On Differential Sandwich Results For Analytic Functions

Waggas Galib Atshan Sarah Abd Al-Hmeed Jawad
Department of Mathematics
College of Computer Science and Information Technology,
University of Qadisiyah, Diwaniyah, Iraq.
waggas.galib@qu.edu.iq Sarahabdalhmeed94@gmail.com

Recived : 14/10/2018 Revised : 11/8/2018 Accepted : 20/12/2018
Available online : 28/1/2019
DOI: 10.29304/jqcm.2019.11.1.477

Abstract: In this paper, we obtain some subordination and superordination results involving
the integral operator F_{α}. Also, we get Differential sandwich results for classes of univalent functions in the unit disk.

Keywords: Analytic function, univalent function, differential subordination, superordination.

2018 Mathematics Subject Classification : 30C45.
1-Introduction:

Let $H=H(U)$ be the class of analytic functions in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. For n a positive number additionally $a \in \mathbb{C}$. Let $H[a,n]$ be the subclass of H entailing of functions of the form:

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \ldots = \sum_{k=0}^{\infty} a_k z^k \quad (a \in \mathbb{C}). \quad (1.1)$$

Let A be the subclass of H entailing of functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k. \quad (1.2)$$

The function f is said to be subordinate to g, or g is said to be subordinate to f, if there exists a Schwarz function w analytic in U with $w(0) = 0$ and $|w(z)| < 1$ ($z \in U$), to such an extent that $f(z) = g(w(z))$. In such a case we compose $f < g$ or $f(z) < g(z)(z \in U)$. If g is univalent function in U, then $f < g$ if and only if $f(0) = g(0)$ and $f(U) \subset g(U)$.

Let $p,h \in H$ and $\psi(r,\delta,t,z) : \mathbb{C}^3 \times U \to \mathbb{C}$. If p and $\psi(p(z),zp'(z),z^2p''(z))$ are univalent functions in U and if p fulfills the second-order differential superordination:

$$h(z) < \psi(p(z),zp'(z),z^2p''(z)); z), \quad (1.3)$$

then p is called a result of the differential superordination (1.3). (If f is subordinate to g, then g is subordinate to f) . An analytic function q is called a subordinate of (1.3), if $q < p$ for very the functions p filling (1.3).

An univalent subordinate q that fulfills $q < q$ for all the subordinants q of (1.3) is called the best subordinate. Miller and Mocanu [5] have gotten adequate conditions for certain standardized systematic capacities f to fulfill:

$$q_1(z) < \left(\frac{p_1^{\beta_1 + 1}(z)}{z}\right)^{\alpha_1} < q_2(z),$$

and

$$q_1(z) < \left(\frac{\sum_{k=2}^{\infty} a_k z^k}{z}\right)^{\alpha_1} < q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$. Additionally, Tuneski [9] acquired adequate conditions for starlikeness of f in relations of the amount $\frac{f''(z)}{f'(z)}$. Recently, Shammugam et al.[7,8], Goyal et al.[4] also gotten sandwich consequences for certain classes of analytic functions.

The principle question of the present paper is to discover adequate conditions for certain standardized systematic capacities f to fulfill:

$$q_1(z) < \left(\frac{f^{\beta_1 + 1}(z)}{z}\right)^{\alpha_1} < q_2(z),$$

and

$$q_1(z) < \left(\frac{\sum_{k=2}^{\infty} a_k z^k}{z}\right)^{\alpha_1} < q_2(z),$$

wherever q_1 and q_2 are known univalent functions in U with $q_1(0)=q_2(0)=1$.

2-Preliminaries:

With the end goal to demonstrate our subordination and superordination result , we require the accompanying definition and lemmas.

Definition 2.1 [5]: Denote by Q the set of all functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where $E(f) = \{\xi \in \partial U : \lim_{z \to \xi} f(z) = \infty\}$.

(2.1)

and are such that $f'(\xi) \neq 0$ for $\xi \in \partial U \setminus E(f)$.

Lemma 2.1 [5]: Let q be univalent in the unit disk U and let θ and $\partial \theta$ be analytic in a domain D containing $q(U)$ with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) = q(z)\phi(q(z))$ and $h(z) = \theta(q(z)) + Q(z)$. Suppose that

(i) $Q(z)$ is starlike univalent in U,

(ii) $Re\left(\frac{\partial h(z)}{Q(z)}\right) > 0$ for $z \in U$.

If p is analytic in U with $p(0) = q(0), p(U) \subset D$ and

$$\theta(p(z)) + zp'(z)\phi(p(z)) < \theta(q(z)) + zq'(z)\phi(q(z)) \quad (2.2)$$

then $p < q$ and q is the best dominant of (2.2).

Lemma 2.2 [6]: Let q be convex univalent in function in U and let $\alpha \in \mathbb{C}, \beta \in \mathbb{C}/\{0\}$ with

$$Re\left(1 + \frac{zq''(z)}{q(z)}\right) > \max(0, -Re\left(\frac{\alpha}{\beta}\right)).$$

If p is analytic in U and $\alpha p(z) + \beta zp'(z) < \alpha q(z) + \beta zq'(z), \quad (2.3)$

then $p < q$ and q is the best dominant of (2.3).
Lemma 2.3 [6]: Let q be convex univalent in U and let $\beta \in \mathbb{C}$, further assume that $\text{Re} (\beta) > 0$. If $P \in H[q(0)] \cap Q$ and $P(z) + \beta z p'(z)$ is univalent in U, then
\[
q(z) + \beta z q'(z) < p(z) + \beta z p'(z),
\]
which implies that $q < p$ and q is the best subordinant of (2.4).

Lemma 2.4 [3]: Let q be convex univalent in the unit disk U and let θ and \emptyset be analytic in domain D containing q (U). Suppose that
\[
\text{Re} \left(\frac{\theta(q(z))}{\emptyset(q(z))} \right) > 0 \quad \text{for} \quad z \in U,
\]
(i) $Q(z) = z q'(z) \emptyset(q(z))$ is starlike univalent in U.
If $p \in H[q(0), 1] \cap Q$, with $p(U)$
\[
\subset D, \theta(p(z)) + z p'(z) \emptyset(p(z))
\]
is univalent in U and
\[
\text{Re} \left(\frac{\theta(q(z))}{\emptyset(q(z))} \right) > 0 \quad \text{for} \quad z \in U,
\]
\[
\theta(q(z)) + z q'(z) \emptyset(q(z)) < \theta(p(z)) + z p'(z) \emptyset(p(z)),
\]
then $q < p$ and q is the best subordinant of (2.5).

3-**Subordination Consequences**

Theorem 3.1: Let q be convex univalent function in U with $q(0) = 1$, $0 < \Psi \in \mathbb{C}$, $\lambda > 0$ also, assume that q satisfies
\[
\text{Re} \left(\frac{\Psi(q(z))}{q'(z)} \right) > \max(0, \text{Re} \left(\frac{\Psi}{q'(z)} \right)).
\]
If $f \in A$ satisfies the subordination
\[
\left(1 - \Psi^2 + 1 \right) \left(\frac{p^{\delta + 1}(z)}{z} \right)^{\lambda} +
\Psi^2 \left(\frac{p^{\delta + 1}(z)}{z} \right)^{\lambda} \left(\frac{p^{\delta}(z)}{p^{\delta + 1}(z)} \right) < q(z) + \frac{\Psi}{\lambda} z q'(z),
\]
(3.2)
then
\[
\left(\frac{p^{\delta + 1}(z)}{z} \right)^{\lambda} < q(z),
\]
and q is the best dominant of (3.2).

Proof: Characterize the capacity p by
\[
p(z) = \left(\frac{p^{\delta + 1}(z)}{z} \right)^{\lambda}.
\]
Differentiating (3.4) with admiration to z logarithmically, we get
\[
z p'(z) \frac{p(z)}{p(z)} = \lambda \left(\frac{z p^{\delta + 1}(z)}{z p^{\delta + 1}(z)} - 1 \right).
\]
(3.5)
Presently, in perspective of (1.7), we get the accompanying subordination
\[
\left(\frac{z p'(z)}{p(z)} \right) = \lambda \left(c \left(\frac{p^{\delta}(z)}{p^{\delta + 1}(z)} - 1 \right) + \left(\frac{p^{\delta}(z)}{p^{\delta + 1}(z)} - 1 \right) \right),
\]
therefore
\[
\left(\frac{z p'(z)}{p(z)} \right) = \lambda \left(c \left(\frac{p^{\delta}(z)}{p^{\delta + 1}(z)} - 1 \right) + \left(\frac{p^{\delta}(z)}{p^{\delta + 1}(z)} - 1 \right) \right).
\]
The subordination (3.2) from the speculation moves toward becoming
\[
p(z) + \frac{\Psi}{\lambda} z p'(z) < q(z) + \frac{\Psi}{\lambda} z q'(z).
\]

Corollary 3.1: Let $0 < \Psi \in \mathbb{C}$, $\lambda > 0$ also
\[
\text{Re} \left(1 + \frac{\Psi}{\lambda} \right) > \max(0, \text{Re} \left(\frac{\Psi}{\lambda} \right)).
\]
If $f \in A$ satisfies the subordination
\[
\left(1 - \Psi + 1 \right) \left(\frac{p^{\delta + 1}(z)}{z} \right)^{\lambda} + \Psi^2 \left(\frac{p^{\delta + 1}(z)}{z} \right)^{\lambda} \left(\frac{p^{\delta}(z)}{p^{\delta + 1}(z)} \right) < (1 - z\lambda^2 + 2 \frac{\Psi}{\lambda} z) \left(\frac{1}{(1 - z\lambda^2) \lambda} \right),
\]
then
\[
\left(\frac{p^{\delta + 1}(z)}{z} \right)^{\lambda} < \left(\frac{1 + \Psi}{z} \right),
\]
and q(z) = $\left(\frac{1 + \Psi}{z} \right)$ is the best dominant.

Theorem 3.2: Let q be convex univalent function in U with $q(0) = 1$, $q(z) \neq 0(z \in U)$ furthermore, accept that q fulfills
\[
\text{Re} \left(1 + \frac{\lambda}{\Psi} \right) > 0,
\]
(3.6)
where $\Psi \in \mathbb{C}/\{0\}$, $\lambda > 0$ and z $\in U$.
Supposing that $-\Psi z q'(z)$ is starlike univalent function in U, if $f \in A$ fulfills:
\[
\emptyset(\lambda, \delta, c, \Psi, z) < \lambda q(z) - \Psi z q'(z),
\]
(3.7)
where
\[
\emptyset(\lambda, \delta, c, \Psi, z) = \lambda \left(\frac{p^{\delta + 1}(z) + (1 - \lambda) p^{\delta}(z)}{z} \right)^{\lambda} - \lambda \Psi \left(\frac{p^{\delta + 1}(z) + (1 - \lambda) p^{\delta}(z)}{z} \right)^{\lambda}
\]
(3.8)
then
\[
\left(\frac{p^{\delta + 1}(z) + (1 - \lambda) p^{\delta}(z)}{z} \right)^{\lambda} < q(z),
\]
(3.9)
and q(z) is the best dominant of (3.7).

Proof: Express the function p by
\[
p(z) = \left(\frac{p^{\delta + 1}(z) + (1 - \lambda) p^{\delta}(z)}{z} \right)^{\lambda},
\]
by setting:
\[
\theta(w) = \lambda w \quad \text{and} \quad \emptyset(w) = -\Psi, w \neq 0.
\]
We see that \(\theta(w) \) is analytic in \(\mathbb{C} \), \(\varphi(w) \) is analytic in \(\mathbb{C}/\{0\} \) and so on \(\varphi(w) \neq 0 \), \(w \in \mathbb{C}^* \).

Too, we get
\[
Q(z) = zq'(z)\varphi q(z) = -\Psi zq'(z),
\]
and
\[
h(z) = \varphi q(z) = \lambda q(z) - \Psi zq'(z).
\]
It is clear that \(Q(z) \) is starlike univalent in \(U \),
\[
\text{Re} \left(\frac{zh'(z)}{Q(z)} \right) = \text{Re} \left(1 - \frac{\lambda}{\Psi} + \frac{zq''(z)}{q'(z)} \right) > 0.
\]

By a straightforward computation, we obtain \(\lambda \varphi(z) - \Psi z p'(z) = \varphi(\lambda, \delta, c, \Psi; z) \), \((3.11) \)
where \(\varphi(\lambda, \delta, c, \Psi; z) \) is given by \((3.8) \).

From \((3.7) \) and \((3.11) \), we have
\[
\left(\frac{\varphi z}{z} \right) < \lambda q(z) - \Psi q'(z).
\]
\((3.12) \)

So, by Lemma 2.1, we become \(p(z) < q(z) \). By using \((3.10) \), we get the result.

Putting \(q(z) = \frac{1+Az}{1+Bz} \) (-1 \(\leq B < A \leq 1 \) in Theorem 3.2, we obtain the next corollary:

Corollary 3.2: Let -1 \(\leq B < A \leq 1 \) while \(\lambda \)

\[
\text{Re} \left(\frac{1 - \lambda}{\Psi} + \frac{z}{(1+Bz)} \right) > 0,
\]

where \(\Psi \in \mathbb{C}/\{0\} \) and \(z \in U \), if \(f \in A \) contains
\[
\varphi(\lambda, \delta, c, \Psi; z) < \left(\frac{1+Az}{1+Bz} \right) - \frac{\lambda}{\Psi}(1-Bz),
\]
and \(\varphi(\lambda, \delta, c, \Psi; z) \) is given by \((3.8) \).

\[
\left(\frac{\varphi z}{z} \right) < 1 +Az
\]

while \(q(z) = \frac{1+Az}{1+Bz} \) is the best dominant.

4-Superordination Consequences:

Theorem 4.1: Let \(q \) be convex univalent function in \(U \) with \(q(0) = 1, \lambda > 0 \) and \(\text{Re} \{\Psi\} > 0 \). Let \(f \in A \) satisfies
\[
\left(\frac{\varphi z}{z} \right) \lambda \in \mathbb{H} [q(0), 1] \cap Q,
\]
and
\[
(1 - \Psi(c + 1)) \left(\frac{\varphi z}{z} \right) \lambda + \Psi(c + 1) \left(\frac{\varphi z}{z} \right) \lambda \left(\frac{\varphi z}{z} \right) \lambda + \Psi(c + 1) \left(\frac{\varphi z}{z} \right) \lambda \left(\frac{\varphi z}{z} \right) \lambda,
\]
exist univalent in \(U \). If
\[
q(z) + \frac{\psi z}{z} q'(z) < (1 - \Psi(c + 1)) \left(\frac{\varphi z}{z} \right) \lambda + \Psi(c + 1) \left(\frac{\varphi z}{z} \right) \lambda \left(\frac{\varphi z}{z} \right) \lambda,
\]
then
\[
q(z) < \left(\frac{\varphi z}{z} \right) \lambda,
\]
and \(q(z) \) is the best subordinant of \((4.1) \).

Proof: Express the function \(p \) by
\[
p(z) = \left(\frac{\varphi z}{z} \right) \lambda.
\]
Differentiating \((4.3) \) with respect to \(z \) logarithmically, we get
\[
zp'(z) = \lambda \left(\frac{\varphi z}{z} \right) \lambda \left(\frac{\varphi z}{z} \right) \lambda.
\]
(4.4)

After some computations and using \((1.7) \), from \((4.4) \), we obtain
\[
(1 - \Psi(c + 1)) \left(\frac{\varphi z}{z} \right) \lambda + \Psi(c + 1) \left(\frac{\varphi z}{z} \right) \lambda \left(\frac{\varphi z}{z} \right) \lambda,
\]
and now, by using Lemma 2.3, we get the desired result.

Putting \(q(z) = \frac{1+Az}{1+Bz} \) in Theorem 4.1, we acquire the accompanying corollary:

Corollary 4.1: Let \(\lambda > 0 \) and \(\text{Re} \{\Psi\} > 0 \). If \(f \in A \) satisfies:
\[
\left(\frac{\varphi z}{z} \right) \lambda \in \mathbb{H} [q(0), 1] \cap Q,
\]
and
\[
(1 - \Psi(c + 1)) \left(\frac{\varphi z}{z} \right) \lambda + \Psi(c + 1) \left(\frac{\varphi z}{z} \right) \lambda \left(\frac{\varphi z}{z} \right) \lambda,
\]
be univalent in \(U \). If
\[
1 - \frac{z^2 + 2z}{(1-z)^2},
\]
then
\[
\left(\frac{1 + z}{1 - z} \right) < \left(\frac{\varphi z}{z} \right) \lambda,
\]
and \(q(z) = \frac{1+Az}{1+Bz} \) is the best subordinant.

Theorem 4.2: Let \(q \) be convex univalent function in \(U \) with \(q(0) = 1 \), also, accept that \(q \) fulfills
\[
\text{Re} \{-\lambda q'(\eta)\} > 0,
\]
where \(\eta \in \mathbb{C}/\{0\} \) and \(z \in U \).

Assume that \(-\Psi z q'(z) \) is starlike univalent function in \(U \), let \(f \in A \) satisfies
\[
\left(\frac{\varphi z}{z} \right) \lambda \in \mathbb{H} [q(0), 1] \cap Q,
\]
and \(\varphi(\lambda, \delta, c, \Psi; z) \) is univalent function in \(U \), where \(\varphi(\lambda, \delta, c, \Psi; z) \) is given by \((3.8) \). If
\[
\lambda q(z) - \Psi z q'(z) < \varphi(\lambda, \delta, c, \Psi; z),
\]
then
\[
q(z) < \left(\frac{\varphi z}{z} \right) \lambda.
\]
(4.7)
and q is the best subordinant of (4.6).

Proof: Express the function p by
\[p(z) = \left(\frac{f^{(l+1)}(z) + (1-t)F_c^l(f(z))}{z} \right)^\lambda, \]
(4.8)
by setting
\[\theta(w) = \lambda w \text{ and } \omega(w) = -\Psi, w \neq 0, \]
we see that \(\theta(w) \) is analytic in \(\mathbb{C} \), \(\omega(w) \) is analytic in \(\mathbb{C}^* \) and that \(\omega(w) \neq 0, w \in \mathbb{C}^* \). Too, we get
\[Q(z) = zq'(z)\mathcal{Q}(z) = -\Psi q'(z). \]
It is clear that \(Q(z) \) is starlike univalent function in \(U \).
\[
\text{Re}\left\{ \frac{\theta'(q(z))}{\Psi(q(z))} \right\} = \text{Re}\left\{ \frac{-\lambda q'(z)}{\Psi} \right\} > 0.
\]
By a straightforward computation, we obtain
\[
\mathcal{Q}(\lambda, \delta, c, \Psi; z) = \lambda p(z) - \Psi z p'(z),
\]
(4.9)
where \(\mathcal{Q}(\lambda, \delta, c, \Psi; z) \) is given by (3.8).
From (4.6) and (4.9), we have
\[
\lambda q(z) - \Psi q'(z) < \lambda p(z) - \Psi p'(z).
\]
(4.10)
So, by Lemma 2.4, we become \(q(z) < p(z) \). By using (4.8), we get the outcome.

5-Sandwich Consequences:

Concluding the consequences of differential subordination and superordination we arrive at the next "sandwich consequence".

Theorem 5.1: Let \(q_1 \) be convex univalent function in \(U \) with \(q_1(0)=1, \text{Re} \{\Psi\}>0 \) and let \(q_2 \) be univalent in \(U \), \(q_2(0)=1 \) and fulfills (3.1), let \(f \in \mathbb{A} \) satisfies:
\[
\left(\frac{f^{(l+1)}(z)}{z} \right)^\lambda \in H[1,1] \cap \mathbb{Q}, \]
and
\[
(1 - \Psi(c + 1)) \left(\frac{F_c^{(l+1)}(z)}{z} \right)^\lambda
+ \Psi(c + 1) \left(\frac{F_c^{(l+1)}(z)}{z} \right)^\lambda
+ (1 - \Psi(c + 1)) \left(\frac{F_c^{(l+1)}(z)}{z} \right)^\lambda.
\]
be univalent in \(U \). If
\[
q_1(z) + \frac{\Psi}{z} q_1'(z) < (1 - \Psi(c + 1)) \left(\frac{F_c^{(l+1)}(z)}{z} \right)^\lambda + \Psi(c + 1) \left(\frac{F_c^{(l+1)}(z)}{z} \right)^\lambda
\]
\[
< q_2(z) + \frac{\Psi}{z} q_2'(z), \text{then}
\]
\[
q_1(z) < \left(\frac{F_c^{(l+1)}(z)}{z} \right)^\lambda < q_2(z),
\]
and \(q_1 \) and \(q_2 \) are correspondingly the best subordinant and the best dominant.

Theorem 5.2: Let \(q_1 \) be convex univalent function in \(U \) with \(q_1(0)=1, \) fulfills (4.5), let \(q_2 \) be univalent function in \(U \), \(q_2(0)=1, \) fulfills (3.6), let \(f \in \mathbb{A} \) satisfies
\[
\left(\frac{tF_c^{(l+1)}(z) + (1-t)F_c^l(f(z))}{z} \right)^\lambda \in H[1,1] \cap \mathbb{Q},
\]
and \(\mathcal{Q}(\lambda, \delta, c, \Psi; z) \) is univalent in \(U \). Where \(\mathcal{Q}(\lambda, \delta, c, \Psi; z) \) is given by (3.8). If \(\lambda q_1(z) - \Psi q_1'(z) < \lambda q_2(z) - \Psi q_2'(z) \)
then
\[
q_1(z) < \left(\frac{tF_c^{(l+1)}(z) + (1-t)F_c^l(f(z))}{z} \right)^\lambda < q_2(z).
\]
In addition \(q_1 \) and \(q_2 \) are correspondingly the best subordinant and the best dominant.

References:

6) S. S. Miller, P. T. Mocanu, Subordinates of differential superordination, Complex Variables,48(10)(2003),815-826.

نتائج الساندوج التفاضلية للدوال التحليلية

سارة عبدالحميد جواد
قسم الرياضيات - كلية علوم الحاسوب و تكنولوجيا المعلومات - جامعة القادسية - العراق

الملخص:
في هذا البحث، نحصل على بعض نتائج التبعية والتبعية العليا باستخدام المشغل التكامل
أيضا، وحصلنا على نتائج الساندوج التفاضلية لصنف من الدوال احادية التكافؤ في قرص الوحدة.