Comprehensive Electronic Structure of Si Nanocrystal

  • Hussein Fadhal Hussein Education Directorate of Babylon
Keywords: energy gap,cohesive energy, valance band width

Abstract

The properties of oxidized surface and core have been investigated.  using of STO-3G(Slater Type Orbitals)foundation is made to be able to compare RHF(Roothaan-Hartree-Fock)method with semiempirical methods using the complete neglect of differential overlap (CNDO)which uses Slater type orbitals (STO). outcomes revealed that the electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in anraise of energy gap (3.54 eV), valance band width (14.21 eV), and cohesive energy (9.15 eV).The lattice constant of the core and oxidized surface parts illustrate a decreasing movement as the nanocrystal increases in size that converges to 0.528 nm. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The nanocrystal surface shows smaller gap (1.08 eV) and higher valence band whilst compared to the core part due to the oxygen atoms at the surface the diminution of structural symmetry.

Downloads

Download data is not yet available.

References

[1] M. Luppi,”Multiple Si=O Bonds at the Silicon Cluster Surface", Journal of Applied Physics,94( 3 ), (2003).
[2]I. Z. Hassan,”Semiempirical Self-Consistent Field Calculations of III-V Zinc-Blende Semiconductors”, Ph.D. Thesis, College of Science, Al-Nahrian University, (2001).
[3] P. Huang and E. A. Carter, "Advance in Correlated Electronic Structure Methods for Solids, Surface, and Nanostructures", Rev. Phys. Chem., 59 (361), (2008).
[4]W. Hehre, L. Random, P. Schleyer, and J. Pople, "Ab-initio Molecular Orbital Theory ", John Wiley and Sons (1986).
[5] I. O. Radi, Mudar A. Abdulsattar, and Ahmed M. Abdul-Lettif, Phys. Status Solidi B 244, 1304 (2007).
[6]Gaussian 03, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, (2003).
[7] L. C. Kimerling, L. D. Negro, M. Stolif, J.H.Yi, J. Michel, X. Duan, E. H. Sargent, T. W. Chang, V. Sukhovatkin, J. Haavisto, and J.Leblanc, "Si-Rich Dielectrics for Active Photonic Devices", Boston University, (2009).
[8] L. Pavesi, and R. Turan, "Si nanocrystals", Wiley-Vch, (2010).
[9] C. Delerue, M. Lannoo, and G. Allan, Phys. Stat. Sol. (b), 1(115), (2001).
[10] L. Khriachtchev, "Silicon Nanophotonics", University of Helsinki, Finland, (2009).
[11]M. Fujii, Y. Yamaguchi, Y.Takase, K. Ninomiya, and S. Hayashi, Applied Physics Letters, 85(7), (2004).
[12] M. Nishida "Electronic Structure of Silicon Quantum Dots: Calculations of energy-gap red shifts due to Oxidation", Journal of Applied Physics, 98( 023705), (2005).
[13] A. R. Wilkinson, "The Optical Properties of Silicon Nanocrystals and the Role of Hydrogen Passivation", Ph.D. Thesis, The Australian National University, (2006).
[14]C. Kittle, "Introduction to Solid State Physics",John Wiley and Sons, (2005).
[15]C. Kittel, Introduction to Solid State Physics, 5th ed. John Wiley and Sons, NewYork, (1976).
[16] D. A. Neamen, "Semiconductor Physics and Devices", University of New Mexico, (2003).
[17]S. K. Tewksbury, "Semiconductor Materials", West Virginia University, (1995).
[18] S. M. Sze and K. K. Ng, Physics of semiconductor devices, 3rd edition, Wiley (2007).
[19]K. M. Lebecki1, M J Donahue2 and M W Gutowski1 , " Periodic boundary conditions for demagnetization interactions in
micromagneticsimulations",Institute of Physics, (2007).
[20] A. Arnoldy, M. Ehrhardt, and I. Sofronov,Comm. Matm. SCI., 1( 3) , (2003).
[21] C. Lamberti, " Characterization of Semiconductor Heterostructures and Nanostructures", Elsevier publications , 2008.
[22] H. Fehske, R. Schneider, and A. Weibe , " Computational Many Particle Physics", Springer, Berlin Heidelberg, 2008.
[23]Chemistry. Ncssm. Edubook //chap7//Ab-Initio.Pdf.
[24] V. I. Minkin, Glossary of terms used in theoretical organic chemistry, Pure Appl. Chem., Vol. 71, No. 10, p. 1919, 1999.
[25] O. Pulci, E. Degoli, F. Iori, M. Marsili, M. Palummo, R. Del Sole, and S. Ossicini, Superlattices and Microstructure, 47( 178), (2010).
[26] B. A. Mamedov, Evaluation of Two-Center Overlap Integral in Molecular Coordinate System over Slater Type Orbitals, Chinese Journal of Physics, V.42, no.2, 2004.
[27]P. Norman and L. Ojamae, "Laborations in quantum chemistry", University of Linkoping, (2004).[28]W.R.L.Lambrecht,O.K.Andersen,Phys.Rev.B, 34 (2439), (1986).
[29]X.P.Li, D.M.Ceperley and Richard.M. Martin, Physical Review B,44(19),(1991).
[30] S.K. Lamichhane, Kathmandu University Journal of Science, 5(I), (2008).
[31] K.C. Fang, C.I.Weng, and S.P. Ju, Nanotechnology, 7(3909), (2006).

[32] I. Kwon, R. Biswas, C.Z. Wang, k. m. Ho, and C.M. Soukoulis, Physical Review B, 49(11), (1993).
[33] M. HeidariSaani, M. Kargarian, and A. Ranjbar, Phys. Rev. B 76( 035417), (2007).
[34]A.D.Zdetsis, Rev.Adv.Mater.Sci., 11( 56), (2005).
[35]D.E.Jiang and E.A.Carter, Physical Review B, 72(16),(2005).
[36] S.J. Sque, R. Jones, and P.R. Briddon, Phys. Rev. B 73(085313), (2006).
[37] 43.E.F.Valeev and C.Sherrill; "The Diagonal Born-Oppenheimer Correction beyond the Hartree-Fock Approximation", Journal of Chemical Physics, 118 , 9, (2003).
[38].A.K.B.Bender;"Structure Modeling of Aluminosil-Sesquioxanes", Ph.D. Thesis, Berlin, Germany,(2000).
[39].V.N.Glushkov ; "Alternative Techniques in open-shell SCF Theory", International Journal of Quantum Chemistry , 99 , pp.236-246 , (2004).
Published
2018-01-18
How to Cite
Hussein, H. F. (2018). Comprehensive Electronic Structure of Si Nanocrystal. Al-Qadisiyah Journal of Pure Science, 22(2), 75-86. Retrieved from https://journalsc.qu.edu.iq/index.php/JOPS/article/view/583
Section
Articles