - M_2) - N_2).
\]

\[
= [(M_1 - M_2) - E_2] \cup (E_2 - N_2) \cap (M_1 - M_2)) \cup ((N_1 - M_2) - N_2)
\]

\[N_2 \subset E_2 \in \mathcal{F}, \quad \mu(E_2) = 0\]

\[
A - B \in \overline{F}.
\]

Therefore \(\overline{F} \) is \(\sigma \)-ring.

Theorem (3.7):

Let \((\Omega, \mathcal{F}, \mu) \) be a space with \(\oplus \)-measure and \(\overline{\mu}: \overline{F} \to E_\mu \) defined as follows

\[
\overline{\mu}(A) = \mu(M) \text{ where } A = (M \cup N), \ M \in \mathcal{F} \text{ and } N \in N_\mu.
\]

Then \(\overline{\mu} \) is complete \(\oplus \)-measure on \(\overline{F} \), where is restriction to \(F \) is \(\mu \).

Proof:

1- \(\overline{\mu}(\varnothing) = \mu(\varnothing) = 0 \).

2- Let \(\{A_i\} \) be a sequence of sets in \(\overline{F}, \ i = 1, 2, \ldots \)

\(\Rightarrow \) There exist a sequence of sets \(\{E_i\} \) in \(F \) and a sequence of sets \(\{N_i\} \) in \(N_\mu \) such that \(A_i = E_i \cup N_i \).

\[
\overline{\mu}(\bigcup_{i=1}^{\infty} A_i) = \overline{\mu}(\bigcup_{i=1}^{\infty} (E_i \cup N_i)).
\]

\[
= \overline{\mu}((\bigcup_{i=1}^{\infty} E_i) \cup (\bigcup_{i=1}^{\infty} N_i))
\]

\[
= \mu((\bigcup_{i=1}^{\infty} E_i) \cap \bigcup_{i=1}^{\infty} (N_i))
\]

\[
= \mu(\bigcup_{i=1}^{\infty} E_i) = \oplus_{i=1}^{\infty} \mu(E_i) = \oplus_{i=1}^{\infty} \mu(A_i)
\]

So \(\overline{\mu} \) is \(\oplus \)-measure on \(\overline{F} \).

3- Let \(A \in F, \ A = A \cup \varnothing, \varnothing \in N_\mu \).

\[
\overline{\mu}(A) = \overline{\mu}(A \cup \varnothing) = \mu(A).
\]

\(\mu \) is \(\oplus \)-restriction of \(\overline{\mu} \) to \(F \).
4- Let $E \in \overline{F}$ and $\overline{\mu}(E) = 0$, $A \subset E$.

$E = M \cup N$, $M \in \mathcal{F}, N \in N_\mu$.

$\overline{\mu}(E) = \mu(M) \Rightarrow \mu(M) = 0$.

Since $N \in N_\mu \Rightarrow$ There exists $E_i \in \mathcal{F}$ such that $N \subset E_i$ and $\mu(E_i) = 0$, since $\mu(E_i) = \mu(M) = 0 \Rightarrow M, E \in N_\mu$.

A $\subset E = M \cup N \subset M \cup E_i \Rightarrow A \subset M \cup E_i \in \mathcal{F}$, $\mu(M \cup E_i) = \mu(M) \oplus \mu(E_i) = 0 \Rightarrow A \in N_\mu$.

$A = (M \cup E_i) - ((M \cup E_i) - A)$, $M \cup E_i \in \mathcal{F}, (M \cup E_i) - A \in N_\mu \Rightarrow A \in \overline{F}$ $\Rightarrow \overline{\mu}$ is complete on \overline{F}.

5- To show that the definition of $\overline{\mu}$ is well defined.

Let $A \in \overline{F} \Rightarrow A = M \cup N$, $M \in \mathcal{F}$ and $N \in N_\mu$.

$\Rightarrow \exists E \in \mathcal{F}$ $N \subset E$ and $\mu(E) = 0$.

The relations $M \cup N = (M - E) \cup (E \cap (M \cup N))$.

and $M \Delta N = (M - E) \cup (E \cap (M \Delta N))$ show that

the class \overline{F} may also be denoted as there class of the form $M \Delta N, M \in \mathcal{F}$ and $N \in N_\mu, \overline{\mu}(M \Delta N) = \overline{\mu}(M \cup N) = \mu(M)$.

Let $F_1 \Delta N_1 = F_2 \Delta N_2$.

$F_i \in \mathcal{F}$, $N_i \subseteq E_i \subset \mathcal{F}$, $\mu(E_i) = 0$ $i=1,2$.

Then $F_1 \Delta F_2 = N_1 \Delta N_2$.

Therefore $\mu(F_1 \Delta F_2) = 0 \Rightarrow \mu(F_1) = \mu(F_2) \Rightarrow \overline{\mu}(F_1 \Delta N_1) = \overline{\mu}(F_2 \Delta N_2)$.

So the definition of $\overline{\mu}$ is well defined.
References