L(\omega C)-spaces and Some of its Weak Forms

1Nadia A. Nadhim
1University of AL-Anbar
Faculty of Education for pure sciences

2Haider J. Ali
2University of AL-Mustansiriyah
College of Science

3Rasha N. Majeed
3University of Baghdad
Faculty of Education for pure sciences Abn AL-Haitham

mad772918@gmail.com,
haiderali89@yahoo.com,
rashanm6@gmail.com

Received: 23/1/2019
Revised: 4/2/2019
Accepted: 20/2/2019

Available online: 23/4/2019

Abstract:

In this paper, we provide a new generalization of $L(\omega C)$-spaces which is $L(\omega C)$-spaces, $L(\omega C)$-spaces also another weak forms of $L(\omega C)$-spaces which is called ωL_i-spaces, $(i = 1,2,3,4)$. In addition, we give the relationships between these new types and studied the heredity property for each type.

MSC. 54F05, 54E55, 54D10

Keywords:
Lindelof space, $L(\omega C)$-space, closed set, ω-closed set, ω-continuous function.
1-Introduction

The concept of Lindelöf space was introduced in 1929 by Alexandroff and Urysohn, since there is no relation between Lindelöf space and closed sets, so this point stimulated some researchers to introduce a new concept namely \mathcal{L}_c-space.

The notion of \mathcal{L}_c-space was first introduced in 1979 by Mukherji and Sarkar [15], that is "Every Lindelöf subsets are closed", some authors name it L-closed space [7], [14] and [18], \mathcal{L}_c-space different from Lindelöf space and there is no relation between Lindelöf and \mathcal{L}_c-space.

Near closed sets has an important role in topological spaces as a generalized of closed sets. Hdeib in 1982 [10] introduce the concept of ω-closed set that is " A subset \mathcal{N} is called ω-closed, if \mathcal{N} contains all its condensation points. The family of all ω-open subset of a space \mathcal{X} denoted by T_ω forms a topology on \mathcal{X} which is finer than T, several characterization and facts of ω-closed subset where provided in [3], [1]and [11].

We introduce in this work a new concept which is $\mathcal{L}(\omega\mathcal{C})$-space that is every Lindelöf set in \mathcal{X} is ω-closed, and $\mathcal{L}(\omega\mathcal{C})$-space is a generalized of \mathcal{L}_c-space also we provided weak forms of $\mathcal{L}(\omega\mathcal{C})$-space namely $\omega\mathcal{L}_i$-space, $i=1,2,3,4$, and introduce the relationships between themselves also with $\mathcal{L}(\omega\mathcal{C})$-space and then define $\omega \mathcal{L}(\omega\mathcal{C})$-space which is weaker form of $\mathcal{L}(\omega\mathcal{C})$-space, several properties and theorem which link between those concepts. Finally, we give several facts and examples to support this concepts.

2-Preliminaries

Definition 2.1 [10] Let \mathcal{N} be a subset of a space \mathcal{X}, a point $p \in \mathcal{X}$ is called condensation point of \mathcal{N}, if for any open set \mathcal{V} and $p \in \mathcal{V}$, the set $\mathcal{V} \cap \mathcal{N}$ is uncountable, if \mathcal{N} contains all its condensation points then it is ω-closed.

Definition 2.2 [11] A subset \mathcal{U} of a space \mathcal{X} is said to be ω-open set iff for each $x \in \mathcal{U}$ there is \mathcal{V} in T, $x \in \mathcal{V}$ and $\mathcal{V} \setminus \mathcal{U}$ is countable.

Remark 2.3 [16] Every closed (resp., open) set is ω-closed (resp., ω-open) set, but the convers is not true.

Example 2.4 Let (\mathcal{R}, T_{int}) be indiscrète space on a real line \mathcal{R}, the set of all irrational numbers \mathbb{Q}^c which is subset of \mathcal{R}, \mathbb{Q}^c is ω-open set but not open. Also the rational numbers \mathbb{Q} is ω-closed but not closed.

Definition 2.5 [6] A subset \mathcal{N} of a space \mathcal{X} is said to be clopen set if it is open and closed in \mathcal{X}.

Definition 2.6 [10] Let $(\mathcal{X}, T_{\omega})$ be a topological space and \mathcal{A} be a subset of \mathcal{X}, then

1. \mathcal{A} is an ω-open subset of \mathcal{X}.
2. \mathcal{A} is an ω-open set if and only if $\mathcal{A} = \text{Int}_\omega(\mathcal{A})$.
3. \mathcal{A} and $\text{Int}_\omega(\mathcal{A}) \subseteq \text{Int}_\omega(\mathcal{A})$.
4. \mathcal{A} is an ω-closed set.
5. \mathcal{A} is an ω-closed set if and only if $\mathcal{A} = \text{Cl}_\omega(\mathcal{A})$.
6. $\text{Cl}_\omega(\mathcal{A})$ and $\text{Cl}_\omega(\mathcal{A}) \subseteq \text{Cl}(\mathcal{A})$.

Definition 2.8 [16] A subset A of a space X is said to be an ω-set if $A = U \cap V$, where $\operatorname{Int}(V) = \operatorname{Int}_W(V)$ and U is open set.

Remark 2.9 [16] Let N be a subset of a space X, then N is open if and only if N is ω-open and ω-closed.

Example 2.10 Let $(\mathbb{R}, T_{\mathbb{R}})$ be a usual space on a real line \mathbb{R}, the set of all irrational numbers \mathbb{Q}^c is ω-open set (since for each $x \in \mathbb{Q}^c$ there is open set U of \mathbb{R} containing x such that $U - \mathbb{Q}^c$ is countable such as $\sqrt{2} \in \mathbb{Q}^c$ and $(0,2) \subseteq \mathbb{R}$ and $\sqrt{2} \in (0,2)$ and $(0,2) - \mathbb{Q}^c = \mathbb{Q}$ is countable), but \mathbb{Q}^c is not ω-open set since $\mathbb{Q}^c = \mathbb{R} \cap \mathbb{Q}^c$, where \mathbb{R} is open set but $\operatorname{Int}(\mathbb{Q}^c) = \emptyset \neq \mathbb{Q} = \operatorname{Int}_W(\mathbb{Q}^c)$, since \mathbb{Q}^c is ω-open set, hence \mathbb{Q}^c is not open set.

Proposition 2.11 [20] If N is an ω-closed (resp., ω-open) subset of X and $A \subseteq X$ then $A \cap N$ is an ω-closed (resp., ω-open) subset of A.

Proposition 2.12 [20] Let P be an ω-closed (resp., ω-open) subset of a space X. If N is ω-closed (resp., ω-open) set in P, then N is ω-closed (resp., ω-open) set in X. Remark 2.13 [20] If X is a space and G is a subspace of X such that $B \subseteq G$ and B is ω-closed (resp., ω-open) subset in X. Then B is ω-closed (resp., ω-open) set in G.

Definition 2.14 [3] A space X is called anti-locally countable space if each open set is an uncountable set.

Proposition 2.15 [16] If a space X is anti-locally countable space then:

1. (S), for any ω-closed set S in X.

2. (N), for any ω-open set N in X.

Definition 2.16 [19] A space X is said to be ωT_3-space if for any $b \in X$, $a \neq b$, there exists ω-open sets N, M with $a \in N, b \notin N$ and $b \in M, a \notin M$.

Proposition 2.17 [19] A space X is ωT_2-space iff any singleton set is ω-closed.

Definition 2.18 [19] A space X is said to be ωT_2-space if for any two points x, y of X, with $x \neq y$, there exist ω-open sets U, V and $x \in U, y \in V$, such that $U \cap V = \emptyset$.

Remark 2.19 [19] Every T_2-space is ωT_2-space.

The next example refers to the invers direction of Remark 2.17 not hold:

Example 2.20 If X is a finite set contain more than one point and T be a discrete topology defined on X, then X is ωT_2-space but not T_{2}-space.

Proposition 2.21 [13] Let X be an anti-locally countable space then X is an ωT_2-space iff X is T_{2}-space.

Definition 2.22 [6] Let U be a collection of a subset of a space X, U is called open cover of X, if U is cover X and U is a subfamily of a topology T.

Definition 2.23 [6] A space X is said to be Lindelof space if for any open cover of X, there is a countable sub cover.

Example 2.24 A countable topological space is a Lindelof space.

Proposition 2.25 [10] In a Lindelof space every closed subset is Lindelof subset.

Proposition 2.26 [17] If A is Lindelof in X and B is ω-closed in X then $A \cap B$ is Lindelof in X.

Definition 2.27 [4] A space X is ω-Lindelof space, if for each ω-open cover of X has a countable sub cover.

Remark 2.28 Any ω-Lindelof space is Lindelof space.

Proposition 2.29 [10] In Lindelof space, every ω-closed set is Lindelof set.
Definition 2.30 [7, 15] A space X is said to be $L(E)$-space if any Lindelof set in X is closed.

Example 2.31 A discrete space on a non-empty set X, (X, T_0) is $L(E)$-space.

Example 2.32 Let (R, T_{cfr}) be a co-finite topology on a real line R, the set of rational numbers Q is Lindelof, not closed, so (R, T_{cfr}) is not $L(E)$-space.

Proposition 2.33 [2] Let $f: (X, T) \rightarrow (Y, T')$ be a bijective open function, if X is $L(E)$-space then Y is $L(E)$-space.

Definition 2.34 [8] A space X is said to be Locally $L(E)$-space if any point has a neighborhood which is an $L(E)$-subspace.

Remark 2.35 [8] Any $L(E)$-space is Locally $L(E)$-space.

3. $L(\omega E)$-space and ωL_i-spaces, $i=1, 2, 3, 4$.

In this section, we define $L(\omega E)$-space and state four weaker forms of $L(\omega E)$-space also we study their relationship with $L(E)$-space.

Definition 3.1 A space X is called $L(\omega E)$-space if for each Lindelof set in X is ωE-closed.

Example 3.2 The integer numbers Z defined on a topology T as follows: $T_{Exc}(\cup \subseteq Z, x_0 \notin U$, for some $x_0 \in Z) \cup \{Z\}$ be excluded point topology on Z, let $x_0 = 6$, so $Z - \{6\} \subseteq Z$ is countable, so it is Lindelof and ωE-closed hence (Z, T_{Exc}) is $L(\omega E)$-space.

Remark 3.3 Every $L(E)$-space is $L(\omega E)$-space.

The following example show that the convers of Remark 3.3 is not hold.

Example 3.4 Let (R, T_{cfr}) be a co-finite topology on a real line R, (R, T_{cfr}) is $L(\omega E)$-space but not $L(E)$-space.

Proposition 3.5 Every subspace of $L(\omega E)$-space is $L(\omega E)$-space.

Proof: Suppose a space X is $L(\omega E)$ and G be subspace of X, a subset M is a Lindelof in G, so M is Lindelof in X and then M is ωE-closed in X, from Proposition 2.13, we get M is ωE-closed in G, hence G is $L(\omega E)$-space.

Proposition 3.6 Every $L(\omega E)$-space is ωE_1-space.

Proof: Let $e \in X$, then $\{e\}$ is Lindelof subset in X, but X is $L(\omega E)$-space, so $\{e\}$ is ωE-closed from Proposition 2.17, X is ωE_1-space.

Definition 3.7 A subset F of a space X is said to be $F_{E \omega}$-closed set if F is the union of countable ωE-closed sets.

Definition 3.8 A subset G of a space X is said to be E_{ω}-open set, if G is the intersection of countably ωE-open sets.

Remark 3.9

1. very ωE-closed sets is $F_{E \omega}$-closed set.
2. very ωE-open sets is E_{ω}-open set.

Example 3.10 Let (R, T_{cfr}) be a co-finite topology on a real line R, a natural numbers N of R is not ωE-closed but it is $F_{E \omega}$-closed set. And $R - N$ is not ωE-open set but it is E_{ω}-open set.

Definition 3.11 [8] A topological space (X, T) is said to be P^*-space if any E_{ω}-open subset of X is ωE-open set.

Definition 3.12 A space X is said to be:

1. ωE-space if any Lindelof $F_{E \omega}$-closed set is ωE-closed set.
2. ωE_1-space if N is Lindelof in X, then $C_{\omega E}(N)$ is Lindelof.
3. ωE_3-space if for each Lindelof subset N is $F_{E \omega}$-closed set.

23
Proposition 3.14 Every \(L(\omega^n)\)-space is \(\omega_1\) (resp., \(\omega_2\), \(\omega_3\), \(\omega_3\))-space.

Proof: Let \(\mathcal{F}\) be a Lindelof \(\mathcal{F}_\omega\)-closed subset of a space \(\mathcal{X}\), since \(\mathcal{X}\) is an \(L(\omega^n)\)-space, so \(\mathcal{F}\) is \(\omega^n\)-closed set, hence \(\mathcal{X}\) is \(\omega_1\)-Lindelof. Now, let \(\mathcal{A}\) be a Lindelof in \(\mathcal{X}\) but \(\mathcal{X}\) is \(L(\omega^n)\)-space, so \(\mathcal{A}\) is \(\omega^n\)-closed and by Proposition 2.7 part (5), \(Cl_{\omega^n}(\mathcal{A}) = \mathcal{A}\), hence \(Cl_{\omega^n}(\mathcal{A})\) is Lindelof and then \(\mathcal{X}\) is \(\omega_1\)-Lindelof. Let \(\mathcal{B}\) be a Lindelof set of \(\mathcal{X}\), since \(\mathcal{X}\) is \(L(\omega^n)\)-space, then \(\mathcal{B}\) is \(\omega^n\)-closed, so \(\mathcal{B}\) is \(\mathcal{F}_\omega\)-closed set by Remark 3.7 part (1), we get \(\mathcal{X}\) is \(\omega_1\)-Lindelof. Let \(\mathcal{D}\) be a Lindelof in \(\mathcal{X}\), also \(\mathcal{X}\) is \(L(\omega^n)\)-space, then \(\mathcal{D}\) is \(\omega^n\)-closed, from Remark 3.9 part (1), \(\mathcal{D}\) is \(\mathcal{F}_\omega\)-closed set, put \(\mathcal{D} = L\), then \(\mathcal{D} \subseteq L \subseteq Cl_{\omega^n}(\mathcal{D})\), so \(\mathcal{X}\) is an \(\omega_1\)-Lindelof.

Proposition 3.15 If a space \(\mathcal{X}\) is \(\omega_1\) and \(\omega_3\)-spaces then it is \(L(\omega^n)\)-space.

Proof: Let \(\mathcal{K}\) be a Lindelof of \(\mathcal{X}\), since \(\mathcal{X}\) is \(\omega_3\)-space, so \(\mathcal{K}\) is \(\mathcal{F}_\omega\)-closed, also \(\mathcal{X}\) is an \(\omega_1\)-space, hence \(\mathcal{K}\) is \(\omega^n\)-closed that is \(\mathcal{X}\) is \(L(\omega^n)\)-space.

Proposition 3.16 If a space \(\mathcal{X}\) is \(\omega_1\) and \(\omega_4\)-spaces then it is \(\omega_2\)-space.

Proof: Let \(\mathcal{X}\) be an \(\omega_1\)-space, \(\mathcal{N}\) be a Lindelof in \(\mathcal{X}\), so there exists a Lindelof \(\mathcal{F}_\omega\)-closed \(\mathcal{S}\) with \(\mathcal{N} \subseteq \mathcal{S} \subseteq Cl_{\omega^n}(\mathcal{N})\), since \(\mathcal{X}\) is \(\omega_1\)-space, we get \(\mathcal{S}\) is \(\omega^n\)-closed set and \(\mathcal{S} = Cl_{\omega^n}(\mathcal{S})\) by Proposition 2.7 part (5), but \(\mathcal{S} \subseteq \mathcal{S}\) then \(Cl_{\omega^n}(\mathcal{N}) \subseteq Cl_{\omega^n}(\mathcal{S}) = \mathcal{S}\), so \(Cl_{\omega^n}(\mathcal{N}) = \mathcal{S}\), and since \(\mathcal{S}\) is Lindelof then \(Cl_{\omega^n}(\mathcal{N})\) is Lindelof, therefore \(\mathcal{X}\) is \(\omega_2\)-space.

Proposition 3.17 Every \(\omega_2\)-space is \(\omega_4\)-space, also any \(\omega_3\)-space is \(\omega_4\)-space.

Proof: Let \(\mathcal{G}\) be a Lindelof in a space \(\mathcal{X}\), since \(\mathcal{X}\) is \(\omega_2\), so \(Cl_{\omega^n}(\mathcal{G})\) is Lindelof and \(\omega^n\)-closed set then \(Cl_{\omega^n}(\mathcal{G})\) is \(\mathcal{F}_\omega\)-closed and \(\mathcal{G} \subseteq Cl_{\omega^n}(\mathcal{G}) \subseteq Cl_{\omega^n}(\mathcal{G})\), take \(\mathcal{F} = Cl_{\omega^n}(\mathcal{G})\), then \(\mathcal{G} \subseteq \mathcal{F} \subseteq Cl_{\omega^n}(\mathcal{G})\) that is \(\mathcal{X}\) is \(\omega_4\)-space. To prove the second part let \(\mathcal{J}\) be a Lindelof set of a space \(\mathcal{X}\), and \(\mathcal{X}\) is \(\omega_3\)-space, so \(\mathcal{J}\) is \(\mathcal{F}_\omega\)-closed subset in \(\mathcal{X}\), take \(\mathcal{J} = \mathcal{N}\) and \(\mathcal{N} \subseteq \mathcal{J} \subseteq Cl_{\omega^n}(\mathcal{J})\), hence \(\mathcal{J} \subseteq \mathcal{N} \subseteq Cl_{\omega^n}(\mathcal{J})\), hence \(\mathcal{X}\) is \(\omega_2\)-space.

Proposition 3.18 Every \(\mathcal{P}\)-space is an \(\omega_1\)-space.

Proof: Let \(\mathcal{G}\) be a Lindelof of \(\mathcal{X}\), since \(\mathcal{X}\) is \(\mathcal{P}\)-space and \(\mathcal{G} \subseteq \mathcal{F}_\omega\)-open set of \(\mathcal{X}\), so \(\mathcal{G}\) is \(\omega^n\)-closed, therefore \(\mathcal{X}\) is \(\omega_1\)-space.

Definition 3.19 A subset \(\mathcal{M}\) of a space \(\mathcal{X}\) is said to be \(\omega^n\)-dense if \(Cl_{\omega^n}(\mathcal{M}) = \mathcal{X}\).

Proposition 3.20 Each Lindelof space is an \(\omega_1\)-space, also each \(\omega^n\)-dense Lindelof subset of \(\omega_1\)-space is Lindelof.

Proof: Let \(\mathcal{P}\) be a Lindelof set in \(\mathcal{X}\), \(Cl_{\omega^n}(\mathcal{P})\) is \(\omega^n\)-closed in \(\mathcal{X}\) from Proposition 2.29, \(Cl_{\omega^n}(\mathcal{P})\) is
Lindelof, then X is an ωL_2-space. Now, let F be ω-dense Lindelof in X, hence $Cl_{\omega}(F) = X$ and X is an ωL_2-space, so $Cl_{\omega}(F)$ is Lindelof, that is X Lindelof.

Theorem 3.21 The property ωL_3-space is hereditary property.

Proof: Let A be a subspace of ωL_3-space X, and L is a Lindelof subset of A, then S is Lindelof subset of X, by hypothesis S is $F_{\omega}-$closed, so there is $\{M_n\}_{n \in \mathbb{N}}$ a family of ω-closed in X and $S = \bigcup_{n \in \mathbb{N}} M_n$, take $M'_n = M_n \cap A$, so M'_n is ω-closed sets in A, for each n, also $S = S \cap A = (\bigcup_{n \in \mathbb{N}} M'_n) \cap A = \bigcup_{n \in \mathbb{N}} (M'_n \cap A) = \bigcup_{n \in \mathbb{N}} F_{\omega}$, so S is F_{ω}-closed in A, hence A is an ωL_3-space.

Theorem 3.22 Each F_{ω}-closed subset of ωL_4 (resp., ωL_2, ωL_4)-space is ωL_4 (resp., ωL_2, ωL_4)-space.

Proof: Let X be ωL_1-space, A be F_{ω}-closed set in X, to show A is an ωL_4-space, let J be a Lindelof F_{ω}-closed set in A that there is exist a collection $\{S_i\}_{i \in I}$ of ω-closed sets in A with $J = \bigcup_{i \in I} S_i$, let $S_i = S_i \cap A$, whenever S_i is an ω-closed in X for all i, so $J = \bigcup_{i \in I} (S_i \cap A) = (\bigcup_{i \in I} S_i) \cap A = (\bigcup_{i \in I} S_i) \cap A$, where Y_i is an ω-closed subset of X, since A is an F_{ω}-closed, so $J = \bigcup_{i \in I} (S_i \cap Y_i)$, L is a Lindelof F_{ω}-closed closed in A therefore A is ωL_4-space. To show that the property ωL_3-space is hereditary on F_{ω}-closed, let K be a Lindelof in A, hence K is Lindelof in X, also X is ωL_2-space, so $Cl_{\omega}(K)$ Lindelof, $Cl_{\omega}(K) = Cl_{\omega}(X) \cap A = Cl_{\omega}(X) \cap (\bigcup_{i \in I} F_i)$, where F_i is an ω-closed in A which is F_{ω}-closed, $Cl_{\omega}(K) = Cl_{\omega}(X) \cap (\bigcup_{i \in I} F_i)$ is Lindelof (since a countable union of Lindelof subset is Lindelof), then $Cl_{\omega}(K)$ is Lindelof, so A is an ωL_2-space. To show that the property ωL_4-space is hereditary on F_{ω}-closed, let A be F_{ω}-closed in ωL_4-space X, to show A is ωL_4-space, let L be a Lindelof subset in A and hence it is Lindelof in X, so there is a Lindelof F_{ω}-closed F in X with $L \subseteq F \subseteq Cl_{\omega}(X)$, put $K = F \cap A$ and $A = \bigcup_{i \in I} C_i$, where C_i is ω-closed in A, to show K is a Lindelof F_{ω}-closed in A since $K = F \cap A = F \cap (\bigcup_{i \in I} C_i) = \bigcup_{i \in I} (F \cap C_i)$ and $(F \cap C_i)$ is ω-closed in F which is Lindelof, then for all i, $(F \cap C_i)$ is Lindelof and so $K = \bigcup_{i \in I} (F \cap C_i)$ is Lindelof (since a countable union of Lindelof subset is Lindelof), to show K is F_{ω}-closed in A, let $F = \{U_{i \in I} \cap F\}$ where $\{U_i\}$ is an ω-closed in X, so $K = F \cap A = (\bigcup_{i \in I} \cap F) \cap A = \bigcup_{i \in I} (\cap F \cap C_i)$, where $\cap F \cap C_i$ is ω-closed in A, so $K = \bigcup_{i \in I} \cap F \cap C_i$ is F_{ω}-closed in A, therefore $L \subseteq K \subseteq Cl_{\omega}(A)$, so A is ωL_4-space.

Proposition 3.23 Let (X, T) be an \mathcal{W}-Hausdorff space, a space X is an ωL_4 and ωL_2-spaces iff X is an $L(\omega e)$-space.

Proof: Let K be a Lindelof in X, let $x \notin K$, so for any $y \in K$ there exists an ω-open sets $\{y\}_y$ containing y, with $x \in Cl_{\omega}(\{y\}_y)$, now $\{y\}_y : y \in \mathcal{C}\}$ is cover of K and K is Lindelof, so there exists a countable set $\mathcal{C} \subseteq \mathcal{C}$ such that $K \subseteq \bigcup_{y \in \mathcal{C}} \{y\}_y \subseteq \bigcup_{y \in \mathcal{C}} Cl_{\omega}(\{y\}_y) : y \in \mathcal{C}$, for each $y \in \mathcal{C}$, $K \cap Cl_{\omega}(\{y\}_y)$ is Lindelof by Proposition 2.23 and $Cl_{\omega}(K \cap Cl_{\omega}(\{y\}_y))$ is Lindelof since X is an ωL_2-space, also if $\mathcal{N} = \{Cl_{\omega}(K \cap Cl_{\omega}(\{y\}_y)) : y \in \mathcal{C}\}$, then \mathcal{N} is Lindelof F_{ω}-closed and since X is ωL_1-space, so \mathcal{N} is an ω-closed and $x \notin \mathcal{N}$, thus $x \notin Cl_{\omega}(K)$, this show that K is ω-closed subset of X.

4-Locally $L(\omega e)$-space
In this part we define Locally $L(\omega C)$-space, and some theorems, properties about Locally $L(\omega C)$-space which is generalized of $L(\omega C)$-space.

Definition 4.1 A space \mathcal{X} is said to be Locally $L(\omega C)$-space if each point has a neighborhood which is an $L(\omega C)$-subspace.

Clearly any Locally LC-space is Locally $L(\omega C)$-space. The following example refers the inverse direction is not hold.

Example 4.2 Let (\mathcal{Z}, T_{Exc}) be an Excluded point topology on the integer numbers \mathcal{Z}, where $T_{Exc} = \{\emptyset \subseteq \mathcal{Z}, x_0 \notin U, \text{for some } x_0 \in \mathcal{X}\} \cup \{\mathcal{X}\}$.

Let $x_0 = 6$, since for each $y \in \mathcal{Z}$, since $\{y\}$ is finite, so $\{y\}$ is countable and then it is Lindelof in \mathcal{X}, also it is ω-closed with $y \neq 6$. So (\mathcal{Z}, T_{Exc}) is Locally $L(\omega C)$-space, but $\{y\}$ is not closed, hence this space is not Locally LC-space.

Definition 4.3 A space \mathcal{X} is called $\omega L(\omega C)$-space if for each ω-Lindelof set in \mathcal{X} is ω-closed.

Definition 4.4 A space \mathcal{X} is said to be Locally $\omega L(\omega C)$-space if each point has a neighborhood which is an $\omega L(\omega C)$-subspace.

Remark 4.5 Each $\omega L(\omega C)$-space is Locally $\omega L(\omega C)$-space.

Theorem 4.6 A space \mathcal{X} is $L(\omega C)$-space iff every point in it has clopen set containing x which is $L(\omega C)$-space.

Proof: Let \mathcal{X} be $L(\omega C)$-space, so for any $x \in \mathcal{X}$, \mathcal{X} is self is clopen that is $L(\omega C)$-space. Converse direction, let \mathcal{D} be a Lindelof in \mathcal{X} and $x \notin \mathcal{D}$.

Choose a clopen \mathcal{W}_x containing x such that \mathcal{W}_x is $L(\omega C)$-subspace, if $\mathcal{D} \cap \mathcal{W}_x = \emptyset$, so it is Lindelof also if $\mathcal{D} \cap \mathcal{W}_x \neq \emptyset$, it is Lindelof in the subspace \mathcal{W}_x by Proposition 2.26, therefore $\mathcal{D} \cap \mathcal{W}_x$ is ω-closed in \mathcal{W}_x, also ω-closed in \mathcal{X}, hence $\mathcal{W}_x = (\mathcal{D} \cap \mathcal{W}_x) = \mathcal{W}_x - \mathcal{D}$ is ω-open in \mathcal{X}, so \mathcal{D} is ω-open in \mathcal{X}, hence \mathcal{X} is $L(\omega C)$-space.

Corollary 4.7 A space \mathcal{X} is $L(\omega C)$-space iff every point in it has ω-clopen set containing x which is $L(\omega C)$-space.

Proof: From Theorem 4.6, and Remark 2.3, we get the first direction. To prove the second direction, from Theorem 4.6 and Proposition 2.26, a space \mathcal{X} is $L(\omega C)$-space.

Corollary 4.8 A discrete Locally $L(\omega C)$-space is $L(\omega C)$-space.

Theorem 4.9 Any Locally $L(\omega C)$-space is ωT_1-space.

Proof: Suppose \mathcal{X} is not ωT_1-space, that is there is $m, n \in \mathcal{X}$, with every ω-open set containing n also contain m, let \mathcal{U} be an ω-open neighborhood of m such that $(\mathcal{U}, T_{\omega})$ is $L(\omega C)$-space, since \mathcal{X} is Locally $L(\omega C)$-space, so $(\mathcal{U}, T_{\omega})$ is ωT_1-space, by Proposition 3.6, also from Proposition 2.17, $\{n\}$ is ω-closed in \mathcal{U}, then $\mathcal{U} - \{n\}$ is ω-open in \mathcal{U} and \mathcal{U} is ω-open in \mathcal{X}, $\mathcal{U} - \{n\}$ is ω-open in \mathcal{X}, by Proposition 2.12, but $m \in \mathcal{U} - \{n\}$ and $n \in \mathcal{U} - \{n\}$, this is contradiction, hence \mathcal{X} is ωT_1-space.

Proposition 4.10 Let $f : (\mathcal{X}, T) \to (\mathcal{Y}, T')$ be a bijective open function, if \mathcal{X} is Locally LC-space then \mathcal{Y} is Locally $L(\omega C)$-space.

Proof: Let \mathcal{X} be a is Locally LC-space, so for any $m \in \mathcal{X}$, there exists a neighborhood \mathcal{M} of m such that \mathcal{M} is LC-subspace, but \mathcal{M} is a neighborhood, then there is open set \mathcal{H} such that $m \in \mathcal{H} \subseteq \mathcal{M}$, so $n = f(m) \in f(\mathcal{H}) \subseteq f(\mathcal{M}) \subseteq \mathcal{Y}$, therefore \mathcal{Y} is Locally $L(\omega C)$-space since for any $n \in \mathcal{Y}$, there is an open neighborhood $f(\mathcal{M})$, (since f is open), \mathcal{M} is LC-space and by hereditary property of LC space, we have \mathcal{H} is LC-space, then $f(\mathcal{H})$ is LC-subspace of \mathcal{Y} from Proposition 2.33, then $f(\mathcal{H})$ is $L(\omega C)$-subspace by Remark 3.3, hence \mathcal{Y} is Locally $L(\omega C)$-space.
Proposition 4.11 Let \(f : (X, T) \to (Y, T') \) be a bijective \(\omega \)-open function. If \(\mathcal{H} \) is \(\omega \)-Lindelof subset of \(Y \), then \(f^{-1}(\mathcal{H}) \) is Lindelof subset of \(X \).

Proof: Let \(\mathcal{H} \) be a \(\omega \)-Lindelof subset of \(Y \), let \(\{W_\alpha\}_{\alpha \in \Delta} \) be an open cover of \(f^{-1}(\mathcal{H}) \) in \(X \), that is \(f^{-1}(\mathcal{H}) \subseteq \bigcup_{\alpha \in \Delta} W_\alpha \). Since \(f \) is surjective, and \(\mathcal{H} \) is \(\omega \)-open, \(\mathcal{H} = f\big(f^{-1}(\mathcal{H})\big) \subseteq f\big(\bigcup_{\alpha \in \Delta} W_\alpha\big) \subseteq \bigcup_{\alpha \in \Delta} f(W_\alpha) \). Since \(f \) is surjective, \(\mathcal{H} \) is \(\omega \)-open for each \(\alpha \in \Delta \), and \(\mathcal{H} \) is \(\omega \)-Lindelof subset of \(Y \). Hence \(\mathcal{H} \subseteq \bigcup_{\alpha \in \Delta} f(W_\alpha) \), \(\Delta \) is a countable subset of \(\Delta \), and \(\mathcal{H} = \bigcup_{\alpha \in \Delta} f(W_\alpha) \) is Lindelof in \(X \).

Theorem 4.12 Let \(f : (X, T) \to (Y, T') \) be a bijective \(\omega \)-open function. If \(X \) is \(LC \)-space then \(Y \) is a subspace of \(\omega L(\omega C) \)-space.

Proof: Let \(\mathcal{F} \) be a \(\omega \)-Lindelof subset of \(Y \), then \(f^{-1}(\mathcal{F}) \) is Lindelof set in \(X \) by Proposition 4.11, but \(X \) is a \(LC \)-space, so \((f^{-1}(\mathcal{F}))^c \) is open set in \(X \), also \(f \) is \(\omega \)-open function, hence \(f((f^{-1}(\mathcal{F}))^c)^c = f(X) - f(f^{-1}(\mathcal{F})) = f(X) - f(f^{-1}(\mathcal{F})) = Y \), \(\mathcal{F} \) is \(\omega \)-open in \(Y \), so \(\mathcal{F} \) is \(\omega \)-closed in \(Y \), therefore \(Y \) is a subspace of \(\omega L(\omega C) \) space.

Corollary 4.13 Let \(f : (X, T) \to (Y, T') \) be a bijective \(\omega \)-open function. If \(X \) is \(LC \)-space then \(Y \) is Locally \(\omega L(\omega C) \)-space.

Proof: By Theorem 4.12 and Remark 4.5, we get \(Y \) is Locally \(\omega L(\omega C) \)-space.

Theorem 4.14 Every subspace of Locally \(\omega L(\omega C) \)-space is Locally \(\omega L(\omega C) \)-space.

Proof: Let \(\mathcal{H} \) be a subspace of a space \(X \), and \(c \in \mathcal{H} \) so \(c \) has \(\omega L(\omega C) \) a neighborhood in \(X \), hence there is open set \(U \) in \(X \) such that \(c \in U \) and \(U \) is \(\omega L(\omega C) \)-subspace in \(X \), let \(V = \mathcal{H} \cap U \), then \(\forall \subseteq \mathcal{U} \) so \(\mathcal{V} \) is \(\omega L(\omega C) \)-subspace from Proposition 3.5, since \(c \in \mathcal{U} \) and \(c \in \mathcal{H} \) then \(c \in \mathcal{H} \cap \mathcal{U} \), hence \(c \in \mathcal{V} = \mathcal{H} \cap \mathcal{U} \), so \((\mathcal{H}, T_\mathcal{H}) \) is Locally \(\omega L(\omega C) \)-subspace of \(X \).

References

فضاءات الفضاءات، والصيغة الضعيفة لها

رشا ناصر هجيذ
حيح جبر علي
نادية علي ناظن

جامعة الاقليم
كلية التربية للعلوم الصرفة
قسم الرياضيات

الجامعة المستنصرية
كلية العلوم
قسم الرياضيات

جامعة بغداد
كلية التربية للعلوم الصرفة
قسم العلوم

الوستخلص:
في هذا البحث قدمنا تعميم جديد للفضاء L(∩C) وهو فضاء (\(L_1\)). وفضاء L(∩C) وكذلك صبغة الضعيفة للفضاء \(wL(\cap C)\) وفضاء L(∩C) وفضاء L(∩C) وفضاء L(∩C) حيث أن (I =1,2,3,4). بالإضافة إلى ذلك قدمنا علاقات بين تلك الأنواع ودرسنا الصفة الوراثية لكل نوع.