Effect of *Lawsonia inermis* extract on the pathological changes of skin infection by *Streptococcus pyogens* in lab. Mice

B. M. M. Al-Mehna E. A. H. Kadhum
Coll. of Vet. Med. \\ Univ of Al-Qadisiya

Abstract

In this study, the antibacterial effects of aqueous and alcoholic extracts of *Lawsonia inermis* leaves against *Streptococcus pyogenes* were investigated in vitro by using agar well diffusion method and in vivo using laboratory mice by treating it with prepared ointment from these extracts & compared the effects with Gentamicin. Results showed that both extracts demonstrated antimicrobial activity against the tested organism but the efficiency of the extracts was significantly affected by the solvent used in the extraction as well as the concentration of extract. Alcoholic extracts had the highest antibacterial activity it exhibited an inhibition zone 18.2-28.2 mm in comparison with 26.2 mm for gentamicin. A prepared ointment from alcoholic extract in a concentration 5% was tested for treatment of the experimentally infected skin of mice by *S. pyogenes* using scratching. The recovery period was 11 days in compared with 10 days for gentamicin. Biopsy was taken from the infected area to detect the pathological effects occurred by tested bacteria, also biopsy was again taken after the treatment with the prepared ointment to evaluate the anti-inflammatory, antibacterial and wound healing activity of *Lawsonia inermis*. Histopathological study showed after 3 days from skin infection with *Streptococcus pyogenes* hypremia, swelling, congestion and pus formation also abscessation While in treated animals with henna extracts gross skin lesions disappear after 11 days from infection and on day 10 showed increased well organized bands of collagen, more fibroblasts and few inflammatory cells when compared with the controls which showed inflammatory cells, scanty collagen fibres and fibroblasts.

Introduction

Streptococcus pyogenes is a major human and animal bacterial pathogen that causes a wide range of infections from common and mostly uncomplicated cases of pharyngitis and impetigo, to severe invasive infections (1). In addition to infections of the upper respiratory tract and the skin, also acute rheumatic fever and acute glomerulonephritis. Recently, infection with *S pyogenes* has an important cause of toxic shock syndrome (TSS), as as well as common skin infections include cellulitis, erysipelas, impetigo, folliculitis, and furuncles and carbuncles (2). *S. pyogenes* is susceptible to penicillin but some people and animal develop a serious resistance condition also many strains have developed resistance to macrolides, tetracyclines and clindamycin (3). Failure of treatment with penicillin is generally attributed to other local commensal organisms producing β-lactamase. Certain Experimental studies of infection showed a reduction in the efficacy of penicillin when large numbers of organisms are present (3), moreover this drug has many adverse effects such as nausea, diarrhea, urticaria and superinfection (including candidiasis), and up to 20% of all patients have penicillin allergy (4). Thus medicinal plants extract are used as alternative antibacterial compounds with high activity, low toxicity, cheaper, and more effective and Hena (*Lawsonia inermis*) is one of good example for these plants. Henna or Hina (*Lawsonia inermis*, syn. *L. alba*) is a flowering plant, 2-6m in height. It is the sole species in the genus Lawsonia in the family Lythraceae (5). Henna, produces a burgundy dye molecule, lawsone (6). This molecule has an affinity for bonding with protein, and thus has been used to dye skin, hair, fingernails, leather, silk and wool. The dye molecule, lawsone, is primarily
concentrated in the leaves. In some parts of the world, plants and herbs are still the prime medicines used in medical treatment (7). *L. inermis* is widely grown in various tropical regions in Asia, America and Africa. In Arabic, the word “henna” refers to *L. inermis* (8). Its core chemical components are the main one 2-hydroxynapthoquinone (lawsone) about 0.5-1.5% of henna, mannite, tannic acid, mucilage and gallic acid. The main uses of henna are as a cooling agent, astringent, anti-fungal and anti-bacterial herb for the skin and hair (9). Also it used as an antihemorrhagic, intestinal antineoplastic, cardio-inhibitory, hypotensive, and a sedative. It has been used both internally and locally in jaundice, leprosy, smallpox, and affections of the skin. Henna has exhibited antifertility activity in animals and may induce menstruation. As a cooling agent it is used for burning of skin. It also has great dandruff fighting ability. Alcoholic extract of the leaves showed mild anti-bacterial activity against *Staphylococcus aureus* and *E. coli*. Some experimental and clinical studies have reported antibacterial and antifungal effectiveness and wound healing activity of this product (10). The purpose of this study was to evaluate the antibacterial properties of henna extracts in vitro and the anti-inflammatory and wound healing activity in vivo.

Materials and methods

Plant samples and extraction procedure:

L. inermis were collected from private gardens in Al Diwania City. The leaves were left to dry at room temperature for 24 hours. The dried leaves were ground to a powder and were kept in dry containers. The alcoholic extract was prepared by mixing 50 gm of henna powder with 500 mL of 70% ethanol and mixed by hot plate magnetic storer for 24 hours. Further extraction of the residue was repeated until a clear supernatant liquid was obtained. The extracts were sterilized by 0.22 µm Millipore filter. The solvent was dried and concentrated using vacuum Rotary evaporator at 50°C. The evaporation was done until a solid state of extracted liquid was obtained. Extract from this method was then weighed and stored in closed container at 4°C until further use. Aqueous extract was prepared in the same way except that distilled water was used instead of alcohol. The alcoholic extract was prepared by mixing 50 gm of henna powder with 500 mL of 70% ethanol and mixed by hot plate magnetic storer for 24 hours. Further extraction of the residue was repeated until a clear supernatant liquid was obtained. The extracts were then prepared by mixing 50 gm of henna powder with 500 mL of 70% ethanol and mixed by hot plate magnetic storer for 24 hours. Further extraction of the residue was repeated until a clear supernatant liquid was obtained. The extracts were sterilized by 0.22 µm Millipore filter. The solvent was dried and concentrated using vacuum Rotary evaporator at 50°C. The evaporation was done until a solid state of extracted liquid was obtained. Extract from this method was then weighed and stored in closed container at 4°C until further use. Aqueous extract was prepared in the same way except that distilled water was used instead of alcohol. Then different concentration (25, 50, 75, 100 mg/ml) were prepared from these extracts by dissolving the dry extract in sterile distal water (W/V).

Phytochemical screening:

The phytochemical analysis of the plant were determined for Tannins, glycosides, saponins, alkaloids, coumarins, flavonoids and resins as described in (11,12).

Bacterial suspension:

S. pyogenes was obtained from department of Microbiology in Vet. Med College in Al Qadysia uni. Culturing and biochemical tests were used for identification of bacteria, then kept in slant agar stock (13). Suspension were prepared that contain 1*10^8CFU which used for induce infection at dose 0.1 ml.

In vitro antibacterial assay:

The antibacterial activity of the extracts was determined using the agar well diffusion method (14). The prepared culture media were inoculated with strain of bacteria before poured into plates (1 mL of an overnight culture of bacterial isolate equivalent to 107-108cfu/mL was used to seed culture media maintained at 45°C). Equidistant wells on the surface of the agar were done in the seeded plates. The wells were filled with 0.1mL of each the different extract concentration (25, 50, 75,100mg/ml) as well as the standard antibiotic solution (Gentamycin) and sterile distal water, were added under aseptic conditions. Multiple plates were done for each of the extract (three replications). The plates were then maintained at room temperature for 1h allowing for diffusion of the solution. All plates were then incubated at 37°C for 24 hours and the zones of inhibition were calculated by measuring the diameter of the inhibition zone around the well (in
mm) including the well diameter. The readings were taken in three different fixed directions and the average values were tabulated.

In vivo antibacterial assay:

Animals: White albino Balb\(C\) male mice (20-30 g) were supplied by the animal house at the Vet. Med. College of Al Qadisiya University. The mice were housed in standard metal cages were fed a stock diet. Water was supplied ad libitum. These mice were kept at room temperature 22°C before and during the experiments. 20 mice were divided into 4 equal groups:

G1: five mice infected with Streptococcus pyogenes in dorsal skin as an infected control group.
G2: five mice infected with Streptococcus pyogenes in skin then treated with henna ointment.
G3: five mice infected with Streptococcus pyogenes in skin then treated with vasaline only.
G4: five mice infected with Streptococcus pyogenes in skin then treated with antibiotic (Gentamycin 0.3%) locally.

Skin infection was done after scratching of the dorsal area of skin and contaminated it by cotton swab soaked in bacterial suspension.

Skin samples were taken after 12 days from infection and preserved in 10% of buffered formalin for histopathological study.

Results

The results of the antimicrobial assay of the L.inermis extract indicated that the plant exhibited antimicrobial activity against the tested microorganisms' at all different concentrations but this activity varied according to the type of extract and its concentration.

<table>
<thead>
<tr>
<th>Glycosides</th>
<th>Tannins</th>
<th>Saponins</th>
<th>Coumarins</th>
<th>Resins</th>
<th>Flavonides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henna</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ means presence of active chemical ingredients

1-Results of active chemical ingredients in Henna:
The preliminary Phytochemical screening of L.inermis extract showed the presence of bioactive components like glycoside, tannins, saponins, coumarins, resins and flavonoids (Table 1).

2-Effect of alcoholic and water extracts on growth of bacteria: Result presented in table 2 show that alcoholic extract of L.inermis leaves was more effective than the water extract which had little effects, it exhibited an inhibition zone 18.2, 21.4, 22.8 and 28.2 mm in diameter in the concentration 25, 50, 75 and 100 mg/ml respectively. Moreover the inhibition zone at 100 mg/ml was larger than this produced by antibiotic, and there was a significant differences (P<0.05) between them. Water extract had less antibacterial effect on S.pyogenes than alcoholic extract, the inhibitory zones produced by it 21.2, 20.6, 21.6, 25.2 mm at the 25, 50, 75 and 100 mg/ml respectively, the statistical analysis showed there’s no significant differences between water extract and antibiotic. As illustrated in table 2 the effect of each extract was increased with high concentrations.
Table 2: The antibacterial activity of aqueous and alcoholic extracts of *L. inermis* against the growth of *S. pyogenes*

<table>
<thead>
<tr>
<th>Concentrations Mg/ml</th>
<th>Diameters of inhibition zone of alcoholic extract on bacteria (mm)</th>
<th>Diameters of inhibition zone of water extract on bacteria (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>18.2 ± 1.36</td>
<td>20.2 ± 1.24</td>
</tr>
<tr>
<td>50</td>
<td>21.4 ± 1.5</td>
<td>20.6 ± 1.17</td>
</tr>
<tr>
<td>75</td>
<td>22.8 ± 1.4</td>
<td>21.6 ± 0.93</td>
</tr>
<tr>
<td>100</td>
<td>28.2 ± 1.77</td>
<td>25.2 ± 1.32</td>
</tr>
<tr>
<td>Gentamycin 0.3</td>
<td>26.8 ± 0.37</td>
<td>26.8 ± 0.37</td>
</tr>
<tr>
<td>Distel water</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>L.S.D</td>
<td>5.03</td>
<td>3.13</td>
</tr>
</tbody>
</table>

3-Pathological changes in laboratory animals: Animals of control group showed after 3 days from skin infection with *Streptococcus pyogenes* hypremia, swelling with abscess formation, congestion fig (2). Microscopically lesions showed infiltration of inflammatory cells especially neutrophils, edema and presence of abscessation in subepidermis tissue fig (3). After 10 days of skin infection with bacteria lesions showed highly infiltration with inflammatory cells, ulceration, severe abscess formation, and congestion fig (4). While in treated animals with henna extract, gross skin lesions appear as scar tissue then disappear after 11 days from infection with same time of using antibiotic fig (5). Furthermore microscopically after 5 days in animals treated with extract was showed slight infiltration of inflammatory cells, regeneration of tissue and congestion, compared with control group. On day 10 showed in fig (6) increased well organized bands of collagen, more fibroblasts and few inflammatory cells when compared with the controls which showed inflammatory cells, scanty collagen fibres and fibroblasts.

Fig(1) Showed the effect of henna extracts on growth inhibition of *Streptococcus pyogenes*. 1=distel water , 2=25mg/ml , 3=50mg/ml , 4=75mg/ml , 5=100mg/ml , 6= gentamycin
Fig (2) Animal showed after 3 days from skin infection with *Streptococcus pyogens* swelling, congestion and pus formation.

Fig (3) Histological section in skin of the animal at 3 days post inoculation with *Streptococcus pyogens* showed inflammatory cells infiltration especially neutrophils and subcutaneous abscess with edema, congestion of blood vessel and aggregation of neutrophils in sub cuts (H &E stain: 40X)

Fig (4) Histological section in skin of the animal at 10 days post inoculation with *Streptococcus pyogens* showed highly neutrophils infiltration extend to the layers, ulceration and congestion (H &E stain: 40X)
Fig(5) healing of infected animal with Streptococcus pyogenes after 10 days from treating with henna extracts. Notice the tissue regenerating with presence of scar tissue.

Fig(6) Histological section in skin of the animal at 10 days post treated with henna extract showed slight infiltration of inflammatory cells, regeneration of tissue and congestion and more fibroblasts (H &E stain: 40X).

Discussion

S. pyogenes is the causative agent of many important human and animals diseases ranging from mild superficial skin infections to life-threatening systemic diseases (4). Furthermore the present study showed that henna extracts were capable of inhibiting the growth *S. pyogenes* that are involved in causing wound infections, and this result was accepted with (7). Antibacterial activity is recorded when the zone of inhibition is greater than inhibition zone of antibiotic. In this study alcoholic extract has high activity in inhibition of bacterial growth at concentration 100mg/ml which is near the effect of antibiotic so this result was mentioned in (5). Antimicrobial activity may be due to numerous free hydroxyls that have the capability to combine with the carbohydrates and proteins in the bacterial cell wall.
They may get attached to enzyme sites rendering them inactive (6). Also the Tannins which present in the leaves are astringent that either bind and precipitate or shrink proteins and various other organic compounds including amino acids (15). This study shows that water extract has slight antibacterial activity compared to alcoholic extract. This may be due to the lack of the solvent properties which plays an important role in antibacterial efficacy (9). Also the phytochemical ingredients which found in henna have antibacterial effect, and using of ethyl alcohol in concentration 80% in plants extracts help to obtained substances which solved in water and alcohol. The antipyrrtic, analgesic and anti-inflammatory effect of ethanolic extract of L.inermis was previously reported in rats (16). So many products have been developed for the protection of skin integrity. Topical henna is an extract of the lawsonia plant. Some experimental and clinical studies have reported antibacterial and antifungal effectiveness and wound healing activity of this product (17). Henna is an easily accessible, inexpensive antibacterial product. In the present study we find the antibacterial effect of henna extracts on Streptococcal skin infection. The extract-treated animals showed reduction in the wound area when compared with control. Histological studies of the tissue obtained on day 10 from the extract-treated group showed increased well organized bands of collagen, more fibroblasts and few inflammatory cells when compared with the control which showed inflammatory cells, scanty collagen fibres and fibroblasts. Naphthoquinones are widely distributed in plants, fungi and some animals. Their biological activities have long been reported to include antibacterial effects on several species of both aerobic and anaerobic organisms (18). Furthermore several other biological activities for naphthoquinones have been described such as being anti-inflammatory (19), bactericidal (20). In general they are active against gram positive bacteria such as Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecium and Bacillus subtilis, but are inactive against gram negative bacteria (21). Crude and ethonolic extract of Lawsonia inermis leaves showed dose dependent analgesic, antipyretic and anti-inflammatory effect in rats (16). Also our results showed after 5 days in treated animals there are slight infiltration of inflammatory cells, regeneration of tissue, congestion which investigated with (7), whom mentioned that the effects of water and chloroform extracts of the leaves of henna plant against the primary invaders of burnt wounds, also investigated Inhibition of the growth of such microorganisms suggests that henna may be valuable in the management of burnt wound infections (7). We concluded that henna has an in-vitro and in-vivo antibacterial activity against Streptococcal skin infection. These findings have also been mentioned in literatures (22).
References

14. NCCL. 2000. Antibiotic susceptibility methods. CLSI.

20. Binutu OA, Adesogan KE, Okogun JI. (1996). Antibacterial and antifungal compounds from...
تأثير مستخلص نبات الحناء على التغيرات النسيجية المرضية للإصابة الجلدية بجرثومة Streptococcus pyogenes

باسم ميري المحتة
كلية الطب البيطري / جامعة القادسية

تتضمن الدراسة الحالية تحضير المستخلص المائي و الكحولي لنبات الحناء Lawsonia inermis و دراسة تأثيره التثبيطي على نمو بكتيريا Streptococcus pyogenes في الزجاج (In vitro) باستخدام طرقة الانتشار بحفر الأكاس و في الجسم الحي (In vivo) باستخدام الفئران المختبرية حيث تم علاجها بمرهم محضرة من تلك المستخلصات و مقايرتها تأثيرها بالمضادات الحيوية. بينت النتائج أن كلا المستخلصين يمتلكان تأثيرا مضادا للكثيرا المستخدمة. و إن كفاءة المستخلصات اعتمدت بشكل كبير على نوع المذيب المستخدم في الاستخلاص (ماء أو إثانول) و تركيز المستخلص. أظهر المستخلص الكحولي أعلى فاعلية مثبطة لنمو البكتيريا المستخدمة مقابلة بالمستخلص المائي، إذ أعطى نطاق تثبيط تراوحت أطVAL_YEAR_1_54_28.2 و 18.2 ملم. اختبر المراهم المحتورة من المستخلص الكحولي لنبات الحناء بتثبيط بـ 5% في معالجة الفئران بعد إصابتها ببكتيريا Streptococcus pyogenes. أظهرت تأثير مستخلص النباتات نمو البكتيريا بعد مرور 11 يوما من العلاج، وهي مدة قريبة على المدة التي حدث فيها الشفاء المكتمل للجذور الملغومة بالتغييرات المرضية (10 أيام). أما بالنسبة للاستخلاص المائي، فقد تأثرت تأثير مستخلص النباتات و نمو البكتيريا بعد مرور 11 يوما من العلاج، وهي مدة قريبة على المدة التي حدث فيها الشفاء المكتمل للجذور الملغومة بالتغييرات المرضية.

الخلاصة

تعرضت الحيوانات إلى ارتفاع في كثافة الدم، و تورم، و تهيج، و تكوين الجروح، و وجود الخراج في حين أن الحيوانات المعالجة بمراهم الحناء فقد اختلفت فيها الأفات المرضية والالتهابية بعد 11 يوم من العلاج، كما لوحظت زيادة واضحة في خيوط الكولاجين مع زيادة في أعداد الأرومات فيdisconnect the last sentence.