Isolation and Identification of *Staphylococcus* spp. from Bovine Mastitic milk and their Sensitivity to some Antibiotics at Al-Qadissiya Province.

M. I. Shekhan, M. A. Al-Rodhan, J..K.AL-Janabi
Coll. of Vet. Med./ Univ of Al-Qadissiya
Maternity and Children Teaching Hospital Al-Qadissiya

Abstract

This study was designed to detect the Staphylococcal bovine mastitis in Al-Qadissiyya province and then identify the most effective antibiotic that could be used for inhibit the growth of isolated microorganism invitro. Milk samples have been collected from 120 different cows at Al-Hamza, AL- Shenafia, Nufar, Sumar, AL- Saniah, Al- Sedeer and Afak the results showed different bacterial isolates identified in the present study as: *S.aureus*, *S.intermedius*, *S. hyicus*, *S. epidemidis*, *S. chromogenes*, *S. cohnii*, *S. hominis*, *S. xylosus*, *S.sciuri*, *S. simulans*, *S.saprophyticus* in a percentage (15.74%, 6.481%, 8.333%, 7.87%, 3.703%, 4.166%, 6.481%, 5.092%, 4.629%, 6.018%, 0.462%) respectively. The sensitivity test results showed that *S.aureus* was more sensitive to Ciprofloxacin in a percentage (91.17%), CNS (Coagulase Negative *Staphylococci*) was more sensitive to Oxytetracycline 83.25%.

Introduction

“Mastitis” is “inflammation of mammary gland tissue”. Inflammation of the bovine udder is usually caused by infection, mostly by bacteria, Intramammary infections can be accompanied by visible changes of milk, such as clotting and discoloration, and clinical signs of animal such as swelling and discoloration of the udder, fever, anorexia and even death. When signs are discernible with the naked eye, infection has caused clinical mastitis. Laboratory techniques such as measurement of somatic cell count (SCC) and bacteriological culture are needed to detect inflammation and infection. Mastitis is a major concern to dairy producers and the food industry around the world for reasons of farm profitability, food quality and animal and public health. (1).Diagnosis of subclinical forms may be more difficult but is an important part of any herd survey to establish the disease incidence. in addition to bacterial culture of milk, several indirect tests are employed to ensure the presence of inflammatory exudates and cells in infected milk, such as California mastitis test (CMT) (2). This disease can have an infectious or noninfectious etiology, and the infectious pathogen is the most important ones that frequently due to infection by one and/or the other pathogens, such as bacteria, viruses, Mycoplasma, yeasts and algae (3). Fortunately the vast majority of mastitis is of bacterial origin and just a few of species of bacteria account for most cases, such as, *S. aureus*, *E. coli Str.uberis*, *Str. dysgalactiae* and *Str. agalactiae* (4).

Material & Methods

Samples collection:

One hundred and twenty cows were examined, milk samples which positive to mastitis according to result of CMT and other from clinical mastitic cows were collected from cows in Al-Qadissiya province as follow: AL- Hamza, AL- Shenafia, Nufar, Sumer, AL- Saniah, Al- Sedeer, and Afak. Milk samples were collected in sterile tubes (2 tubes) for each sample (one for CMT and another for bacteriological test) and aseptic technique used for milk samples collection according to (8).

Bacterial culture and identification:

All milk samples from clinical mastitis and subclinical mastitis which gave a positive reaction with California Mastitis Test (Al-Syria for veterinary preparation, Syria) were submitted to centrifugation at 3000
rpm / 15 minute, and the precipitate was cultured on Blood Agar, Nutrient Agar and MacConky Agar, all the Petri plate that contain this agars were incubated at 37 C° for 24 - 48hrs (6). Diagnosis depend on morphological character & cultural character (9), then followed by examination with gram stain, after that the colonies were subcultured on selective and differential media according to the type of isolated bacteria then incubated at 37 C° for 24 – 48 hrs. The biochemical test used for diagnosis of staphylococcus spp. were include: • Catalase Test, Oxidase test, Coagulase Test, Urease Test, Hamolysis on blood agar, Gelatin Liquefaction Test (Gelatinate), Voges – Proskauer Test, Nitrate reduction Test, Sugar Fermentation Test (Mannitol, Lactose, Mannose, Xylose, Trehalose, Sucrose, Maltose) according to the method of (7,8,9). Production of pigment in Mannitol salt agar and in (Staph 110 media) (LAB –

Results and discussion

The result showed in *Staphylococcus aureus* was the most isolated bacteria in percentage 15.74% in (table 1) may Due to its contagious nature it has become a major udder pathogen in many parts of the world. It may cause both clinical and sub-clinical mastitis (11), the higher percentage of *S. aureus* isolates in this study was agree with a results of (12). The result of CNS in this study include *S.intermedius*, *S. hyicus*, *S. epidemidis*, *S. chromogenes*, *S.cohnii*, *S. hominis*, *S. xylosus*, *S.sciuri*, *S. simulans*, *S.saprophyticus* in a percentage of (6.481%, 8.333%, 7.87%, 3.703%, 4.166%, 6.481%, 5.092%, 4.629%, 6.018%, 0.462%) respectively (table 1). The results of (*S. hyicus*, *S. epidermidis*, *S. hominis*, *S. sciuri*) in this study was in agreement to the result of (13) who isolates these bacteria from bovine mastitis in a percentage (6.06%, 9.1%, 6.06%, 3.03%) (14) was agree with our result for *S.cohnii* in a percentage 5%. (15) was isolated *S. chromogenes* in a percentage 2.152% which was closed with our result. The result of *S. simulans* was closed to the result of (16) with a percentage 4.245%. The result of *S.xylosus* in this study was closed to the result of (17) who isolated this bacteria in percentage 3.66%-.(18) was closed to our result of *S.saprophyticus* in a percentage (0.68% ,0.3%) respectively. (19) was closed with our result for *S.intermedius* in a percentage 13.9%. (20) disagree with a result of *S.hyicus*, *S.epidermidis*, *S.cohnii*, *S.hominis* in a percentage (16.5%, 1.9%, 0.3%, 1.9%) respectively. (21) disagree with our result for *S.saprophyticus*, *S.simulans* in a percentage (8.176%, 1.886%) respectively. (22) also disagree with our result of *S.saprophyticus* in a percentage 10.1%. Among studies isolation of, *S. chromogenes*, *S. epidermidis*, *S. hyicus*, and *S. simulans*, seem to be the most common CNS isolated from intra-mammary infections in spite of some variation between herds, countries, and methods used (23). Bovine CNS have traditionally been considered as skin flora opportunists (24). CNS have also been isolated from the cows’ environment (25). *S. chromogenes* was frequently isolated from the teat skin,

Sensitivity test:

The sensitivity was done according to the procedure of (10) and the following antibiotic were used (Streptomycin 10mcg, Erythromycin 15mcg, Sulphamethaxazole – Trimethoprim 25mcg (1.25/23.75mcg), Ampicillin 10mcg, Gentamicin 10mcg, Ciprofloxacin 5mcg, Tetracycline 30mcg, Oxytetracycline 30 mcg, Amoxicillin / Clavulanic cid 30 mcg (20 mcg / 10mcg) Bioanalyse®, Germany). The diameter of the inhibition zone of each antibiotic disc (mm) (the clear area that surround the antibiotic disc including diameter of the disc itself which is free of the bacterial growth) by using of calibrated ruler and then compared the result with standard diameter of the inhibition zone of the antibiotic as mention in National Committee for Clinical Laboratory Standard (NCCLS).
and teat canal, but also from extra-
mammary sites like nares, hair coat and
vagina in heifers (26). According to (27) S.
cohnii, S. saprophyticus, S. sciuri, and S.
xylosus, were the most common in the
cows' environment (e.g. alfalfa hay, straw
and bedding). The variations in the
percentage of infection ratio of different
CNS may be due to geographical areas and
climatic differences. The results of present
study showed that there were differences in
the percentage of bacterial isolates
between villages and township of Al-
Qadissiyaprovinsce, these differences
could be explain may be due to variation in
geographical areas and climatic condition,
according to the differences in temperature
, humidity, environment and nature of
society (28) (table 2, 3). The result of this
study for sensitivity test showed that the
S. aureus was more sensitive to
Ciprofloxacin, Erythromycin,
Oxytetracycline, Amoxicillin/ Clavulanic
acid followed by Sulphamethaxazole/
Trimethoprim then Gentamicin (91.17%,
88.23% , 82.35% , 79.41%, 73.52%
,70.58%) respectively and less sensitive to
Streptomycin 58.82% and the lower
sensitivity to Ampicillin 32.35% these
result was closed to the results of (29)
who found that S. aureus was more resistance to Ampicillin and 80% sensitive
to Gentamicin. The resistance of bacteria to
Ampicillin may caused by random using of
this antibiotic (30). The results of
sensitivity of Gentamicin was closed to the
results of (31; 32) while disagree with
them in the sensitivity of Ampicillin.(33)
was closed with our results of
Ciprofloxacin, Gentamicin, Tetracycline,
Sulphamethaxazole/ Trimethoprim
sensitivity with a percentage of (100%
, 76.88%, 71.19% , 72.26%) respectively
while disagree with sensitivity of
Ampicillin in a percentage 0%. It has been
found that amoxicillin with clavulanic acid
are the very efficient in inhibiting the
growth of Staph. aureus (34) which was
very closed to our results he also reported
that 75% of the Staph. aureus strains were
resistant to tetracycline and 6.2% of the
isolated strains were susceptible which was
disagree with our results, while (29)
mentioned that 58.33% of isolates
susceptible to tetracycline which was
closed to our result. (35) found that Staph.
aureus was resistent to Streptomycin in a
percentage 42.9% which was very closed
to our results. (20) was found that Staph.
aureus sensitive to Erythromycin in
percentage 74.4% which closed to our
results. (36) found the sensitivity of Staph.
aureus to Sulphamethaxazole /
Trimethoprim was 74.7% which was very
closed to our result. (14) closed with our
result in Ciprofloxacin with a percentage
100% while disagree with our result for
Oxytetracycline in a percentage 60%
while the result of Oxytetracycline closed
with (30) in 2nd station in a percentage
83.33%.(34) was closed with our result of
sensitivity of CNS for Amoxicillin/
Clavulanic acid with a percentage 75%.
(20) found that the percentage of
sensitivity of CNS for Ampicillin,
Streptomycin, Tetracycline was (58.2%
, 62.7% , 76.1%) respectively which was
closed to our results while disagree with
our results of Erythromycin 51.4%. (14)
closed to our result of (Ciprofloxacin,
Oxytetracycline,Erythromycin,Sulphameth
axazole/Trimethoprim) in a percentage
(80% , 90% , 70% , 73%) respectively
also(37) closed to our result of
(Oxytetracycline, Erythromycin,
Sulphamethaxazole / Trimethoprim,
Amoxicillin/ Clavulanic acid
, Tetracycline) in a percentage (77.61%
, 71.64% , 65.67% , 80.6% , 71.64%)
respectively while disagree with
Gentamicin in a percentage 100% in table
(4). Resistance to antibiotic mediated most
commonly by the production of enzymes
that modified the drug e.g β- Lactamases
Hydrolyse Penicillin other mechanism
include decrease the passage in to or
increase the efflux of drug from the
bacterial cell , modification of the target
site so that the antimicrobial bound less
effective and by passing of inhibited
metabolic pathways as resistance to
trimethoprim in many bacteria (38).
Table (1): percentage of bacterial isolates

<table>
<thead>
<tr>
<th>Bacterial isolates</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>15.740 %</td>
</tr>
<tr>
<td>S. intermedius</td>
<td>6.481 %</td>
</tr>
<tr>
<td>S. hyicus</td>
<td>8.333 %</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>7.870 %</td>
</tr>
<tr>
<td>S. chromogenes</td>
<td>3.703 %</td>
</tr>
<tr>
<td>S. cohnii</td>
<td>4.166 %</td>
</tr>
<tr>
<td>S. hominis</td>
<td>6.481 %</td>
</tr>
<tr>
<td>S. xylosus</td>
<td>5.092 %</td>
</tr>
<tr>
<td>S. sciuri</td>
<td>4.629 %</td>
</tr>
<tr>
<td>S. simulans</td>
<td>6.018 %</td>
</tr>
<tr>
<td>S. saprophyticus</td>
<td>0.462 %</td>
</tr>
</tbody>
</table>
Table (2): Distribution of the *Staphylococcus* spp. according to regions

<table>
<thead>
<tr>
<th>Region</th>
<th>S. aureus</th>
<th>S. intermedius</th>
<th>S. hyicus</th>
<th>S. epidermidis</th>
<th>S. chromogenes</th>
<th>S. cohnii</th>
<th>S. hominis</th>
<th>S. xylosus</th>
<th>S. sciuri</th>
<th>S. simulans</th>
<th>S. Sapro.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL- Hamza</td>
<td>26.470%</td>
<td>5.882%</td>
<td>2.941%</td>
<td>8.823%</td>
<td>2.941%</td>
<td>5.882%</td>
<td>2.941%</td>
<td>0</td>
<td>5.882%</td>
<td>5.882%</td>
<td>0</td>
</tr>
<tr>
<td>AL- Shenafia</td>
<td>12%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>0</td>
<td>4%</td>
<td>12%</td>
<td>12%</td>
<td>4%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Nufar</td>
<td>14.814%</td>
<td>11.111%</td>
<td>11.111%</td>
<td>3.703%</td>
<td>11.111%</td>
<td>11.111%</td>
<td>0</td>
<td>0</td>
<td>7.407%</td>
<td>7.407%</td>
<td>0</td>
</tr>
<tr>
<td>Sumer</td>
<td>9.090%</td>
<td>0</td>
<td>9.090%</td>
<td>9.090%</td>
<td>0</td>
<td>0</td>
<td>9.090%</td>
<td>0</td>
<td>9.090%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AL- Saniah</td>
<td>10.416%</td>
<td>4.166%</td>
<td>22.916%</td>
<td>12.5%</td>
<td>2.083%</td>
<td>0</td>
<td>8.333%</td>
<td>4.166%</td>
<td>4.166%</td>
<td>4.166%</td>
<td>0</td>
</tr>
<tr>
<td>Al- Sedeer</td>
<td>25.0%</td>
<td>7.142%</td>
<td>0</td>
<td>3.571%</td>
<td>3.571%</td>
<td>0</td>
<td>7.142%</td>
<td>7.142%</td>
<td>3.571%</td>
<td>14.285%</td>
<td>0</td>
</tr>
<tr>
<td>Afak</td>
<td>11.627%</td>
<td>9.302%</td>
<td>2.325%</td>
<td>9.302%</td>
<td>4.651%</td>
<td>6.976%</td>
<td>6.976%</td>
<td>9.302%</td>
<td>4.651%</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table (3): Sensitivity of Staphylococcus Spp. Isolates to Antibiotic

<table>
<thead>
<tr>
<th>AB</th>
<th>S.aureus</th>
<th>CNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>23.35</td>
<td>56.41</td>
</tr>
<tr>
<td>S</td>
<td>58.82</td>
<td>62.81</td>
</tr>
<tr>
<td>CIP</td>
<td>91.17</td>
<td>74.41</td>
</tr>
<tr>
<td>CN</td>
<td>70.58</td>
<td>73.64</td>
</tr>
<tr>
<td>AMC</td>
<td>79.41</td>
<td>70.58</td>
</tr>
<tr>
<td>T</td>
<td>67.64</td>
<td>69.67</td>
</tr>
<tr>
<td>OT</td>
<td>82.35</td>
<td>83.25</td>
</tr>
<tr>
<td>E</td>
<td>88.23</td>
<td>71.93</td>
</tr>
<tr>
<td>SXT</td>
<td>73.52</td>
<td>63.16</td>
</tr>
</tbody>
</table>

AM = Ampicillin , S = Streptomycin , CIP = Ciprofloxacin CN = Gentamicin , , AMC = Amoxicillin/ Clavulanic acidT =Tetracycline, OT = Oxytetracycline, E =Erythromycin , SXT = Sulphamethaxazole/Trimeprime

References

العزل والتشخيص المخبري لجراثيم المكورات العنقودية المسببة للالتهاب الضرع البقري وحساسيتها لبعض المضادات الحيوية في محافظة القادسية

مسار إبراهيم شيخان
محسن عبد نعمة الروضان
جواد كاظم الجنابي
كلية الطب البطري / جامعة القادسية
مستشفى الولادة والاطفال التعلمي / القادسية

الخلاصة

 سممت هذه الدراسة للكشف عن التهاب الضرع البقري المشتبه به في محافظة القادسية، والكشف عن المضادات الحيوية الأكثر فعالية في تثبيط نمو هذه الجراثيم المختبرياً. جمعت عينات الحليب من 120 من بقرة من مناطق مختلفة من المحافظة (الحمزة، الشنافشة، نفر، سومر، السنطة، السدر، عفك)، والنتائج بّنت عزل وتشخيص: المكورات العنقودية الذهبية، المكورات العنقودية البكتيريا، المكورات العنقودية الهيمفيكسي، المكورات العنقودية كروموجينس، المكورات العنقودية كوهن، المكورات العنقودية زاوليس، المكورات العنقودية سابروفاكتس وبنسبة (8.51%)، 1.1.0%، 0.6018%، 5.092%، 0.4681%، 4.166%، 6.488%، 0.573%، 3.25%، 15.74%، 6.483%، 7.87%، 9.37%، 3.07%. النتائج علّقت على باقي المحلول. إن نتائج خصوصية الحساسية للناضجات الحيوية التي أجريت مختبرياً أظهرت أن المكورات العنقودية الذهبية كانت أكثر حساسية للسيبروفلوكساسين بنسبة (91.17%) أما المكورات العنقودية السالبة لاستخدام التحلق كانت أكثر حساسية لللاوكسيتراسايكلين بنسبة (83.25%).