• Asst. Prof. Dr Mohammed Y. Hassan University of Technology, Control and Systems Department, Baghdad, Iraq
Keywords: IT2FLC, TRMS, PSO algorithm, MIMO system, FLC


Air vehicle modeling like the helicopter is very challenging assignment because of the highly nonlinear effects, effective cross-coupling between its axes, and the uncertainties and complexity in its aerodynamics. The Twin Rotor Mutli-Input Multi-Output System (TRMS) represents in its behavior a helicopter. TRMS has been widely used as an apparatus in Laboratories for experiments of control applications. The system consists of two degrees of freedom (DOF) model; that is yawing and pitching. This paper discusses the design of Four Interval Type-2 fuzzy logic controllers (IT2FLC) for yaw and pitch axes and their cross-couplings of a twin rotor MIMO system. The objectives of the designed controllers are to maintain the TRMS position within the pre-defined desired trajectories when exposed to changes during its maneuver. This must be achieved under uncertain or unknown dynamics of the system and due to external disturbances applied on the yaw and pitch angles. The coupling effects are determined as the uncertainties in the nonlinear TRMS. A PSO algorithm is used to tune the Inputs and output gains of the four Proportional-Derivative (PD) Like IT2FLCs to enhance the tracking characteristics of the TRMS model. Simulation results show the substantial enhancement in the performance using PSO-Based Interval Type-2 fuzzy logic controllers compared with that of using IT2FLCs only. The maximum percentage of enhancements reaches about 33% and the average percentage of enhancements is about 17.1%. They also show the proposed controller effectiveness improving time domain characteristics and the simplicity of the controllers.


1. Feedback Co., Twin Rotor MIMO System, User Manual, Feedback Co., U.K. 2008.
2. Juang, J. G.; Tu K. T; Liu W. K., Hybrid intelligent PID control for MIMO system, „ Proceeding of the 13th International Conference of Neural Information Processing”, Hong Kong, China, pp. 654-663, 2006.
3. Aldebrez, F. M.; Alam M. S.; Tokhi M. O., Hybrid Control for Tracking Performance of a Flexible System, „ Proceedings of the 8th International conference on Climbing and walking Robots and the Support Technologies for Mobile Machines”, London, pp. 543-550, 2006.
4. Juang J. G.; Lin R. W.; Liu W. K., Comparison of classical and intelligent control for a MIMO system, „Applied Mathematics and computation”, Vol. 205, No. 2, pp. 778-791, 2008.
5. Patel A. A.; Pithadiya P.M.; Kannad H. V., Control of Twin Rotor MIMO System (TRMS) Using PID Controller, „ Proceedings of National Conference on Emerging Trends in Computer & Electrical Engineering”, 2015.
6. Liu C. S.; Chen L. R., Ting C. S.; Hwang J. C.; Wu S. L., Improvement Twin Rotor MIMO System Tracking and Transient Response Using Fuzzy control Technology, „Journal of Aeronautics and Aviation”, Vol. 43, pp. 37-44, 2011.
7. Mahmoud T. S.; Marhaban M. H.; Hong T. S.; Sokchoo N., ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO system (TRMS) with Less Memory and Time Usage, „Proceeding of International Conference on Advanced Computer Control”, Singapore, pp. 19-23, 2009.
8. Boubakir A.; Boudjema F.; Labiod S., A Neuro-Fuzzy Sliding Mode Controller using Nonlinear Sliding Surface Applied to the coupled Tanks System, „Int. Journal of Automation and Computing”, Vol. 6, No. 1, pp. 72-80, 2009.
9. Mahmoud T.S.; Hong T. S.; Marhaban M. H., Investigation of Using Neuro-Fuzzy and Self-Tuning Fuzzy controller to improve Pitch Angle Response of Twin Rotor MIMO System, „Canadian Aeronautical Space Journal”, Vol. 56, No. 2, pp. 45- 52, 2010.
10. Toha S. F.; Tokhi M. O., Real-Coded Genetic Algorithm for Parametric Modeling of a TRMS, „Proceeding of the IEEE Congress on Evolutionary Computation (CEC ’09)”, pp. 2022-2028, May 2009.
11. Toha S. F.; Abd Latiff I.; Mohamed M.; Kokhi M. O, Parametric Modeling of a TRMS using Dynamic Spread Factor Particle Swarm Optimization, „Proceedings of the 11th International Conference on Computer Modeling and Simulation (UKSIM ‘09)”, pp. 95-100, March 2009.
12. Allouani F.; Boukhetala D.; Boudjema F., Ant Colony Optimization Based Fuzzy Sliding Controller for the Twin Rotor MIMO System, „Int. Journal of Sciences and Technologies of Automatic Control & computer Engineering IJ-STA”, Vol. 5, No. 2, pp. 1660-1677-Dec. 2011.
13. Hashim H. A.; Abido M. A., Fuzzy Controller Design using Evolutionary Techniques for Twin Rotor MIMO System: A comparative Study, „Hindawi Publishing Corporation- Computational Intelligence and Neuroscience”, Vol. 2015, No. 49, 11 pages, January 2015.
14. Castillo O.; Type-2 Fuzzy Logic in Intelligent Control Applications, Studies in Fuzziness and Soft Computing, „Soft Computing”, Springer-Verlag, 2012
15. Kumbasar T.; Dodurka M.; Yesil E.; Sakalli A. The Simplest Interval Type-2 Fuzzy PID Controller Structural Analysis, „Proceedings of IEEE International Conference on Fuzzy Systems, pp. 626-633, 2014.
16. Zeghlache S.; Kara K.; Saigaa D., Type-2 Fuzzy Logic Control of a 2-DOF Helicopter, „Central European Journal of Engineering”, Vol. 4, No. 3, pp. 303-315, 2014.
17. Maouche D.; Eker I., Adaptive Type-2 in Control of 2-DOF Helicopter, „Int. Journal of Electronics and Electrical Engineering”, Vol. 5, No. 2, pp. 99-105, April 2017.
18. Elrahman M. F.; Imam A.; Taifor A., Fuzzy Control for A Twin Rotor Multi-Input Multi-Output System (TRMS), „Sudan Engineering Society Journal”, Vol. 55, No. 53, pp. 19-25, September 2009.
19. Mendel J. M., „Uncertain rule-based Fuzzy Logic Systems: Introduction and New Directions”, NJ: Prentice Hall PTR, 2001.
20. Hassan M. Y.; Kothapalli G., Interval Type-2 Fuzzy Position Control of Electro-hydraulic Actuated Robotic Excavator, „International Journal of Mining Science and Technology”, Vol. 22 , pp. 437–445, 2012.
21. . Kothapalli G,; Hassan M. Y., Compensation of Load Variation Using Fuzzy Controller for Hydraulic Actuated Front end Loader, „Emirates Journal for Engineering Research”, Vol. 17, No. 1, pp. 1-8, 2012.
22. Wu, D.; Mendel J. M., Approaches for Reducing the Computational Cost of Interval Type-2 Fuzzy Logic Systems: Overview and Comparisons, „Information Sciences”, Vol. 21, pp. 80-90, 2013.
23. El-Nagar A. M.; El-Bardini M., Derivation and Stability Analysis of the Analytical Structures of the Interval Type-2 Fuzzy PID Controller, „Applied Soft Computing”, Vol. 24, pp. 704-716, 2014.
24. Kennedy, J.; Eberhart R., Particle Swarm Optimization, „IEEE Transactions on Evolutionary Computation”, Washington, USA, pp. 1942-1948, 1995.
25. Yang X.; Yuan J.; Mao H., A Modified Particle Swarm Optimizer with Dynamic Adaptation, „Elsevier –Applied Mathematics and Computation”, Vol. 189, Issue 2, pp. 1205–1213, 15 June, 2007.