Evaluation of silver nanoparticles Biosynthesized by Entomopathogenic fungus Entomophthora muscae against larval instars of housefly Musca domestica

  • Hussein R. Mahmood College of sciences/university of AL-Qadisiyah
Keywords: Silver nanoparticles, Musca domestica, E.muscae, Bioassay

Abstract

The research aimed to test the toxicity of silvernanoparticles produced by E.muscae The results explainened that this fungus has ability to synthesize silver nanoparticles and this was confirmed by color change of cell filterate in reaction solution ,the color changed from colorless to yellowish and by UV-Visible spectrophotometer at 420Nm.Bioassay tests pointed out that silver nanoparticles have high toxicity against laraval stages of Musca domestica .The proportion of mortility was the highest against firtst star (95-100%) in all tested concentrations.The lowest mortility was 60,75,83,95and100%at 2,4,6,8,10mg/L subsequently against the third star after 24hours ,while The mortilities of the third star  amounted to 70,78,89,97,100% in all  the above mentioned concentrations respecively and in the same period.It is suggestive that this rapid synthesis of silver nanoparticles can be used for developing a biological process for housefly   .                        

Downloads

Download data is not yet available.

References

1-Anitha T, and Palanivelu P(2011 ). Synthesis and Structural Characterization of Polydisperse Silver and Multidisha- ped Gold Nanoparticles Using Fusarium Oxysporum MT- CC 284, Digest Journal of Nanomateials and Biostruc-ture, Vol. 6, No. 4 , pp. 1587-1595.

2- Banjo A.D, Lawal O.A, Adeduji, O.O
(2005). Bacteria and fungi isolated from house fly Musca domestica L. larvae. Afr. J. Biotechnol. 4(8): 780-784..

3-Bhainsa CK, D’Souza FS (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. ColloidsSurf B 47:160–164

4-Bhattacharyya A, Bhaumik A, Usha RP, Mandal S, Epidi TT (2010). Nano- particles a recent approach to insect pest control. Afr J Biotechnol 9:3489–3493.

5- Burgess, K A(1997). Identification of Fungi. Manual of Techniques in Insect Pathology(L.Lacey, Ed.), pp. 153-187. Academic Press.1150pp.

6- DipeoluO.O( 1977). Field and laboratory investigation in to the role of the Musca species in The transmission of intestinal parasitic cysts and eggs in Nigeria J. Epidem.microbiol. 21:209 – 214
7-Grubel P, Hoffman JS, Chong FK, Burstein NA, Mepani C,Cave DR.( 1997). Vector potential of houseflies (Musca domestica)for Helicobacter pylori. Journal of Clinical Microbiology; 35(6):1300-1303.

8-Hucko M( 1984). The role of house fly Musca domestica L. in the transmission of Coxiella Burnettii . Folia parasitologica (prata) , 31: 177 – 181 .

9-Ingle AP, Gade AK, Pierrat S, Sconnichsen C, Rai MK (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria.Curr Nanosci 4:141–144.

10-Keller S, Kalsbeek, V, Eilenberg J(1999). Redescription of Entomophthora muscae (Cohn) Fresenius. Sydowia 51, 197–209.

11-Khan HAA, Shad SA, Akram W(2013). Resistance to newchemical insecticides in the Housefly (Musca domestica)from dairies in Punjab, Pakistan. Parasitol Resistance 9:18 . .
12-Li G, He D, Qian Y, Guan B, Gao S, Cui Y, K. Yo-koyama , L. Wang(2012). Fungus Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus, In-ternational Journal of Molecular Sciences, Vol. 13, No. 1, pp. 466-476.

13-Lietze VU, Salem TZ, Prompiboon P, Boucias DG(2010). Tissue tropism of the Musca domestica salivary gland hypertrophy virus. Virus Research; 155:20-27.
14- Mian LS, Maag H, Tacal JV(2002). Isolation of Salmonella from muscoid flies at commercial animal establishment in SanBernardino County, California, Journal of Vector Ecology; 27:82-85.
15- Mukherjee P, Ahmad A, Mandal D (2001). Bioreduction of AuCl4−ions by the fungus, Verticillium sp. and surface trapping of thegold nano- particles formed. Angew Chem Int Ed Engl 40(19):3585–3588.

16-Najitha Banu A, Balasubramanian C, Vinayaga Moorthi P (2014). Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae).Parasitol Res 113:311–316.

17-Najitha Banu A, Balasubramanian C(2014). Biosynthesisof silver nanoparticles using Beauveria thuringiensisag bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae).Parasitol Res 113:311–316.

18- Patil H, Borse, Patil U. K,H. M. Patil(2011). Synthesis of Silver Nanoparticles by Microbial Method and Their Characterization, Archives of Physics Research, Vol. 2, No. 3, pp. 153-158.

19- Perry AS(1958). Factors associated with DDT resistance in theHousefly Musca domestica. Proceedings of 10th International Congress of Entomology; 2:157-172.

20-Rahual P(2013). Effect ofCurcumalonga (Tumeric) onbiochemical aspects ofHousefly Muscadomestica (Diptera: Muscidae). International Journal of Scientific and Research Publicastions; 3(5):1-3.
21- Salunkhe RB, Patil SV, Salunke BK (2011). Larvicidal potential of silver nanoparticles synthesized using fungus, Cochliobolus lunatusagainst Aedes aegypti (Linnaeus, 1762) and Anopheles stephensiListon (Diptera: Culicidae). Parasitol Res 109:823–831.

22-Singh P, Raja B(2011). Biological Synthesis and Char-acterization of Silver Nanoparticles Using the Fungus Trichoderma harzianum,” Asian Journal of Experimental Biology and Science, Vol. 2, No. 4, pp. 600-605.
23-Six DL, Mullens BA(1996). Seasonal prevalence ofEntomophthora muscae and introductionof Entomophthoraschizophorae (Zygomycotina: Entomophthorales) in Muscadomestica (Diptera: Muscidae) populations on California dairies. Biological Control; 6:315-323.

24-Sonal BS, Swapnil C, Gaikwad K, Gade AK, Mahendra R (2013). Rapid synthesis of silver nanoparticles from Fusarium oxysporum byoptimizing physicocultural conditions. Sci World J 1–12.
25-Soni N, Prakash S (2012). Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110(1):175–184.

26-Soni N, Prakash S (2013). Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). AdvNanoparticles 2:125–132.

27-Soni N, Prakash S(2011). Factors Affecting the Geometry of Silver Nanoparticles Synthesis in Chrysosporium tro- picum and Fusarium oxysporum, American Journal of Nanotechnology, Vol. 2, No. 1 , pp. 112-121.
28-Subarani S, Sabhanayakam, C. Kamaraj(2012). Studies on the Impact of Biosynthesized Silver Nanoparticles (AgNPs) in Relation to Malaria and Filariasis Vector Control aga- inst Anopheles stephensi Liston and Culex quinquefas- ciatus Say (Diptera: Culicidae), Parasitology Research, Vol. 112, No. 2, , pp. 487-499.
29-Vahabi K, Mansoori G. A, S. Karimi(2011). Biosynthesis of Silver Nanoparticles by Fungus Trichoderma ressei,” Inscience Journal, Vol. 1, No. 1, pp. 65-79.

30-WHO (2005). Guidelines for laboratory and field testing of mosquito larvicides WHO/CDS/WHOPES/GCDPP/13
Published
2018-01-28
How to Cite
R. Mahmood, H. (2018). Evaluation of silver nanoparticles Biosynthesized by Entomopathogenic fungus Entomophthora muscae against larval instars of housefly Musca domestica. Al-Qadisiyah Journal of Pure Science, 22(3), 274 - 281. Retrieved from https://journalsc.qu.edu.iq/index.php/JOPS/article/view/607
Section
Articles