Review on static-dynamic analysis of Laminated Composite and Piezoelectric Lamina Material using Matlab

  • Hayder Abdul Khaliq Ali Mechanical Engineering Department, AL-Mustansiriyah University, Baghdad, Iraq.
  • Adil Abed Nayeeif Mechanical Engineering Department, AL-Mustansiriyah University, Baghdad, Iraq.
Keywords: Static Dynamic Analysis, Natural-frequency Mode-shape, Lamina, Piezoelectric Matlab


The current review covers numerical analysis using Matlab program for multi-layer composite materials. Which involves studies are related to the intersection with fibers, between layers and piezoelectric layer or patch. It has been reported that using Matlab program has a great flexibility in analysis due to its library which includes various numerical methods. In addition to the ability of programming and developing the finite element technology to calculate the stress and strain in each layer based on different deformation methods such as (FSDT and HSDT), to obtain mechanical properties. It has been claimed that there is a deviation in results between Matlab and Ansys for the same 20-layer composite material. Using Matlab in dynamic analysis in various methods such as Newmark, Rayleigh damping, Timoshenko, and Euler-Bernoulli exhibit good agreement with natural frequencies and mode shapes. Moreover, Matlab is useful for the real-time process of data acquisition to deliver a digital model of a composite material coated with a piezoelectric plate and is an ideal material for sensing, detecting, and controlling vibration inhibition.


T. S. Alshahbouni, “Stress Analysis of Laminated Composite Beam by Using MATLAB Software,” Int. J. Sci. Res., 2017, doi: 10.21275/art20174775.

H. Matsunaga, “Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories,” Compos. Struct., 2002, doi: 10.1016/S0263-8223(01)00134-9.

S. M. R. Khalili, M. Shariyat, and I. Rajabi, “A finite element based global-local theory for static analysis of rectangular sandwich and laminated composite plates,” Compos. Struct., 2014, doi: 10.1016/j.compstruct.2013.07.043.

M. Balcı and Ö. Gündoğdu, “Determination of Physical Properties of Laminated Composite Beam via the Inverse Vibration Problem Method,” J. Mech. Eng. Sci., 2013, doi: 10.15282/jmes.5.2013.7.0058.

G. S. Pavan and K. S. Nanjunda Rao, “Bending analysis of laminated composite plates using isogeometric collocation method,” Compos. Struct., vol. 176, no. 2, pp. 715–728, 2017, doi: 10.1016/j.compstruct.2017.04.073.

K. M. Liew, H. K. Lim, M. J. Tan, and X. Q. He, “Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method,” Comput. Mech., 2002, doi: 10.1007/s00466-002-0358-3.

D. Gayen and T. Roy, “Hygro-Thermal Effects on Stress Analysis of Tapered Laminated Composite Beam,” vol. 3, no. 3, pp. 46–55, 2013, doi: 10.5923/j.cmaterials.20130303.02.

Z. Kiral, “Damped response of symmetric laminated composite beams to moving load with different boundary conditions,” J. Reinf. Plast. Compos., 2009, doi: 10.1177/0731684408092401.

Z. Kiral, “Harmonic response analysis of symmetric laminated composite beams with different boundary conditions,” Sci. Eng. Compos. Mater., 2014, doi: 10.1515/secm-2013-0194.

J. Lee, “Free vibration analysis of delaminated composite beams,” Comput. Struct., 2000, doi: 10.1016/S0045-7949(99)00029-2.

I. Miranda, “Static and dynamic analysis of laminate beams using high order shear deformation theory,” Compos. Struct., vol. 25, pp. 479–486, 2005.

B. Van Binh, T. I. Thinh, and T. M. Tu, “STATIC AND DYNAMIC ANALYSES OF STIFFENED FOLDED LAMINATE COMPOSITE PLATE,” Vietnam J. Mech., 2013, doi: 10.15625/0866-7136/35/1/446.

M. O. Belarbi, A. Tati, H. Ounis, and A. Khechai, “On the free vibration analysis of laminated composite and sandwich plates: A layerwise finite element formulation,” Lat. Am. J. Solids Struct., vol. 14, no. 12, pp. 2265–2290, 2017, doi: 10.1590/1679-78253222.

W. A. Al-Tabey, “Vibration Analysis of Laminated Composite Variable Thickness Plate Using Finite Strip Transition Matrix Technique and MATLAB Verifications,” in MATLAB Applications for the Practical Engineer, 2014.

B. Jones, “Design and Analysis of Laminated Composites.,” no. 110, pp. 0–51, 1982.

O. Barton and J. B. Wallace, “Composite structural mechanics using MATLAB,” Comput. Educ. J., 2000.

D. Lee, S. Shin, L. A. Tuan, and J. Lee, “Computational MATLAB-based optimal design of laminated composite plates,” Recent Adv. Inf. Technol., pp. 38–40, 2014.

A. Ramsaroop and K. Kanny, “Using MATLAB to Design and Analyse Composite Lami-nates,” Engineering, vol. 02, no. 11, pp. 904–916, 2010, doi: 10.4236/eng.2010.211114.

N. H. Bhingare, V. H. Bhingare, and S. H. Bhingare, “Stress Analysis of Hybrid Laminated Composite Plate by using Finite Element Method in MATLAB,” vol. 5, no. 10, pp. 595–598, 2017.

C. Shu and H. Du, “Free vibration analysis of laminated composite cylindrical shells by DQM,” Compos. Part B Eng., 1997, doi: 10.1016/s1359-8368(96)00052-2.

N. Fantuzzi, F. Tornabene, and E. Viola, “Generalized differential quadrature finite element method for vibration analysis of arbitrarily shaped membranes,” Int. J. Mech. Sci., 2014, doi: 10.1016/j.ijmecsci.2013.12.008.

E. Viola, F. Tornabene, and N. Fantuzzi, “Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape,” Compos. Struct., 2013, doi: 10.1016/j.compstruct.2013.07.034.

F. Tornabene, A. Liverani, and G. Caligiana, “Static analysis of laminated composite curved shells and panels of revolution with a posteriori shear and normal stress recovery using generalized differential quadrature method,” Int. J. Mech. Sci., 2012, doi: 10.1016/j.ijmecsci.2012.05.007.

E. Gutierrez-miravete and E. P. Adviser, “A Finite Element Study of the Deflection of Simply Supported Composite Plates Subject to Uniform Load,” no. December, 2011.

M. W. Hyer, Stress Analysis of Fibre-Reinforced Composite Materials. 2009.

G. Z. Voyiadjis and P. I. Kattan, Mechanics of composite materials with MATLAB. 2005.

D. Huang and B. H. Sun, “Approximate solution on smart composite beams by using MATLAB,” Compos. Struct., vol. 54, no. 2–3, pp. 197–205, 2001, doi: 10.1016/S0263-8223(01)00088-5.

D. Huang and B. Sun, “Approximate analytical solutions of smart composite mindlin beams,” J. Sound Vib., 2001, doi: 10.1006/jsvi.2000.3475.

H. Kawai, “The Piezoelectricity of Poly (vinylidene Fluoride),” Jpn. J. Appl. Phys., vol. 8, no. 7, pp. 975–976, 1969, doi: 10.1143/jjap.8.975.

M. Khayet and T. Matsuura, “Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation,” Ind. Eng. Chem. Res., 2001, doi: 10.1021/ie010553y.

M. G. Broadhurst, G. T. Davis, J. E. McKinney, and R. E. Collins, “Piezoelectricity and pyroelectricity in polyvinylidene fluoride - A model,” J. Appl. Phys., 1978, doi: 10.1063/1.324445.

B. Sun and D. Huang, “Vibration suppression of laminated composite beams with a piezo-electric damping layer,” Compos. Struct., 2001, doi: 10.1016/S0263-8223(01)00054-X.

E. Fukada and T. Furukawa, “Piezoelectricity and ferroelectricity in polyvinylidene fluoride,” Ultrasonics, 1981, doi: 10.1016/0041-624X(81)90030-5.

Y. K. Kang, H. C. Park, W. Hwang, and K. S. Han, “Prediction and measurement of modal damping of laminated composite beams with piezoceramic sensor/actuator,” J. Intell. Mater. Syst. Struct., 1996, doi: 10.1177/1045389X9600700103.

Z. cheng Qiu, X. min Zhang, H. xin Wu, and H. hua Zhang, “Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate,” J. Sound Vib., 2007, doi: 10.1016/j.jsv.2006.10.018.

G. Song, P. Z. Qiao, W. K. Binienda, and G. P. Zou, “Active vibration damping of composite beam using smart sensors and actuators,” Journal of Aerospace Engineering. 2002, doi: 10.1061/(ASCE)0893-1321(2002)15:3(97).

Baillargeon, Brian P. and Brian P. Baillargeon, “Active Vibration Suppression of Smart Structures Using Piezoelectric Shear Actuators,” Univ. Maine, 2003.

E. Padoin, J. S. O. Fonseca, E. A. Perondi, and O. Menuzzi, “Optimal placement of piezoelectric macro fiber composite patches on composite plates for vibration suppression,” Lat. Am. J. Solids Struct., 2015, doi: 10.1590/1679-78251320.

S. Zhang, R. Schmidt, and X. Qin, “Active vibration control of piezoelectric bonded smart structures using PID algorithm,” Chinese J. Aeronaut., 2015, doi: 10.1016/j.cja.2014.12.005.

V. M. Sreehari, L. J. George, and D. K. Maiti, “Bending and buckling analysis of smart composite plates with and without internal flaw using an inverse hyperbolic shear deformation theory,” Compos. Struct., 2016, doi: 10.1016/j.compstruct.2015.11.045.

V. M. Sreehari and D. K. Maiti, “Buckling and post buckling characteristics of laminated composite plates with damage under thermo-mechanical loading,” Structures, 2016, doi: 10.1016/j.istruc.2016.01.002.

D. K. Maiti and V. M. Sreehari, “Bending and buckling analyses of composite laminates with and without presence of damage and its passive control with optimized piezoelectric patch location,” in Proceedings of the Indian National Science Academy, 2016, doi: 10.16943/ptinsa/2016/48424.

V. M. Sreehari and D. K. Maiti, “Optimization of damagedcomposite plates under buckling and post bucklingcondition in hygrothermal environment employing an inverse hyperbolic shear deformation theory,” in 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015, doi: 10.2514/6.2015-1440.

J. C. Lin and M. H. Nien, “Adaptive control of a composite cantilever beam with piezoelectric damping-modal actuators/sensors,” Compos. Struct., 2005, doi: 10.1016/j.compstruct.2004.08.020.

Y. Jia et al., “Multiphysics vibration FE model of piezoelectric macro fibre composite on carbon fibre composite structures,” Compos. Part B Eng., 2019, doi: 10.1016/j.compositesb.2018.12.081.

S. Lahoti and M. D. Kulkarni, “Shape optimization for energy harvesting applications,” 2020, doi: 10.2514/6.2020-2262.

V. K. Singh, C. K. Hirwani, S. K. Panda, T. R. Mahapatra, and K. Mehar, “Numerical and experimental nonlinear dynamic response reduction of smart composite curved structure using collocation and non-collocation configuration,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2019, doi: 10.1177/0954406218774362.

J. Rouzegar and M. Davoudi, “Forced vibration of smart laminated viscoelastic plates by RPT finite element approach,” Acta Mech. Sin. Xuebao, 2020, doi: 10.1007/s10409-020-00964-1.

C. Wright and O. Bilgen, “Modeling and parametric analysis of multilayer piezocomposite actuators,” 2020, doi: 10.1115/SMASIS20-2211.

P. V. Katariya, A. Das, and S. K. Panda, “Buckling analysis of SMA bonded sandwich structure - Using FEM,” 2018, doi: 10.1088/1757-899X/338/1/012035.

A. Erol, P. Von Lockette, and M. Frecker, “Multi-objective optimization of a multi-field actuated, multilayered, segmented flexible composite beam,” Smart Mater. Struct., 2020, doi: 10.1088/1361-665X/ab4607.

N. Keshtkar and K. Robenack, “Mathematical Modeling of Fiber-Elastomer Composites with Embedded Shape Memory Alloys,” 2020, doi: 10.1109/ICSTCC50638.2020.9259736.

How to Cite
Ali, H., & Nayeeif, A. (2021). Review on static-dynamic analysis of Laminated Composite and Piezoelectric Lamina Material using Matlab. Al-Qadisiyah Journal for Engineering Sciences, 14(1), 014-020.