Strongly b star (Sb*) – cleavability (splitability)

Ghazeel A a, M. Jallalh b

a Department of Mathematics Education Faculty - Sirte University, Libya. Email:

b Department of Mathematics Education Faculty - Sirte University, Libya. Email:

ARTICLE INFO

Article history:
Received: 17/3/2019
Revised form: 08/4/2019
Accepted: 30/04/2019
Available online: 09/06/2019

Keywords:
Sb* - pointwise cleavable,
Irresolute - pointwise cleavable

ABSTRACT

A. Poongothai, R. Parimelazhagan[5] introduced some new type of separation axioms and study some of their basic properties. Some implications between T_0, T_1 and T_2 axioms are also obtained. In this paper we studied the concept of cleavability over these spaces: (Sb^*T_0, Sb^*T_1, Sb^*T_2) as following:

1. If \(P \) is a class of topological spaces with certain properties and if \(X \) is cleavable over \(P \) then \(X \in P \)

2. If \(P \) is a class of topological spaces with certain properties and if \(Y \) is cleavable over \(P \) then \(Y \in P \)

MSC:

1. Introduction

In 1985 Arhangl' Skii [1] introduced different types of cleavability (originally named splitability) as following: A topological space \(X \) is said to be cleavable over a class of spaces \(P \) if for \(A \subset X \) there exists a continuous mapping \(f: X \to Y \in P \) such that \(f^{-1}(A) = A \), \(f(X) = Y \). Throughout this paper, \(X \) and \(Y \) denote the topological spaces \((X, \tau) \) and \((Y, \sigma) \) respectively. Let \(A \) be a subset of the space \(X \). The interior and closure of a set \(A \) in \(X \) are denoted by \(\text{int}(A) \) and \(\text{cl}(A) \) respectively. The complement of \(A \) is denoted by \((X - A) \) or \(A^c \).
3-Preliminaries

In this section, we recall some definitions and results which are needed in this paper.

Definition 3.1. [11]

A topological space X is called a T_0-space if and only if it satisfies the following axiom of Kolmogorov. (T_0) If x and y are distinct points of X, then there exists an open set which contains one of them but not the other.

Definition 3.2. [11]

A topological space X is a T_1-space if and only if it satisfies the following separation axiom of Frechet. (T_1) If x and y are two distinct points of X, then there exists two open sets, one containing x but not y and the other containing y but not x.

Definition 3.3. [11]

A topological space X is said to be a T_2-space or Hausdorff space if and only if for every pair of distinct points x, y of X, there exists two disjoint open sets one containing x and the other containing y.

Definition 3.4. [8]

A subset (X, τ) is said to be Sb*-closed set if $\text{cl}(\text{int}(A)) \subseteq U$, whenever $A \subseteq U$ and U is b-open in X. The family of all Sb*-open sets of a space X is denoted by $\text{Sb}^*O(X)$.

Theorem 3.1. [5]

Let X be a topological space and A be a subset of X. Then A is Sb*-open iff A contains a Sb* open neighbourhood of each of its points.

Definition 3.5. [6]

A subset A of a topological space (X, τ) is called b-open set if $A \subseteq (\text{cl}(\text{int}(A)) \cup \text{int}(\text{cl}(A)))$. The complement of a b-open set is said to be b-closed. The family of all b-open subsets of a space X is denoted by $\text{BO}(X)$.

Definition 3.6. [11]

A map $f: X \rightarrow Y$ is said to be Continuous function if $f^{-1}(V)$ is closed in X for every closed set V in Y.

Definition 3.7.

A map $f: X \rightarrow Y$ is said to be Sb*-open map if the image of every open set in X is Sb*-open in Y.

Definition 3.8. [9]

Let X and Y be topological spaces. A map $f: X \rightarrow Y$ is called strongly b* - continuous (sb*- continuous) if the inverse image of every open set in Y is sb*-open in X.

Definition 3.9. [3]

Let X and Y be topological spaces. A map $f: X \rightarrow Y$ is called strongly b* - closed (briefly sb*-closed) map if the image of every closed set in X is sb*-closed in Y.

Definition 3.10.

Let X and Y be topological spaces. A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be sb*-Irresolute if the inverse image of every sb*-closed (respectively sb*-open) set in Y is sb*-closed (respectively sb*-open) set in X.

4- sb* – cleavability

Definition 4.1.

A topological spaces X is said to be sb*-pointwise cleavable over a class of spaces \mathcal{P} if for every point $x \in X$ there exists a sb*-continuous mapping $f: X \rightarrow Y \in \mathcal{P}$, such that $f^{-1}(\{x\}) = \{x\}$.

Definition 4.2.

A topological spaces X is said to be sb* Irresolute - pointwise cleavable over a class of spaces \mathcal{P} if for every point $x \in X$ there exists a sb* - Irresolute - continuous mapping $f: X \rightarrow Y \in \mathcal{P}$, such that $f^{-1}(\{x\}) = \{x\}$.
Definition 4.3

By a sb*-open(closed) pointwise cleavable, we mean that the sb*- (Irresolute) continuous function \(f: X \to Y \in P \) is an injective and open(closed) respectively

Definition 4.4.[5]

A topological space X is said to be sb*-T_0 if for every pair of distinct points x and y of X, there exists a sb*-open set G such that x \(\in \) G and y \(\notin \) G or y \(\in \) G and x \(\notin \) G.

Proposition 4.1

Let X be a sb* - irresolute pointwise cleavable over a class of sb*-T_0 spaces \(P \), then \(X \in P \).

Proof:

Let \(x \in X \), then there exists sb*-T_0 space Y and sb* irresolute a continuous mapping \(f: X \to Y \in P \), such that \(f^{-1}(x) = \{x\} \). This implies that for every \(y \in X \) with \(x \neq y \), we have \(f(x) \neq f(y) \) since \(Y \) is a sb*-T_0-space, so there exists a sb*-open set G in Y contains one of the two points but not the other. Let \(f(x) \in G, (y) \notin G \), then \(f^{-1}(f(x)) \in f^{-1}(G) \) such that \(x \in f^{-1}(G) \) and \(y \notin f^{-1}(G) \), since \(f \) is a sb*irresolute a continuous, so \(f^{-1}(G) \) is a sb*-open set in X. Therefore \(X \) is a sb*-T_0 - space.

Theorem 4.1.[5]

Every subspace of a sb*-T_0 space is sb*-T_0.

Proof:

Let \((Y, t^*) \) be a subspace of a space X where \(t^* \) is the relative topology of \(t \) on Y. Let \(y_1, y_2 \) be two distinct points of \(Y \), as \(Y \subseteq X \), \(y_1 \) and \(y_2 \) are distinct points of X and there exists a sb*-open set G such that \(y_1 \in G \) but \(y_2 \notin G \) since \(X \) is sb*-T_0.

Then \(G \cap Y \) is a sb*-open set in \((Y, t^*) \) which contains \(y_1 \) but does not contain \(y_2 \). Hence \((Y, t^*) \) is a sb*-T_0 space.

Proposition 4.2

Let \(X \) be a sb* T_0-space is sb* - irresolute pointwise cleavable over a class spaces \(P \), then \(Y \in P \).

Proof:

Let \(y \in Y \), then there exists an sb*-irresolute continuous mapping \(f: X \to Y \in P \) such that \(f^{-1}(f^{-1}(y)) = f^{-1}(y) \), This implies that for every \(x \in Y \) with \(y \neq x \), we have \(f^{-1}(x) \neq f^{-1}(y) \) since \(X \) is a sb*-T_0 space, so there exists a sb*-open sets U contains one of the two points but not the other. Let \(f^{-1}(y) \in U \) and \(f^{-1}(x) \in U \), then \(f^{-1}(y) \in f^{-1}(U) \) and \(f^{-1}(x) \notin f^{-1}(U) \) . This implies that \(y \notin f(U) \) but \(x \in f(U) \) .Therefore \(Y \) is sb*-T_0 - space, then \(Y \in P \).

Definition 4.5.[5] A space \(X \) is said to be sb*-T_1, if for every pair of distinct points x and y in \(X \), there exist sb* - open sets U and V such that \(x \in U \) but \(y \notin U \) and \(y \in V \) but \(x \notin V \).

Proposition 4.3

Let \(X \) be a sb*- irresolute pointwise cleavable over a class of sb*-T_1 spaces \(P \), then \(X \in P \).

Proof:

Let \(x \in X \), then there exists a sb* T_1-space Y and a sb*- irresolute- continuous mapping \(f: X \to Y \in P \) such that \(f^{-1}(x) = \{x\} \). This implies mapping \(f: X \to Y \in P \) such that \(f^{-1}(x) = \{x\} \). This implies that for every \(y \in X \) with \(x \neq y \), we have \(f(x) \neq f(y) \). Since \(Y \) is sb*-T_1 space, so there exist two sb*- open sets U and V such that \(f(x) \in U, (y) \notin U \) and \(f(y) \in V, f(x) \notin V \), then \(f^{-1}(x) \in f^{-1}(U) \), \(f^{-1}(y) \notin f^{-1}(U) \) and \(f^{-1}(y) \in f^{-1}(V) \), \(f^{-1}(y) \notin f^{-1}(V) \). This implies that \(x \in f^{-1}(U) \), \(y \notin f^{-1}(U) \) and \(y \in f^{-1}(V) \), \(x \notin f^{-1}(V) \). By a sb*- irresolute - continuity of \(f \), \(f^{-1}(U), f^{-1}(V) \) are sb*- open sub sets in \(X \). Then \(X \in P \).

Proposition 4.4

Let \(X \) be a sb*-pointwise cleavable over a class of T_1 spaces \(P \), then \(X \in sb*-T_1 \).

Proof:

Let \(x \in X \), then there exists a T_1 space Y and a sb*- continuous mapping \(f: X \to Y \in P \) such that \(f^{-1}(x) = \{x\} \). This implies mapping \(f: X \to Y \in P \) such that \(f^{-1}(x) = \{x\} \). This implies that for every \(x' \in X \) with \(x \neq x' \), we have \(f(x) \neq f(x') \). Since \(Y \) is T_1 - space, so there exist two open sets G and H such that \(f(x) \in G, f(x') \notin G \) and \(f(x') \in H, f(x) \notin H \), then \(f^{-1}(x) \in f^{-1}(G) \), \(f^{-1}(x') \notin f^{-1}(G) \) and \(f^{-1}(x') \in f^{-1}(H) \),\(f^{-1}(x) \notin f^{-1}(H) \). This implies that \(x \in f^{-1}(H) \), \(x' \notin f^{-1}(G) \) and \(x' \notin f^{-1}(H) \), \(x \notin f^{-1}(H) \) .By a sb*- continuity of \(f \) then \(f^{-1}(G), f^{-1}(H) \) are sb*-open sub sets in \(X \). Thus \(X \) is sb*- T_1 - space, then \(X \in P \).
Proposition 4.5

Let \(X \) be \(sb^* T_1 \)-space is an \(sb^* \) - open pointwise cleavable over a class of spaces \(\mathcal{P} \), then \(Y \in \mathcal{P} \).

Proof:

Let \(y \in Y \), then there exists a \(sb^* T_1 \)-space \(X \) and \(sb^* \) - open continuous mapping \(f : X \to Y \in \mathcal{P} \), such that \(ff^{-1}(f^{-1}(y)) = f^{-1}(y) \). This implies that for every \(x \in X \) with \(y \neq x \), we have \(f^{-1}(y) \neq f^{-1}(x) \). Since \(X \) is \(sb^* T_1 \)-space, so there exist two \(sb^* \)-open sets \(V \) and \(W \) such that \(f^{-1}(y) \in V, f^{-1}(x) \in V \) and \(f^{-1}(x) \in W, f^{-1}(y) \in W \). Then \(ff^{-1}(y) \in f(V) \), \(ff^{-1}(x) \in f(V) \) and \(ff^{-1}(x) \in f(W), ff^{-1}(y) \in f(W) \). This implies that \(y \in f(V), x \in f(V) \) and \(x \in f(W), y \in f(W) \), since \(f \) is a \(sb^* \) open, so \(f(V), f(W) \) are open \(sb^* \) sets of \(Y \). Therefore \(Y \in \mathcal{P} \).

Definition 4.6[5].

A space \(X \) is said to be \(sb^* T_2 \) if for every pair of distinct points \(x \) and \(y \) in \(X \), there are disjoint \(sb^* \)-open sets \(U \) and \(V \) in \(X \) containing \(x \) and \(y \) respectively.

Theorem 4.2[5] Every \(sb^* T_2 \) space is \(sb^* T_1 \).

Proof:

Let \(X \) be a \(sb^* T_2 \) space. Let \(x \) and \(y \) be two distinct points in \(X \). Since \(X \) is \(sb^* T_2 \), there exist disjoint \(sb^* \)-open sets \(U \) and \(V \) such that \(x \in U \) and \(y \in V \). Since \(U \) and \(V \) are disjoint, \(x \in U \) but \(y \in V \) but \(x \notin V \). Hence \(X \) is \(sb^* T_1 \).

Proposition 4.6

Let \(X \) be \(sb^* T_2 \)-space is a \(sb^* \) - open pointwise cleavable over a class of spaces \(\mathcal{P} \), then \(Y \in \mathcal{P} \).

Proof:

Let \(y_1 \in Y \), then there exists a \(sb^* T_2 \)-space \(X \) and a \(sb^* \) open continuous mapping \(f : X \to Y \in \mathcal{P} \) such that \(f^{-1}(f(y_1)) = f^{-1}(y_1) \). This implies that for every \(y_2 \in Y \), with \(y_1 \neq y_2 \), we have \(f^{-1}(y_1) \neq f^{-1}(y_2) \), so there exist \(x_1, x_2 \) in \(X \), such that \(x_1 = f^{-1}(y_1) \), \(x_2 = f^{-1}(y_2) \) with \(x_1 \neq x_2 \). Since \(X \) is \(sb^* T_2 \), so there exist two \(sb^* \) open sets \(G, H \) such that \(f^{-1}(y_1) \in G, f^{-1}(y_2) \in H \) and \(G \cap H = \emptyset \), then \(ff^{-1}(x_1) \in f(G), ff^{-1}(x_2) \in f(H) \). Since \(f \) is \(sb^* \) open, then \(f(G), f(H) \) are \(sb^* \) open sets of \(Y \) and \(y_1 \in f(G), y_2 \in f(H) \) and \(f(G) \cap f(H) = f(G \cap H) = f(\emptyset) = \emptyset \). Then \(Y \in \mathcal{P} \).

Proposition 4.7

Let \(X \) be \(sb^* \) - open pointwise cleavable over a class of \(sb^*- T_2 \)-spaces \(\mathcal{P} \), then \(X \in \mathcal{P} \).

Proof:

Let \(x \in X \), then there exists a \(sb^* T_2 \)-space \(Y \) and a \(sb^* \)-continuous mapping \(f : X \to Y \in \mathcal{P} \) such that \(f^{-1}(x) = \{x\} \). This implies that for every \(y \in Y \) with \(x \neq y \), we have \(f(x) \neq f(y) \). Since \(Y \) is \(sb^* T_2 \), so there exist two \(sb^* \) open sets \(U \) and \(V \) such that \(f(x) \in U, f(y) \in V \) and \(U \cap V = \emptyset \), then \(f^{-1}(U), f^{-1}(V) \) are \(sb^* \) open sets of \(X \) and \(U \cap V = \emptyset \). Then \(X \in \mathcal{P} \).

5-conclusion:

In this paper we have studied and proved these cases:

1) If \(\mathcal{P} \) is a class of \((sb^*- T_0, \ sb^*- T_1) \) spaces with certain properties and if \(X \) is a \(sb^* \) - irresolute pointwise cleavable over \(\mathcal{P} \), then \(X \in \mathcal{P} \). also if \(\mathcal{P} \) is a class of \((sb^*- T_0, \ sb^*- T_1) \) spaces with certain properties and if \(Y \) is a \(sb^* \) - irresolute pointwise cleavable over \(\mathcal{P} \), then \(Y \in \mathcal{P} \).

2) If \(\mathcal{P} \) is a class of \((sb^*- T_1, \ sb^*- T_2) \) spaces with certain properties and if \(X \) is point wise \(sb^* \) - cleavable over \(\mathcal{P} \), then \(X \in \mathcal{P} \). also If \(\mathcal{P} \) is a class of \(sb^* T_2 \) spaces with certain properties and if \(X \) is a \(sb^* \) - irresolute pointwise cleavable over \(\mathcal{P} \), then \(X \in \mathcal{P} \).
3) If \mathcal{P} is a class of $(s_b^*-T_1 \cdot s_b^*-T_2)$ spaces with certain properties and if Y is point wise s_b^* cleavable over \mathcal{P}, then $Y \in \mathcal{P}$.

References

s_b^* - Separation axioms 163.