Enhance the gas-sensing performances of graphene oxide (GO) thin films for detecting nitrogen dioxide gas

  • Ali Al-jawdah University of Babylon
  • Rathyah jarrah
  • Mohsin K. Al-Khaykanee
  • Mirjam Skof
Keywords: Graphene oxide, gas sensor, operating temperature, response time, sensitivity.

Abstract

In this work, graphene oxide (GO) synthesized via a modified Hummer method was utilized to manufacture thin films for gas sensor applications. The films were prepared on glass substrates using the spin coating technique, the concentration of GO was varied in the precursor liquid. The crystall ographic properties of the prepared GO films were analyzed using XRD and the results showed a polycrystalline structure with a crystallite size of 15.51 nm. Using the weighing method, the average film thickness was determined to be about 200 nm. UV-Vis absorption spectrometry combined with the Tauc method confirmed the indirect nature (allowed and forbidden) of electronic transitions in the samples and it also showed a decrease in the optical energy gap with an increasing amount of GO in the samples. Values for Eg ranged from 2.4 eV to 2.15 eV for allowed transitions and from 3.05 eV to 2.6 eV for forbidden transitions. Gas sensing measurements were performed using NO2 as target gas at different operating temperatures (50, 100, 200 and 300 oC), as well as four target gas concentration (100 ppm, 400 ppm, 700 ppm, and 1000 ppm) have been tested and shows the good response in the range of 10%. It can be seen that the sensitivity increases with increasing operating temperature and gas concentration. At 300 oC operating temperature response and recovery time decrease to their lowest value or 2.6 and 5 seconds, respectively.

Downloads

Download data is not yet available.

References

1. Geim, A. K., & Novoselov, K. S. (2010). The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals (pp. 11-19).
2. Saxena, S., & Tyson, T. A. (2010). Interacting quasi-two-dimensional sheets of interlinked carbon nanotubes: a high-pressure phase of carbon. ACS nano, 4(6), 3515-3521.
3. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
4. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., ... & Conrad, E. H. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191-1196.
5. Panchakarla, L. S., Subrahmanyam, K. S., Saha, S. K., Govindaraj, A., Krishnamurthy, H. R., Waghmare, U. V., & Rao, C. N. R. (2009). Synthesis, structure, and properties of boron‐and nitrogen‐doped graphene. Advanced Materials, 21(46), 4726-4730.
6. Cao, M. S., Wang, X. X., Cao, W. Q., & Yuan, J. (2015). Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 3(26), 6589-6599.
7. Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31-47.
8. Shams, M., Guiney, L. M., Huang, L., Ramesh, M., Yang, X., Hersam, M. C., & Chowdhury, I. (2019). Influence of functional groups on the degradation of graphene oxide nanomaterials. Environmental Science: Nano, 6(7), 2203-2214.
9. Banerjee, A. N. (2018). Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus, 8(3), 20170056.
10. Chatterjee, S. G., Chatterjee, S., Ray, A. K., & Chakraborty, A. K. (2015). Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sensors and Actuators B: Chemical, 221, 1170-1181.
11. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., ... & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565.
12. Zhang, Y., Su, M., Ge, L., Ge, S., Yu, J., & Song, X. (2013). Synthesis and characterization of graphene nanosheets attached to spiky MnO2 nanospheres and its application in ultrasensitive immunoassay. Carbon, 57, 22-33.
13. Fine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal oxide semi-conductor gas sensors in environmental monitoring. sensors, 10(6), 5469-5502.
14. Monshi, A., Foroughi, M. R., & Monshi, M. R. (2012). Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World journal of nano science and engineering, 2(3), 154-160.
15. Pope, C. G. (1997). X-ray diffraction and the Bragg equation. Journal of chemical education, 74(1), 129.
16. Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology, 6(9), 534-534.
17. Drits, V., Środoń, J., & Eberl, D. D. (1997). XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation. Clays and clay minerals, 45(3), 461-475.
18. Mäntele, W., & Deniz, E. (2017). UV–VIS absorption spectroscopy: Lambert-Beer reloaded.
19. Stavn, R. H. (1981). Light attenuation in natural waters: Gershun's law, Lambert-Beer law, and the mean light path. Applied optics, 20(14), 2326_1-2327.
20. Baishya, K., Ray, J. S., Dutta, P., Das, P. P., & Das, S. K. (2018). Graphene-mediated band gap engineering of WO 3 nanoparticle and a relook at Tauc equation for band gap evaluation. Applied Physics A, 124(10), 704.
21. Li, X., Zhu, H., Wei, J., Wang, K., Xu, E., Li, Z., & Wu, D. (2009). Determination of band gaps of self-assembled carbon nanotube films using Tauc/Davis–Mott model. Applied Physics A, 97(2), 341-344.
22. Xiao, Z., Zhou, Y., Hosono, H., Kamiya, T., & Padture, N. P. (2018). Bandgap optimization of perovskite semiconductors for photovoltaic applications. Chemistry–A European Journal, 24(10), 2305-2316.
23. Pustelny, T., Setkiewicz, M., Drewniak, S., Maciak, E., Stolarczyk, A., Urbańczyk, M., ... & Strupinski, W. (2013). The sensibility of resistance sensor structures with graphene to the action of selected gaseous media. Bulletin of the Polish Academy of Sciences. Technical Sciences, 61(2), 293-300.
24. Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., & Ruoff, R. S. (2011). Hydrazine-reduction of graphite-and graphene oxide. carbon, 49(9), 3019-3023.
25. Malmonge, L. F., & Mattoso, L. H. (1995). Electroactive blends of poly (vinylidene fluoride) and polyaniline derivatives. Polymer, 36(2), 245-249.
26. Joseph, S., John, A. O., Mugwang'a, F. K., & Katana, G. G. (2019). Tuning the band gap energy of reduced graphene oxide using biopolymer chitosan for high power and frequency device applications. American Journal of Polymer Science & Engineering, 7(1), 8-19.
27. Mahendia, S., Tomar, A. K., & Kumar, S. (2010). Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. Journal of Alloys and Compounds, 508(2), 406-411.
28. Groß, A., Beulertz, G., Marr, I., Kubinski, D. J., Visser, J. H., & Moos, R. (2012). Dual mode NOx sensor: Measuring both the accumulated amount and instantaneous level at low concentrations. Sensors, 12(3), 2831-2850.
29. Fei, H., Wu, G., Cheng, W. Y., Yan, W., Xu, H., Zhang, D., ... & Wu, H. C. (2019). Enhanced NO2 sensing at room temperature with graphene via monodisperse polystyrene bead decoration. ACS omega, 4(2), 3812-3819.
Published
2021-08-19
How to Cite
Al-jawdah, A., Jarrah, R., Al-Khaykanee, M., & Skof, M. (2021). Enhance the gas-sensing performances of graphene oxide (GO) thin films for detecting nitrogen dioxide gas. Al-Qadisiyah Journal of Pure Science, 26(4), 432–443. https://doi.org/10.29350/qjps.2021.26.4.1360
Section
Special Issue (Silver Jubilee)