A NEW SUBCLASS OF STARLIKE HARMONIC FUNCTIONS DEFINED BY SUBORDINATION

Serkan Çakmak a, Sibel Yalçın a,* and Şahsene Altınkaya a

*Department of Mathematics, Bursa Uludag University, Turkey, Emails: serkan.cakmak64@gmail.com, syalcin@uludag.edu.tr, sahsene@uludag.edu.tr

Received: 3/2/2020    Accepted: 29/2/2020

ABSTRACT: In this current work, by using a relation of subordination, we define a new subclass of starlike harmonic functions. We get coefficient bounds, distortion theorems, extreme points, convolution and convex combinations for this class of functions. Moreover, some relevant connections of the results presented here with diverse known results are briefly denoted.

KEYWORDS: Harmonic functions, starlike functions, subordination

* Corresponding author
1. INTRODUCTION

A continuous complex valued function \( f = u + iv \) defined in a simply connected complex domain \( D \subseteq \mathbb{C} \) is said to be harmonic in \( D \) if both \( u \) and \( v \) are real harmonic in \( D \). Consider the functions \( U \) and \( V \) analytic in \( D \) so that \( u = ReU \) and \( v = ImV \). Then the harmonic function \( f \) can be expressed by

\[
f(z) = h(z) + g(z) \quad (z \in D),
\]

where \( h = (U+V)/2 \) and \( g = (U-V)/2 \). We call \( h \) the analytic part and \( g \) co-analytic part of \( f \). If \( g \) is identically zero then \( f \) reduces to the analytic case. A necessary and sufficient condition for \( f \) to be locally univalent and sense-preserving in \( D \) is that \( \{|g'(z)| < |h'(z)| \} \) (see Clunie and Sheil-Small [2]).

Let \( S_\mu \) denote the class of functions \( f = h + \bar{g} \) which are harmonic sense-preserving, and univalent in the open unit disk \( E = \{z : |z| < 1 \} \) with \( f(0) = f'(0) - 1 = 0 \). Thus, any function \( f \in S_\mu \) can be written in the form

\[
f(z) = z + \sum_{k=1}^{\infty} a_k z^k + \sum_{k=1}^{\infty} b_k z^k \quad (|b_k| < 1). \tag{1}
\]

Also, let \( TS_\mu \) denote the subclass of \( S_\mu \) consisting of functions \( f = h + \bar{g} \) so that the functions \( h \) and \( g \) take the form

\[
h(z) = z - \sum_{k=1}^{\infty} a_k z^k \quad \text{and} \quad g(z) = \sum_{k=1}^{\infty} b_k z^k \quad (|b_k| < 1). \tag{2}
\]

Recently, Öztürk et al. [7], studied a family of complex valued harmonic starlike univalent functions related to uniformly convex analytic functions, denoted by \( S_\mu'(\lambda, \alpha) \) \((0 \leq \lambda < 1, 0 \leq \alpha < 1)\) so that \( f = h + \bar{g} \in S_\mu'(\lambda, \alpha) \) if

\[
\text{Re}\left( \frac{zh'(-z) - zg'(z) - (1 - \lambda)(h(z) + g(z))}{z(h'(-z) - g'(z)) + (1 - \lambda)(h(z) + g(z))} \right) > \alpha.
\]

When \( \lambda = 1 = 0 \) and \( \lambda = 0 \), this class is denoted by \( S_\mu' \) and \( S_\mu''(\alpha) \), respectively. These classes have been studied by Silverman [9], Avcı and Zlotkiewicz [1], Öztürk and Yalçın [8], Jahangiri [6], Yalçın [10].

We say that an analytic function \( f \) is subordinate to an analytic function \( g \) and write \( f \prec g \), if there exists a complex valued function \( w \) which maps \( E \) into itself with \( w(0) = 0 \), \( |w(z)| < 1 \) such that

\[
f(z) = g(w(z)) \quad (z \in E).
\]

Now, by using a relation of subordination, we define a new subclass of starlike harmonic functions.

1.1 Definition. A function \( f \) given by (1) is said to be in the class \( S_\mu'(\lambda, A, B) \) if the following condition is satisfied

\[
\frac{zh'(z) - zg'(z)}{\lambda(h'(-z) - g'(z)) + (1 - \lambda)(h(z) + g(z))} < \frac{1 + A\xi}{1 + B\xi}, \tag{3}
\]

where \(-1 \leq B \leq -A \leq 0 \) and \( 0 \leq \lambda < 1 \).

Also, we let \( TS_\mu'(\lambda, A, B) = S_\mu'(\lambda, A, B) \cap TS_\mu \)

By suitably specializing the parameters, the class \( S_\mu'(\lambda, A, B) \) reduces to the various subclasses of harmonic univalent functions. Such as,

(i) \( S_\mu'(0, A, B) = S_\mu'(A, B) \) (see [5]),
(ii) \( S_\mu'(\lambda, 1 - 2\alpha, -1) = S_\mu'(\lambda, \alpha) \) (see [7]),
(iii) \( S_\mu'(0, 1 - 2\alpha, -1) = S_\mu'(\alpha) \) (see [1],[6],[8]),
(iv) \( S_\mu'(0, 1, -1) = S_\mu'(\alpha) \) (see [9]).

Making use of the techniques and methodology used by Dziok (see [3], [4]). Dziok et al. [5], in this paper, we find necessary and sufficient conditions, distortion bounds, compactness and extreme points for the above defined class \( TS_\mu'(\lambda, A, B) \).

2. MAIN RESULTS

For functions \( f_1, f_2 \in S_\mu \) of the form

\[
f_\alpha(z) = z + \sum_{k=1}^{\infty} a_{k,\alpha} z^k + \sum_{k=1}^{\infty} b_{k,\alpha} z^k \quad (z \in E, m = 1, 2),
\]

we define the Hadamard product of \( f_1 \) and \( f_2 \) by

\[
(f_1 \ast f_2)(z) = z + \sum_{k=1}^{\infty} a_{k,\alpha} b_{k,\alpha} z^k \quad (z \in E).
\]

First we state and prove the necessary and sufficient conditions for harmonic functions in \( S_\mu'(\lambda, A, B) \).

2.1. Theorem. Let \( f \in S_\mu \). Then \( f \in S_\mu'(\lambda, \alpha, B) \) if and only if

\[
f(z) \ast \phi(z, \xi) \not= 0 \quad (\xi \in \mathbb{C}, |\xi| < 1, z \in E \setminus \{0\})
\]

where

\[
\phi(z, \xi) = \frac{(A - B)z\xi - (1 + A\xi)(1 - \lambda)z^2}{(1 - z)^2} + \frac{z(1 + A\xi)}{(1 - z)} \xi - \frac{(1 + A\xi)(1 - \lambda)z^2}{(1 - z)^2}.
\]

Proof. Let \( f \in S_\mu \) be of the form (1). Then \( f \in S_\mu'(\lambda, A, B) \) if and only if it satisfies (3) or equivalently

\[
\frac{zh'(z) - zg'(z)}{\lambda(h'(-z) - g'(z)) + (1 - \lambda)(h(z) + g(z))} \leq \frac{1 + A\xi}{1 + B\xi} \tag{4}
\]

where \( \xi \in \mathbb{C}, |\xi| < 1 \) and \( z \in E \setminus \{0\} \).

Now, by using a relation of subordination, we define a new subclass of starlike harmonic functions.

1.1 Definition. A function \( f \) given by (1) is said to be in the class \( S_\mu'(\lambda, A, B) \) if the following condition is satisfied

\[
\frac{zh'(z) - zg'(z)}{\lambda(h'(-z) - g'(z)) + (1 - \lambda)(h(z) + g(z))} < \frac{1 + A\xi}{1 + B\xi}, \tag{3}
\]

where \(-1 \leq B \leq -A \leq 0 \) and \( 0 \leq \lambda < 1 \).
Here we state a result due to Silverman [9], which we will use throughout this paper.

2.2. Theorem. Let \( f \) be of the form (1). If
\[
\sum_{n=1}^{\infty} \left| a_n + |b_n| \right| \leq 2,
\]
then \( f \) is harmonic, sense preserving, univalent in \( E \) and \( f \in S_u^\alpha \). The condition (5) is also necessary if \( f \in S_u^\alpha \cap T S_u^\alpha \).

Now we state and prove a sufficient coefficient bound for the class \( S_u^\alpha (\lambda, A, B) \).

2.3. Theorem. Let \( f \) be of the form (1). If
\[-1 \leq B \leq -B < A \leq 1, 0 < \lambda < 1\]
and
\[
\sum_{n=1}^{\infty} \left( \Phi_n |a_n| + \Psi_n |b_n| \right) \leq 2(A - B),
\]
where
\[
\Phi_n = (A\lambda - B)n + (1 - \lambda)(n + 1 - A)
\]
and
\[
\Psi_n = (A\lambda - B)n + (1 - \lambda)(n + 1 - A)
\]
then \( f \) is harmonic, sense preserving, univalent in \( E \) and \( f \in S_u^\alpha (\lambda, A, B) \).

Proof. Since \( n(A - B) \leq (A\lambda - B)n + (1 - \lambda)(n + 1 - A) \) and \( n(A - B) \leq (A\lambda - B)n + (1 - \lambda)(n + 1 - A) \) for \( 0 \leq \lambda < 1 \) and \(-1 \leq B \leq -B < A \leq 1 \), it follows from Theorem 2.2 that \( f \in S_u^\alpha \) and hence \( f \) is sense preserving and starlike univalent in \( E \). Now, we only need to show that (3) holds then \( f \in S_u^\alpha (\lambda, A, B) \).

By definition of subordination, \( f \in S_u^\alpha (\lambda, A, B) \). if and only if there exists a complex valued function \( w; w(0) = 0, w(z) = |z| < 1 \) (z \( \in E \)) such that
\[
\frac{zh'(z) - zg'(z)}{(2\lambda - 1)(h(z) + g(z))} = \frac{1 + Aw(z)}{1 + Bw(z)}
\]
or equivalently
\[
\left( 1 - \lambda \right) \frac{zh'(z) - zg'(z) - h(z) - g(z)}{(A\lambda - B)(zh'(z) - zg'(z) + A(1 - \lambda)h(z) + g(z))} < 1.
\]
Substituting for \( zh'(z) \) and \( zg'(z) \) in (9), we obtain
\[
\left| (1 - \lambda)(zh'(z) - zg'(z) - h(z) - g(z)) \right|
\leq \left( A\lambda - B \right) \left( zh'(z) - zg'(z) + A(1 - \lambda)h(z) + g(z) \right)
\leq \sum_{n=1}^{\infty} \left( 1 - \lambda \right)(n-1)|a_n|z^n + \sum_{n=1}^{\infty} \left( 1 - \lambda \right)(n+1)|b_n|z^n
\leq (A - B)z + \sum_{n=1}^{\infty} [(A\lambda - B)n + A(1 - \lambda)|a_n|z^n
\leq \sum_{n=2}^{\infty} (A\lambda - B)n + (1 - \lambda)|a_n|z^n + \sum_{n=2}^{\infty} (A\lambda - B)n + (1 - \lambda)|b_n|z^n.
\]
Next we show that the bound (6) is also necessary for \( TS_u^\alpha (\lambda, A, B) \). The proof for the left hand inequality is similar and will be omitted. Let \( f \in TS_u^\alpha (\lambda, A, B) \). Taking the absolute value of \( f \) we have
\[
|f(z)| \leq (1 + |b_n|)r + \sum_{n=2}^{\infty} |a_n| |b_n| r^n
\leq (1 + |b_n|)r + \frac{1}{2(A\lambda - B) + (1 - \lambda)(1 + A)} \sum_{n=2}^{\infty} (\Phi_n |a_n| + \Psi_n |b_n|) r^n
\leq (1 + |b_n|)r + \frac{A - B}{(2(A\lambda - B) + (1 - \lambda)(1 + A))} |b_n| r^n.
\]
If condition (6) does not hold then condition (11) does not hold for \( r \) sufficiently close to 1. Thus there exists \( z_0 = e_i \) in (0,1) for which the quotient (11) is greater than 1. This contradicts the required condition for \( f \in S_u^\alpha (\lambda, A, B) \). and so the proof is completed.

2.5. Theorem. Let \( f \in S_u^\alpha (\lambda, A, B) \). Then for \( |z| = r < 1 \), we have
\[
|f(z)| \leq |1 + |b_n| r + \sum_{n=2}^{\infty} |a_n| |b_n| r^n\]
\[
+ \left| z \right| \left( \sum_{n=2}^{\infty} \left[ (A\lambda - B)n + (1 - \lambda)n + 1 - A \right] |a_n| |z| r^n + \sum_{n=2}^{\infty} \left[ (A\lambda - B)n + (1 - \lambda)n + 1 - A \right] |b_n| |z| r^n \right).
\]
For \( f(z) = x + \sum_{n=2}^{\infty} A - B x z^n + \sum_{n=2}^{\infty} A - B x y z^n, \)
where \( \sum_{n=2}^{\infty} x_n + \sum_{n=2}^{\infty} y_n \mid = 1 \), show that the coefficient bound given by in Theorem 2.3 is sharp.
The following covering results follows from the left hand inequality in Theorem 2.5.

2.6. Corollary. Let $f = h + \overline{g}$ with $h$ and $g$ of the form (2). If $f \in TS_\nu'(\lambda, A, B)$, then
$$w: |w| < \frac{[(A-\lambda)A-B+1]-[(2(\lambda)(A-\lambda)-B+1)]h_1}{2(A\lambda-B)+(1-\lambda)(1+A)} \subset f(E).$$

2.7. Theorem. Set
$$h_i(z) = z, \quad h_i(z) = z - \frac{A-B}{\Phi_i} \overline{z}^* \quad (n = 2, 3, \ldots)$$
and
$$g_i(z) = z + \frac{A-B}{\Psi_i} \overline{z}^* \quad (n = 1, 2, 3, \ldots).$$
Then $f \in TS_\nu'(\lambda, A, B)$ if and only if it can be expressed as
$$f(z) = \sum_{i=1}^\infty (x_i h_i(z) + y_i g_i(z)),$$
where $x_i \geq 0$, $y_i \geq 0$, $\sum_{i=1}^\infty (x_i + y_i) = 1$. In particular, the extreme points of $TS_\nu'(\lambda, A, B)$ are \{h_i\} and \{g_i\}.

Proof. Suppose that
$$f(z) = \sum_{i=1}^\infty (x_i h_i(z) + y_i g_i(z)) = \sum_{i=1}^\infty x_i \frac{A-B}{\Phi_i} \overline{z}^* + \sum_{i=1}^\infty y_i \frac{A-B}{\Psi_i} \overline{z}^*.$$
Then
$$\sum_{i=1}^\infty \Phi_i |a_i| + \sum_{i=1}^\infty \Psi_i |b_i| = (A-B) \sum_{i=1}^\infty x_i + (A-B) \sum_{i=1}^\infty y_i$$
and so $f \in TS_\nu'(\lambda, A, B)$. Conversely, if $f \in TS_\nu'(\lambda, A, B)$, then
$$|a_i| \leq \frac{A-B}{\Phi_i} \quad \text{and} \quad |b_i| \leq \frac{A-B}{\Psi_i}.$$
Set
$$x_i = \frac{\Phi_i}{A-B} |a_i| \quad (n = 2, 3, \ldots) \quad \text{and} \quad y_i = \frac{\Psi_i}{A-B} |b_i| \quad (n = 1, 2, \ldots).$$

Then note by Theorem 2.4, $0 \leq x_i \leq 1$ ($n = 2, 3, \ldots$) and $0 \leq y_i \leq 1$ ($n = 1, 2, \ldots$).
We define
$$x_1 = 1 - \sum_{i=1}^\infty x_i - \sum_{i=1}^\infty y_i$$
and note that by Theorem 2.4, $x_1 \geq 0$. Consequently, we obtain
$$f(z) = \sum_{i=1}^\infty (x_i h_i(z) + y_i g_i(z))$$
as required.

2.8. Theorem. The class $TS_\nu'(\lambda, A, B)$ is closed under convex combination.

Proof. For $i = 1, 2, \ldots$, let $f_i \in TS_\nu'(\lambda, A, B)$, where $f_i$ is given by
$$f_i(z) = z - \sum_{i=1}^\infty |a_i| z^* + \sum_{i=1}^\infty |b_i| z^*.$$
Then by (6), we get
$$\sum_{i=1}^\infty (\Phi_i |a_i| + \Psi_i |b_i|) \leq 2(A-B).$$
(12)

For $\sum_{i=1}^\infty t_i = 1$, $0 \leq t_i \leq 1$, the convex combination of $f_i$ may be written as
$$\sum_{i=1}^\infty t_i f_i(z) = z - \sum_{i=1}^\infty (\sum_{i=1}^\infty t_i |a_i|) z^* + \sum_{i=1}^\infty (\sum_{i=1}^\infty t_i |b_i|) z^*.$$
Then by (12), we can write
$$\sum_{i=1}^\infty (\sum_{i=1}^\infty t_i |a_i| + \Psi_i |b_i|) \leq 2(A-B) \sum_{i=1}^\infty t_i f_i = 2(A-B).$$
This is the condition required by (6) and so
$$\sum_{i=1}^\infty t_i f_i(z) \in TS_\nu'(\lambda, A, B).$$

REFERENCES