T-semimaximal submodules

Farhan Dakhil Shyaa
Department of Mathematics, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
farhan.shyaa@qu.edu.iq farhan_math1@yahoo.co.uk

Received : 14/9/2017 Revised : 8/10/2017 Accepted : 16/10/2017

Abstract
In this paper, we define and study the notions of t-semimaximal submodule as a generalization of semimaximal submodule. We provided many properties and characterizations of this concept are provided.

Key words: maximal submodule, semimaximal submodule, t-semimaximal submodule and t-semisimple modules.

Mathematics Subject Classification 2010: 16 D10, 16D60, 16 D80.

1. Introduction

Throughout this paper R is a ring with unity and M unitary a right R-module. The second singular (or Goldi torsion) of M is denoted by $Z_2(M)$ and defined as $Z_2(M) = Z(M)/Z_2(M)$ where $Z(M)$ is the singular submodule of M[5]. A module M is called Z_2-torsion if $Z_2(M) = M$. A submodule A of an R-module M is said to be essential in M (denoted by $A \leq_{ess} M$), if $A \cap W \neq (0)$ for every non-zero submodule W of M[7].

The concept of t-essential submodules is introduced as a generalizations of essential submodules [2]. A submodule N of M is said to be t-essential in M (denoted by $(N \leq_{tes} M)$ if for every submodule B of M, $N \cap B \leq Z_2(M)$ implies that $B \leq Z_2(M)$. A submodule N of a module M is called small in M and denoted by $N \ll M$ if for every $K \leq M$ the equality $M = N + K$ implies $M = K$. A module M is called hollow if every proper submodule of M is small in M "[10].

Asgari and Haghany in [3] introduced the concept of t-semisimple modules and t-semisimple rings; A module M is called t-semisimple if every submodule N of M contains a direct summand K of M such that K is t-essential in N. A submodule N of a module M is called semimaximal if M/N is a semisimple module [9].

In this paper, we introduce a generalization of semimaximal submodule, namely t-semimaximal. A submodule N of a module M is called t-semimaximal if M/N is t-semisimple module. This paper consists of two sections, in section two of this paper, we define and study the concept of t-maximal submodules and give some properties and charerizations of it.

Proposition (1.1)[2]:" The following statements are equivalent for a submodule A of an R-module M:

(1) A is t-essential in M.
(2) $(A + Z_2(M))/Z_2(M)$ is essential in $M/Z_2(M)$.
(3) $A + Z_2(M)$ is essential in M;
(4) M/A is Z_2-torsion [3]."
Corollary (1.2) [3]:" Let M be a t-semisimple module. Then:
(1) Every submodule of M is t-semisimple.
(2) Every homomorphic image of M is t-semisimple".

Corollary (1.3) [3]: "A module M is t-semisimple if and only if M has no proper t-essential submodule which contains $Z_2(M)$".

Corollary (1.4) [3]: Every direct sum of t-semisimple modules is t-semisimple.

2. t-semimaximal submodules

In this section, we will introduce and study the concept of t-semimaximal submodule

Definition (2.1): A submodule N of module M is called t-semimaximal if M/N is a t-semisimple module.

Proposition (2.2): Let M be an R-module. $Z_2(M)$ is semimaximal submodule of M if and only if $Z_2(M)$ is t-semimaximal submodule of M.

Proof: \Rightarrow It is clear.
\Leftarrow Since $Z_2(M)$ is t-semimaximal submodule of M, then $M/Z_2(M)$ is a t-semisimple module. Hence $M/Z_2(M)$ is semisimple by [3, Theorem 2.3], but $Z_2(M/Z_2(M)) = (0)$. Hence $M/Z_2(M)$ is semisimple module. Thus $Z_2(M)$ is semimaximal submodule of M.

Remarks and Examples (2.3):

(1) It is clear that every semimaximal submodule of a right R-module is t-semimaximal submodule but not conversely, for example: $4Z$ is a t-semimaximal submodule of Z as Z-module (because $Z/4Z$ is t-semisimple Z-module [3])

(2) Every t-essential (or essential) submodule N of M is t-semimaximal (by [3, Example 2.2(i)])

(3) Let $N \leq M$ and W be the complement of N, then $N \oplus W$ is t-semimaximal of M.

(4) Let $N \leq W \leq M$ and N be a t-semimaximal submodule, then W is a t-semimaximal submodule of M.

Proof: Let $f: M/N \rightarrow M/W$ defined by $f(m+N) = m+W$, for all $m \in M$.

It is clear that f is a well-defined and epimorphism. Since M/N is t-semisimple it follows from Hence M/W is t-semisimple by Corollary 1.2(2) that M/W is t-semisimple and hence W is a t-semimaximal submodule of M.

If N is t-semimaximal of M and $N \leq K \leq M$, then N is t-semimaximal of K.

Proof: Since N is t-semimaximal of M it follows that M/N is t-semisimple. But $K/N \leq M/N$, hence by Corollary 1.2(1) K/N is t-semisimple. Thus N is t-semimaximal of K.

(6) Let $\{M_i, i \in I\}$ be a family of R-modules and let $M = \bigoplus_{i \in I} M_i$. If A_i is t-semimaximal of M_i, then $\bigoplus_{i \in I} A_i$ is t-semimaximal of $\bigoplus_{i \in I} M_i$.

Proof: Since A_i is t-semimaximal of M_i, it follows that M_i/A_i is t-semisimple and hence $\bigoplus_{i \in I} M_i/A_i$ is t-semisimple by Corollary 1.4. Thus $\bigoplus_{i \in I} A_i$ is t-semimaximal of $\bigoplus_{i \in I} M_i$.

(7) Let $N \leq K \leq M$. Then K is t-semimaximal submodule if and only if M/K_B is a t-semimaximal submodule of M/B.

Proof: \RightarrowSince K is a t-semimaximal submodule of M, it follows that M/K t-semisimple. But $N/K \leq M/K$, it follows that N/K is a t-semisimple module and hence K_B is a t-semimaximal submodule of M/B.

\Leftarrow By similarly way of first direction.

(8) Rad (M) is t-semimaximal submodule of M if and only if $M = M_1 \oplus M_2$ such that M_1 is semisimple and $\text{Rad } M \leq \text{rad } M_2$ [3, Proposition 2.10].

(9) If M is a t-semimaximal submodule of a module M then N is t-semimaximal submodule, for each non-zero submodule N of M.
Proof: suppose that (0) is t-semimaxmal submodule of a module \(M \), thus \(M/(0) \approx \frac{M}{(0)} \). Hence \(M \) is t-semisimple. Hence \(M/N \) is t-semisimple by \([3, \text{Corollary 2.4(2)}]\). Thus \(N \) is t-semisimal.

(10) If \(N \) is a nonzero t-semimaxmal submodule (0) need not be t-semimaxmal, for example: \(6\mathbb{Z} \) in \(\mathbb{Z} \)-module is t-semimaxmal. But (0) is not t-semimaxmal since \(\mathbb{Z}/(0) \approx \mathbb{Z} \) is not t-semisimple

(11) \(M \) is t-semisimple \(R \)-module if and only if \(M \) is t-semisimple \(R/\text{ann}(M)(0) \)-module.

Proof: Since every submodule of \(M \) \(R \)-module if and only if every submodule of \(M \)

\[R/\text{ann}(M)(0) \]

\[\text{module} \] [10].

Proposition (2.4): Every submodule of \(M \) \(R \)-module is t-semimaxmal submodule.

Proof: Let \(U \leq M \) and \(\pi: M \rightarrow M/U \) be the natural epimorphism. Hence \(M/U \) is t-semisimple by Corollary 1.2(2). Thus \(U \) is t-semimaxmal.

Proposition (2.5): The intersection of any two t-semimaxmal submodules of an \(R \)-module is t-semimaxmal submodule.

Proof: Let \(U_1, U_2 \) be two t-semimaxmal submodules of \(M \). Thus \(M/U_1 \) and \(M/U_2 \) are t-semimaxmal modules and hence \(M/U_1 \oplus M/U_2 \) is t-semisimple by Corollary 1.4. Since \(M/U_1 \cap U_2 \) is an isomorphism to a submodule of \(M/U_1 \oplus M/U_2 \) it follows that \(M/U_1 \cap U_2 \) is t-semisimple. Thus \(U_1 \cap U_2 \) is a t-semimaxmal submodule of \(M \).

Proposition (2.6): Let \(U_1 \) be a t-semimaxmal submodule of an \(R \)-module \(M_1 \) and \(U_2 \) be a t-semimaxmal submodule of an \(R \)-module \(M_2 \). Then \(U_1 \oplus U_2 \) is a t-semimaxmal submodule of \(M_1 \oplus M_2 \).

Proof: By hypothesis, \(M_1/U_1 \) and \(M_2/U_2 \) are t-semisimple \(R \)-module and hence from Corollary 1.4 we have that \(M_1/U_1 \oplus M_2/U_2 \) is t-semisimple. Since \(M_1 \oplus M_2 \cong M_1/U_1 \oplus M_2/U_2 \) it follows that \(M_1 \oplus M_2 \cong M_1/U_1 \oplus M_2/U_2 \) is t-semisimple and hence \(U_1 \oplus U_2 \) is t-semisimple in \(M_1 \oplus M_2 \).

Proposition (2.7): Let \(M \) be an \(R \)-module and \(N \leq M \). Then \(N \) is a t-semimaxmal if and only if \(M/N \) is semisimple, for each t-closed submodule \(W \) of \(M \) and \(W \supseteq N \).

Proof: \(\Rightarrow \) Let \(W \) be a t-closed submodule of \(M \) with \(W \supseteq N \). Hence \(M/W \) is a t-closed submodule of \(M/N \) by \([4, \text{Lemma 2.5}]\). But \(N \) is a t-semimaxmal by hypothesis, so \(M/N \) is t-semisimple. Then by \([3, \text{Corollary 2.17}]\), \(M/N/W \) is semisimple and hence \(M/W \) is semisimple.

\(\Leftarrow \) To prove \(N \) is a t-semimaxmal submodule of \(M \). Let \(C/N \) be a t-closed in \(M/N \); hence \(C \) is a t-closed of \(M \), and \(C \supseteq N \). So that \(M/C \) is semisimple by hypothesis, but \(M/C \cong M/N/C/N \) so that \(M/N/C/N \) is semisimple for each t-closed submodule \(C/N \) of \(M/N \), which implies \(M/N \) is t-semisimple by \([3, \text{Corollary 2.17}]\). Thus \(N \) is t-semimaxmal submodule of \(M \).

Proposition (2.8): If \(Rad(M) \) is a t-semimaxmal and \(M \) is hollow then \(M/Rad(M) \) is \(Z_2 \)-torsion.

Proof: Since \(Rad(M) \) is t-semimaxmal, \(M/Rad(M) \) is t-semisimple. By \([3, \text{Proposition 2.10}]\) we have that \(M = M_1 \oplus M_2 \), where \(M_1 \) is semisimple and \(Rad(M) \leq \text{tes} M_2 \). Let \(A \ll M \), then \(A \leq Rad(M) \leq \text{tes} M_2 \), so if \(M \) is hollow, every submodule of \(M \) contain in \(M_2 \). Hence \(M = M_2 \) and thus \(M/Rad(M) \) is \(Z_2 \)-torsion.

Remark (2.10): If \(R \) is a t-semi simple ring and \(M \) is an \(R \)-module, then every submodule of \(M \) is t-semi maximal.
Proof: Since R is a t-semisimple, every R-module M is t-semisimple [3,Theorem 3.2]. Hence by Proposition 2.3 every submodule of M is t-semimaximal.

Proposition (2.11): Let $N \leq M$. Then N is a t-semimaximal submodule in M if and only if for each submodule A of M with $A \supseteq N$, there exist $K, K' \leq N$ such that $A = K + K'$ and $M = K + L$ for some $L \leq M$ and $N \leq_{tes} K', K \cap L = N, K \cap K' = N$.

Proof: \Rightarrow Let N be a t-semimaximal submodule in M, then M/N is t-semisimple.

For each $A \supseteq N$, $A/N \leq M/N$. Hence by [3, Proposition 2.13(3)] $A/N = K'/N \oplus K'/N$ for each $K, K' \leq M$ with $K/N \leq M/N$ and K'/N is Z_2-torsion. Hence $N \leq_{tes} K'$ by Proposition 1.1. $K/N \leq M/N$, then $K/N \oplus L/N = M/N$ for some $L \leq M$ with $N \leq L$, then $K + L = M$ with $K \cap L = N$.

\Leftarrow For any $A/N \leq M/N$. As $A = K + K', K \cap K' = N$, then $A/N = K/N \oplus K'/N$. Also, $K + L = M, K \cap L = N$, then $K/N \oplus L/N = M/N$, so $K/N \leq M/N$. But $N \leq_{tes} K'$ implies K'/N is Z_2-torsion. Hence $A/N = K/N \oplus K'/N$ with $K/N \leq M/N$ and K'/N is Z_2-torsion implies M/N is t-semisimple by [3, Proposition 2.13(3)]. Thus N is t-semimaximal submodule in M.

Proposition (2.12): An R-module M is t-semisimple if and only if $\forall N \leq M, N + Z_2(M)$ is semisimple.

Proof: \Rightarrow Suppose that M is t-semisimple, then $N + Z_2(M) = M$ is closed in M, $\forall N \leq M$ by [3,Corollary 2.8]. But $N + Z_2(M)$ contains $Z_2(M)$, so $N + Z_2(M)$ is t-closed. Hence by [3, Corollary 2.17], $M/N + Z_2(M)$ is semisimple.

\Leftarrow Since $\forall N \leq M, N + Z_2(M)$ is semisimple, so that $M/N + Z_2(M)$ is semisimple. Hence $M/N + Z_2(M)$ is semisimple (if $N = 0$). This implies M is t-semisimple [3, Theorem 2.3].

References

المقاسات الجزئية العظمى من النمط T

فرحان داخل شياع
جامعة القادسية/ كلية التربية/ قسم الرياضيات

المستخلص:

في هذا البحث عرفنا و درسنا مفهوم المقاسات الجزئية العظمى من النمط T كتعميم المقاسات الجزئية العظمى العديد من الخواص والمميزات لهذا المفهوم برهنت.