Adrenergic Receptor Antagonist (Blockers)

α-Blockers

Because α-agonists cause vasoconstriction and raise blood pressure, α-blockers should be therapeutically used as antihypertensive agents. Unlike the β-blockers, which bear clear structural similarities to the adrenergic agonists NE and E, the α-blockers consist of several compounds of diverse chemical structure that have little resemblance to the α-agonists.

Nonselective α - Blockers

Tolazoline and phentolamine

They are imidazolines. The structure of tolazoline is similar to the imidazoline α1-agonists, but does not have the lipophilic substituents required for agonist activity. The type of group attached to the imidazoline ring thus dictates whether an imidazoline is an agonist or a blocker.

Tolazoline is used in persistent pulmonary hypertension of the newborn when supportive measures are not successful.

Irreversible α – Blockers

The produce prolonged adrenergic blockade by long-lasting, irreversible α-receptor blockade.

The initial step involves the formation of an intermediate aziridinium ion. The positively charged aziridinium ion electrophile then reacts with a
nucleophilic group on the α-receptor resulting in the formation of a covalent bond between the drug and the receptor.

Unfortunately, these nonselective drugs alkylate not only α-receptors but also other biomolecules, leading to their toxicity.

The onset of action is slow, but the effects of a single dose of drug may last 3 to 4 days, because new receptors must be made to replace those that have been inhibited irreversibly.

Selective α_1- Blockers

Prazosin, Alfuzosin, terazosin, Tamsulosin and doxazosin

Structurally, these agents consist of three components: the quinazoline ring, the piperazine ring, and the acyl moiety.
• The 4-amino group on the quinazoline ring is very important for α_1-receptor affinity.

• The piperazine moiety attached to the quinazoline ring can be replaced with other heterocyclic moieties (e.g., piperidine moiety) without loss of affinity.

• The nature of the acyl group has a significant effect on the pharmacokinetic properties.

Clinically they are used as **antihypertensive** and for **BPH**.

![Quinazoline ring diagram](image)

Selective α_2-Blockers

The isomeric alkaloids which are known as the yohimbanes exhibit different degrees of selectivity toward the α_1- and α_2-receptors, depending on their
stereochemistry. For example, yohimbine is a selective α_2-blocker, whereas corynanthine is a selective α_1-blocker.

\[\text{Yohimbine}\]

\[\text{Corynanthine}\]

β-Blockers

Structure–Activity Relationships

β-Blockers are among the most widely employed antihypertensives and are also considered the first-line treatment for glaucoma.

1. Most of β-blockers are in the chemical class of aryloxypropanolamines.
2. The aryl group also affects the absorption, excretion, and metabolism of the β-blockers.
3. One common structural feature of many cardioselective β-blockers (β_1-blockers) is the presence of a para-substituent of sufficient size on the aromatic ring along with the absence of meta-substituents.
4- Like β-agonists, β-directing tert-butyl and isopropyl groups, are normally found on the amino function of the aryloxypropanolamine β-blockers. It must be a secondary amine for optimal activity.

5- The β-OH-substituted carbon must be in the S absolute configuration for maximal β-blocking activity.

Nonselective β. Blockers (First Generation)

Because they exhibit no selectivity for β_1-receptors, they are contraindicated in the presence of conditions such as asthma and bronchitis.

β_1-Selective Blockers (Second Generation)

Cardioselective β_1-blockers are drugs that have a greater affinity for the β_1-receptors of the heart than for β_2-receptors in other tissues. Such cardioselective agents should provide two important therapeutic advantages.

The first advantage should be the lack of a blocking effect on the β_2-receptors in the bronchi. Theoretically, this would make β_1-blockers safe for use in patients who have bronchitis or bronchial asthma.

The second advantage should be the absence of blockade of the vascular β_2-receptors. This would be expected to reduce or eliminate the increase in peripheral resistance that sometimes occurs after the administration of nonselective β-blockers.
Unfortunately, cardioselectivity is usually observed with β_1-blockers at only relatively low doses. At normal therapeutic doses, much of the selectivity is lost.

All of these agents except esmolol are indicated for the treatment of hypertension.

Atenolol and metoprolol are also approved for use in treating angina pectoris and in therapy following myocardial infarction. Betaxolol is the only β_1-selective blocker indicated for the treatment of glaucoma. Only acebutolol possesses ISA.

![Atenolol](image)

β- Blockers With α_1-Antagonist Activity (Third Generation)

Labetalol

A phenylethanolamine derivative, is representative of a class of drugs that act as competitive blockers at α_1-, β_1-, and β_2-receptors. It is a more potent α-blocker than β-blocker. It is used clinically in treating hypertension.

The rationale for its use in the management of hypertension is that its α-receptor–blocking effects produce vasodilation and its β-receptor–blocking effects prevent the reflex tachycardia usually associated with vasodilation.

Carvedilol
It is a β-blocker that possesses α₁-blocking activity. Only the (S) enantiomer possesses the β-blocking activity, although both enantiomers are blockers of the α₁-receptor. Its β-blocking activity is more than its α-blocking activity. It is used in treating hypertension and congestive heart failure.
Carteolol: antihypertensive & antiglaucoma

Bunolol
Levocabunolol, S(-) isomer of bunolol antiglaucoma

Metipranolol: antiglaucoma

Nadolol: antihypertensive

Penbutolol: antihypertensive

Pindolol: antihypertensive

Sotalol: antiarrhythmias & only phenylethylamine

Timolol: antihypertensive & antiglaucoma

Figure 16.15 Nonselective β-blockers.
Acebutolol: antihypertensive

Atenolol: antihypertensive

Betaxolol: antihypertensive & antiglaucoma

Bisoprolol: antihypertensive

Esmolol: short-acting antihypertensive

Metoprolol: antihypertensive

Figure 16.16 • β₁-Selective blockers.