On a Completion of Fuzzy Measure

Noori F. Al-Mayahi Bassam S. Hashem

Department of Mathematics
College of Computer Science and Mathematics
University of Al-Qadisiya

Nfam60@yahoo.com, bassam_asl@yahoo.com

Received: 8/11/2015 Revised: // Accepted: 30/12/2015

Abstract: In this paper, we introduce some properties in completeness of fuzzy measure and we get some relations between them.

Keywords: Fuzzy measure, null set, countably weakly null-additive fuzzy measure, additive fuzzy measure.

Mathematics subject classification: 64S40

1. Introduction

The fuzzy measure, defined on a classical σ-field, was introduced by Sugeno [7]. Ralescu and Adams [1] generalized the concepts of fuzzy measure and fuzzy integral to the case that the value of a fuzzy measure can be infinite, and to realize an approach from subjective.

The notion of fuzzy measure was extended by Avallone and Barbieri, Jiang and Suzuki [9], Narukawa and Murofushi [10], Ralscu and Adams [1] as a set function which was defined on σ-field with valus in $[0, \infty]$. After that, many authors studied the fuzzy measure and proved some results about it as Guo and Zhang [10], Kui [6], Li and Yasuda [3], Lushu and Zhaohu [5], Minghu [2].

In this paper, we mention the definition of completion of fuzzy measure with some properties, and prove some new relations deal with completeness of fuzzy measure.

Definition (1):[13]
Let (Ω, \mathcal{F}) be a measurable space. A set function $\mu: \mathcal{F} \rightarrow [0, \infty)$ is called a fuzzy measure if

1. $\mu(\emptyset) = 0$
2. $\mu(A) \leq \mu(B)$, where $A \subseteq B$

Definition (2):
Let (Ω, \mathcal{F}) be a fuzzy measurable space, $A \in \mathcal{F}$ is said to be $\mu - \text{null set}$ if $\mu(A) = 0$. The fuzzy measure μ is said to be complete on \mathcal{F} if \mathcal{F} contains the subset of every $\mu - \text{null}$ sets.

Definition (3):[12]
μ is called countably weakly null-additive, if for any $\{A_n\} \subset \mathcal{F}$,

$$\mu(A_n) = 0, \text{ for all } n \geq 1 \Rightarrow \mu \left(\bigcup_{n=1}^{\infty} A_n \right) = 0$$

Definition (4):[12]
μ is said to be additive, if $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$.

1
2. Main results

Theorem (1):

Let \((\Omega, \mathcal{F}, \mu)\) be a fuzzy measurable space and \(\mu\) is countably weakly null-additive and \(\delta_\mu = \{E: E \subset A \in \mathcal{F} \text{ and } \mu(A) = 0\}\). Then \(\delta_\mu\) is \(\sigma - \text{ring}\).

Proof:

1. Clearly \(\emptyset \in \delta_\mu\).
2. Let \(E_1, E_2 \in \delta_\mu \Rightarrow\) there exists \(A_1, A_2 \in \mathcal{F}\) such that \(E_1 \subset A_1, E_2 \subset A_2\) and \(\mu(A_1) = 0, \mu(A_2) = 0\).

\(E_1 / E_2 \subset E_1 \subset A_1 \in \mathcal{F}\) So \(E_1 / E_2 \in \delta_\mu\).
3. Let \(\{E_n\}\) be a sequence of sets in \(\delta_\mu\) \(n=1,2,\ldots\) \(\Rightarrow\) there exist a sequence \(\{A_n\}\) \(n=1,2,\ldots\) of sets in \(\mathcal{F}\) such that \(E_n / A_n\) and \(\mu(A_n) = 0\).

\[\bigcup_{n=1}^{\infty} E_n \subset \bigcup_{n=1}^{\infty} A_n\]

Since \(\mathcal{F}\) is \(\sigma - field\)

\[\Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}\]

Since \(\mu\) is countably weakly null-additive

\[\Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0\]

So

\[\bigcup_{n=1}^{\infty} E_n \in \delta_\mu\]

Therefore

\[\delta_\mu\) is \(\sigma - \text{ring}\]

Theorem (2):

Let \((\Omega, \mathcal{F}, \mu)\) be a fuzzy measurable space and \(\mu\) is additive, define \(\mathcal{F} = \{(E \cup E_1) / E_2 : E \in \mathcal{F}, E_1, E_2 \in \delta_\mu\}\). Then \(A \in \mathcal{F}\) \(\iff\) there exists \(M, N \in \mathcal{F}\) such that \(M \subset A \subset N\) and \(\mu(M / N) = 0\).

Proof:

Let \(M, N \in \mathcal{F}\) and \(M \subset A \subset N\) and \(\mu(N / M) = 0\).

So

\[A = (N \cup \emptyset) / (N / A)\]

Since

\[N / A \subset N / M \in \mathcal{F}\) and \(\mu(N / M) = 0 \Rightarrow N / A \in \delta_\mu\).

Therefore

\[A \in \mathcal{F}\].

Suppose that \(A \in \mathcal{F}\), then \((E \cup E_1) / E_2, E \in \mathcal{F}, E_1, E_2 \in \delta_\mu\).

\[\Rightarrow\) there exist \(A_1, A_2 \in \mathcal{F}\) such that \(\mu(A_1) = 0, \mu(A_2) = 0\)

and \(E_1 \subset A_1, E_2 \subset A_2\).

\[E \cup A_1, E / A_2 \in \mathcal{F}\) and \(\mu((E \cup A_1) / (E / A_2)) = \mu((A_1 / E) \cup (A_2 \cap E)) = \mu(A_1 / E) + \mu(A_2 \cap E)\)

Since

\[A_1 / E \subset A_1 \text{ and } A_2 \cap E \subset A_2 \Rightarrow \mu(A_1 / E) = 0\) and \(\mu(A_2 \cap E) = 0\)

So

\[\mu((E \cup A_1) / (E / A_2)) = 0.\]

Corollary (1):

Let \((\Omega, \mathcal{F}, \mu)\) be a fuzzy measurable space and \(\mu\) is additive. Then \(A \in \mathcal{F}\) \(\iff\) \(A = E \cup M, E \in \mathcal{F}\) and \(M \in \delta_\mu\).

Proof:

Suppose that \(A \in \mathcal{F}\). By theorem (2) there exist \(M, N \in \mathcal{F}\) such that \(N \subset A \subset M\) and \(\mu(M / N) = 0\)

\[A = N \cup (A / N), N \in \mathcal{F}\]
Since
\[A/N \subseteq M/N \in \mathcal{F} \text{ and } \mu(M/N) = 0 \implies A/N \in \delta_{\mu} \]

Conversely
Suppose \(A = E \cup M, E \in \mathcal{F} \) and \(M \in \delta_{\mu} \)
\[A = (E \cup M)/\emptyset, \emptyset \in \delta_{\mu} \implies A \in \bar{\mathcal{F}} \]

Corollary (2):
Let \((\Omega, \mathcal{F}, \mu)\) be a fuzzy measurable space and \(\mu\) is additive. Then \(A \in \bar{\mathcal{F}}\) iff \(A = E / D\) with \(E \in \mathcal{F}\) and \(D \in \delta_{\mu}\).

Proof:
Suppose that \(A \in \bar{\mathcal{F}}\)
\[\implies \text{there exist } M, N \in \mathcal{F} \text{ such that} \]
\[N \subseteq A \subseteq M \text{ and } \mu(M/N) = 0 \]
\[A = M/(M/A), M \in \mathcal{F} \]

Since
\[M/A \subseteq M/N \in \mathcal{F} \text{ and } \mu(M/N) = 0 \]
So
\[M/A \in \delta_{\mu} \]

Conversely
Suppose that \(A = E/D\) where \(E \in \mathcal{F}\) and \(D \in \delta_{\mu}\)
\[\implies A = (E \cup \emptyset)/D \]
\[D, \emptyset \in \delta_{\mu} \]
\[\implies A \in \bar{\mathcal{F}} \]

Theorem (3):
Let \((\Omega, \mathcal{F}, \mu)\) be a fuzzy measurable space and \(\mu\) is additive. Then \(\bar{\mathcal{F}}\) is \(\sigma - \text{ring}\).

Proof:
1. Clearly \(\emptyset \in \bar{\mathcal{F}}\).
2. Let \(\{A_n\}_{n=1}^{\infty} \text{ where } A_n \in \bar{\mathcal{F}}\) be a sequence of sets such that \(A_n \in \bar{\mathcal{F}}\)
\[\implies A_n = M_n \cup N_n \text{ where } M_n \in \mathcal{F} \text{ and } N_n \in \delta_{\mu} \]
\[\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} (M_n \cup N_n) = \left(\bigcup_{n=1}^{\infty} M_n \right) \cup \left(\bigcup_{n=1}^{\infty} N_n \right) \]

Since
\[\bar{\mathcal{F}} \text{ is } \sigma - \text{field and } \delta_{\mu} \text{ is } \sigma - \text{ring} \]
\[\implies \bigcup_{n=1}^{\infty} M_n \in \mathcal{F}, \bigcup_{n=1}^{\infty} N_n \in \delta_{\mu} \]

So
\[\bigcup_{n=1}^{\infty} A_n \in \bar{\mathcal{F}} \]

3. Let \(A, B \in \bar{\mathcal{F}}\) from Corollary(1) we obtain
\[A = M_1 \cup N_1 \]
\[B = M_2 \cup N_2 \]
\[A/B = (M_1 \cup N_1)/(M_2 \cup N_2) \]
\[= (M_1/M_2) \cup (N_1/M_2) \]
\[= [(M_1/M_2)/E_2] \cup ((E_2/N_2) \cup (M_1/M_2)/N_2) \]
\[= [(M_1/M_2)/E_2] \cup (E_2/N_2) \cup (M_1/M_2/N_2) \]
\[N_2 \subseteq E_2 \subseteq \mathcal{F}, \mu(E_2) = 0 \]
\[A/B \in \bar{\mathcal{F}} \]

Therefore
\[\bar{\mathcal{F}} \text{ is } \sigma - \text{ring.} \]
References

[13] Naomi Kochi and Zhenyuan Wang, An Algebraic Method to the Identification of Fuzzy Measures Based on Choquet Integrals, University of Nebraska at Omaha Kerrigan Research Minigrants Program

حتى الان تجاوز الضبابي الكامل

نوري فرحان المياحي، بسام سلمان هاشم

جامعة القادسية/ كليه علوم الحاسوب و تكنولوجيا المعلومات/ قسم الرياضيات

الملخص: في هذا البحث، قمنا بعض الخصائص في كمالية القياس الضبابي وحصولنا على بعض العلاقات بينها.