Effect of friction stir processing on microstructure and microhardness of the 6061 aluminum alloy reinforced with SiC_p

H. I. Dawood¹, Kassim Kadhim Hameed¹, Kannan Mohammad Musa¹

¹Department of Chemical Engineering, College of Engineering, University of AL-Qadisiya, AL-Qadisiya, Iraq

E-mail address: hasan.dawood@qu.edu.iq, Kannan.aljubory@qu.edu.iq, Kassim.alshmery@qu.edu.iq.
Phone: +9647815290844

Abstract

The performance of this study shows that SiC_p of particle size 1 μm was dispersed into the surface layer of 6061 aluminum alloy sheet by friction stir processing (FSP) technique. The process parameters are rotational speed, traverse speed and axial force and all these parameters kept constant at 1750 rpm, 50 mm/min and 4 kN, respectively. All the specimens were subjected to different numbers of FSP (1 to 3 passes). The effect of FSP passes on the surface metal matrix composites was investigated. The microstructure across the stir zone (SZ) was evaluated by using an optical microscope, and the results showed a banded structure from the particle-rich and particle-free regions of the SiC_p. Significant variation in microhardness value of the surface metal matrix composites was observed due to the variation of FSP passes. Higher microhardness value was exhibited when the surface composites were fabricated after 3-pass FSP.

Keywords: friction stir processing; particle reinforcements; composite materials

تؤثر عملية الاحتكاك على التركيب الحبيبي والصلادة لسبيكة الالمنيوم 6061 بعد تسليحها بمادة السليكون كاربيد

حسن عيسى داود. قاسم كاظم حميد. كنان موحده موسى
جوامع القادسية / كلية الهندسة

E-mail address: hasan.dawood@qu.edu.iq, Kannan.aljubory@qu.edu.iq, Kassim.alshmery@qu.edu.iq.
Phone: +9647815290844

الخلاصة:

في هذه الدراسة تم تشييد سبيكة الالمنيوم 6061 بكمية رج 1 مايكرومتر مع سطح سبيكة الالمنيوم 6061 بقيتية 1750 rpm والسرعة الخطية 50mm/min (FSP). المتغيرات الثابتة التي تم اعتمادا بها في البحث هي السرعة الدورانية (FSP) والقوة المغذية المطلوبة للمكينة (4kN) على التوالي. جميع العينات عرضت لخلط لمرات مختلفة (1 إلى 3) مرة. تم فحص منطقة (SZ) بالجزء المجهري الضوئي واظهرت النتائج اختلاف في نسبة خلط المادة (SiC_p) باستخدام المجهر الضوئي واظهرت النتائج اختلاف في نسبة خلط المادة (SiC_p) من حيث كثافتها في منطقة الخلط. وقد تم ملاحظة اختلاف قيم الصلادة بسبب احتكار عدد مرات الخلط. أعلى قيم الصلادة تم ملاحظتها عندما كانت عدد مرات الخلط (3).

الكلمات المفتاحية: عملية الاحتكاك، التسليح بالجسيمات، المواد المركبة
1. Introduction

A technique of FSP has been developed [1]. FSP is one of the main part that deals with solid state intense plastic deformation processes to modify the grain structure of the surface [2]. This method is to produce surface metal matrix composites and to improve the mechanical properties of the surface metal [3]. FSP has improved the wear resistance [4], microstructure and grain enhancement [5]. This process involves an inconsumable rotating tool which includes a pin and a shoulder [6]. The rotating tool introduces into the surface of sheet and stirs the material around the pin tool in terms of frictional heating. This heat is created through the severe plastic deformation which is assigned to the stirring material in the region of the pin tool [7]. The input parameters of FSP are the geometry of tool [8], traverse and rotating speed [9], spindle tilt angle and depth [7] which have important influences on the mechanical properties and microstructure of the products. The FSP was successfully implemented in fabricating the most of aluminum, which is used in the process with different reinforcements. The applied reinforcements were hard carbide particles such as TiC, SiC and Al₂O₃ [10-12].

FSP was successfully applied to homogenize the TiC particles circulation in aluminum alloy surface based in situ composites, Bauri et al. [10]. A single pass FSP might rupture the particles from grain boundaries. Two passes of FSP are extremely enhanced TiC particles distribution and refined grain structure. As a result of above, the FSP has two advantages of the hardness and the strength which are enhanced after FSP. FSP was employed to produce bulk dispersal SiCₚ reinforced aluminum metal matrix composite by Wang et al. [13]. The results of those researchers show that the bonding between SiCₚ particles and base metal surface is extremely perfect. Also, they concluded that the microhardness of metal matrix composites may achieve to the amounts of 10% higher than the base metal. Izadi and Gerlich [11] continued Limetal.’s work [14] by production of CNT/aluminum composites throughout multi pass FSP. They distributed high volume of fraction (450%) of CNT during three passes of processing. The results exhibited that FSP could implant nanotubes in the lamellae regions of the aluminum alloy SZ. They established the increasing of the tool shoulder penetration depth and the rotational speed could develop the circulation of nanotubes in the aluminum alloy matrix. Aluminum-10% Al₂O₃ surface nano-composite formed on a 2024 aluminum by Zahmatkesh et al. [15]. The powder was spread on the aluminum surface (2024 sheet) by atmospheric plasma and then subjected to FSP. A homogeneous circulation of nano particles was accomplished after FSP and the wear rate of the surface nano-composite was reduced. As a role of thump, the grain structure might have refined during FSP [16]. Studies of SiC with Al₂O₃ reinforcement into the surface of pure aluminum were carried out by Miranda et al. [17]. The study showed that the packing of reinforcements in square shaped groove could increase the composite layer thickness.

In the current study, aluminum matrix reinforced with 30 vol. % of SiCₚ was fabricated through FSP technique to enhance the microhardness properties. The new product of reinforcement with aluminum matrix has a homogenous distribution of reinforcement. These result are consistent with other studies [13, 18].

2. Materials and Experimental Procedures
In this study, the materials used were 6061 aluminum alloy, medium carbon steel, and the SiC\textsubscript{p} (1µm) powder, which were provided by a local supplier (Heap Sing Huat Metal and Machinery Sdn Bhd). The 6061 aluminum alloy sheets with a thickness of 4 mm were sliced into the desired size (210 mm × 200 mm). A high speed gap-bed lathe machine (CY-S1860G) was engaged to machine the demand shape of a non-consumable tool made of medium carbon steel, which was heat-treated and quenched to 65 HRC. For the FSP technique, a tool with a shoulder diameter of 15 mm and a straight cylindrical pin with a diameter of 4 mm and a length of 3 mm were used. The chemical compositions of these materials were measured using an Emission Spectrometer (Q8 Magellan, Model: QM/V/L) as shown in the results in Tables 1 and 2. The elemental compositions of the SiC\textsubscript{p} powder were measured by the Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-ray Spectroscopy (EDX) techniques (Fig. 1).

Moreover, the workpiece was set using a backing plate and rigidly clamped as shown in the schematic diagram in Fig. 2(a). The longitudinal slots with 1 mm width and 3 mm depth were packed with the required volume fraction of SiC\textsubscript{p} powder along the aluminum sheet. To avoid scatter of SiC\textsubscript{p} powder through FSP technique, a tool shoulder without pin (Fig. 2(b)) was used to press the powder into the slot as much as possible before applying the FSP technique.

FSP technique was implemented on a KAMA vertical milling machine (X6325; 3 Hp; TRPER R8; 30 kN). The technique was applied by setting the milling machine spindle to a prearranged speed (1750 rpm and 50 mm/min) in a counter clockwise direction, which was normal to the rolling direction. The multi pass FSP (1-3 pass) was carried out to formulate the slots with the SiC\textsubscript{p} powder and the axial force was rest from a maximum value of 4 kN. The specimens for metallographic assessment were cut to the necessary sizes from the SZ. Afterward, the specimens were ground with 180 to 1200 grit silicon carbide papers. Final polishing was executed using a diamond paste of particle size of 0.5µm. A solution of Keller’s reagent (3ml of hydrochloric acid, 5ml of nitric acid, 2ml of hydrofluoric acid and 190 ml of distilled water) was prepared to detect the microstructures according to the American Standard Testing of Materials (ASTM: E407-07: ETD 2013). The
microstructures of the specimens were noticed using an optical microscope (Olympus BX41RF).

For the microhardness measurements, at least 21 Vickers type indentations were outright on traverse section of samples, using a load of 9.8 N (1 kg) and a dwell time of 15 sec by a Future-Tech (FV-700e) microhardness tester (Future-Tech Corp., Japan). The microhardness was more closely measured, with measurements being taken every 1 to 1.5 mm. The method of the microhardness test was repeated until at least five impressions were made at widely spaced locations along the FSP line.

3. Results and Discussion
3.1 Microstructural investigation

An optical microscope for the SZ of each specimen was observed in a bright field (Fig. 3) to illustrates the distribution of the reinforcing SiC_p particles in the aluminum matrix. It is evident that the reinforcements have been distributed properly and more uniform in the SZ of 3-pass specimen. In the multi pass FSP, the tool could supply further shear force to make the powder flow and disperse in the SZ [6]. In Fig. 3, the microstructure shows that the reinforcement powder are clustered and distributed heterogeneously in the matrix as a result of production processes. The inhomogeneous distributions of reinforcement powder in the microstructure of aluminum base metal can affect the isotropy of mechanical properties. It is accepted that the stirring action during FSP causes a break up of clustered reinforcement and homogenous distribution in the SZ due to the mixing of material and severe plastic deformation [19, 20].

The alternating layer of SiC_p particles was found in rich region (Fig. 3(b,c) and free region (Fig. 3(a)). In addition, the number of FSP passes can change the distribution and volume of SiC_p particles in the SZ [21]. In conclusion, the material flow behaviour, recrystallisation and heat input (i.e. number of passes) are main factors for uniform particle distribution effect. Hence the quality of SZ can be improved if the temperature of the SZ can be carefully controlled [22].
composites, fracture of carbon nanotubes could be more serious. Nevertheless, carbon nanotube reinforced composites showed the significant strengthening effect, as evidenced by the drastic increase in the microhardness in the friction stir processing zone. Besides, it can be seen from same figure, the microhardness distributions along the SZ are declined. This occurrence arises from the mode of distribution of the powder reinforcement [27].

4. Conclusion

1. The reinforcement particles of SiC_p were distributed uniformly in the SZ with devoid of imperfections.
2. The material flow behaviour, recrystallisation and heat input are main factors for uniform particle distribution effect. Hence the quality of SZ can be improved if the temperature of the SZ can be carefully controlled.
3. The microhardness values of aluminum matrix composites of 3-pass sample were increased as compared with the average microhardness of other samples and the base metal due to the presence of hard reinforcement particles and uniform distribution of SiC_p particles.

Acknowledgements

The authors gratefully acknowledge the outstanding support provided by the staff in the Materials Engineering School, Universiti Malaysia Perlis (UniMAP), for providing the facilities and supporting to carry out this work.

References