Rapid detection of infectious bronchitis virus in broilers in Al-Diwaniya governorate by using Real-Time reverse transcriptase Polymerase Chain Reaction

Abbas Hadi Jasim Al-Mahmoudi Nafea S. Jasim
Coll. of Vet. Med. / Univ. of Al-Qadisiya
email: hadiabbas938@yahoo.com
(Received 2 April 2014, Accepted 5 May 2014)

Abstract

Infectious Bronchitis (IB) is currently one of the most important viral diseases in poultry flocks all over the world caused by infectious bronchitis virus (IBV), and it causes huge economic losses in poultry industry. Infectious bronchitis virus has many serotypes that do not confer cross protection against each other. This study was conducted to detect Infectious bronchitis virus in broilers chicken farms in Diwaniya governorate. Tracheal swab from 30 infected chicken flocks located in different areas of Diwaniya governorate were collected to make Rapid immunochromatography test for IBV by using Anigen Rapid IBV Antigen Test Kit and tissue samples were collected from flocks which showed positive for rapid test to make rRT-PCR. Twenty eight (93.33%) flocks were positive for IBV by rapid immunochromatography test. The molecular detection of IBV showed that all flocks (100%) were positive for IBV. In conclusion the IBV was the most important cause of respiratory diseases in this study. The real-Time RT-PCR was found very efficient and rapid in detection of IBV in infected chickens.

Key words: Infectious bronchitis virus, broilers, Real-Time RT-PCR.

الخلاصة

يعد التهاب القصباث الوعدي (IB) حاليا واحدا من الأمراض الفيروسية الأكثر أهمية في قطعى الدواجن في جميع أنحاء العالم، يتسبب عن فيروس التهاب القصباث المعدي (IBV) ، وسبب خسائر اقتصادية هائلة في صناعة النواحي ، لأن فيروس التهاب القصباث الوعدي يملك العديد من الأنواع المختلفة، ولا يمكنك الحماية الكاملة ضد بعضها البعض، وقد أجريت هذه الدراسة للكشف عن فايروس التهاب القصباث الوعدي في فروج اللحم في مدينة ديونيا. وقد تم جمع (30) مسحة من القصباث المعدي لقياس الدجاج المصابة لحقل تقع في مناطق مختلفة من محافظة ديونيا. وقد تم فحصهم عن طريق الترجيل المقايي للتعزيز التجريبي عن التهاب القصباث المعدي وذلك باستخدام عدة اختبار منتصب فيروس القصباث المعدي وجرعتها أنواع以上的 من القصباث المعدي التي أظهرت نتيجة ايجابية للاختيار السريع، وذلك لعمل اختبار تفاعل سلسلة البلورة المعكة ذي الوقت الحقيقي، وقد تم استخلاص الحمض النووي الرأيب من عينات الأنسجة، وأظهرت 28 (33.33)٪ من القصباث نتيجة موجبة لمرض القصباث المعدي بواسطة لمح التهاب القصباث المعدي، في حين أظهر التهاب القصباث المعدي، 72 (100٪) كانت موجبة لمرض التهاب القصباث المعدي، يجب أن من الدراسات أن مرض التهاب القصباث المعدي من أهم أمراض الجهاز التنفسي في الطيور، وأن اختبار تفاعل سلسلة البلورة المعكة ذي الوقت الحقيقي. يعد فحصا كفاءة وسريعا في الكلمات المفتاحية: التهاب القصباث المعدي ، فروج اللحم، تفاعل سلسلة البلورة المعكة ذي الوقت الحقيقي.
Introduction
Infectious Bronchitis disease (IB) is an acute, highly contagious upper respiratory disease of chickens caused by infectious bronchitis virus (IBV) belongs to group III of the genus coronavirus of the coronaviridae family. IB affects chickens of all ages, causing respiratory, reproductive and renal diseases (1). The IBV is an envelope, non-segmented, single stranded and have positive-sense RNA; the RNA is the largest of all groups of RNA virus, approximately (27.7 kb) in length (2). The virus causes significant economic losses throughout the world and is able to spread very rapidly (3). Vaccination is only partially successful due to continual emergence of antigenic variants and requires the application of multiple vaccines at many sites due to the simultaneous presence of multiple antigenic types with less cross protection between them (4). Virus isolation is a sensitive technique but can be laborious, time consuming (5). Reverse transcriptase quantitative real-time PCR has high sensitivity and ability to quantify IBV in sample and highly specific and fast assay that provide rapid detection and less labor intensives as compare to other conventional methods used for laboratory diagnoses such as virus isolation (6).

Materials and methods
Samples were collected from 30 infected broiler flocks which suffered from severe respiratory signs with high mortality, signs were gasping, ocular and nasal discharge, grossly there were severe congestion of trachea, cast plug in the bifurcation of the trachea, affected kidneys were swollen and pale and urate deposit observed in the kidney tissues and in the ureter. Tracheal swabs were collected from 5 chickens per flocks by using sterile cotton swab for rapid test to IBV. Tissue samples of trachea, lung, kidney and cecal tonsils were collected in sterile plastic test tubes and stored in deep freeze at (-42°C) in Najaf veterinary hospital until used for PCR.

Immunochromatography assay
Anigen Rapid IBV Antigen Test Kit (BIONOTE, Incorporation, Korea) Who contains: rapid IBV antigen test devices, sample collection tubes containing 1ml of assay diluents, sample collection swabs and disposable droppers. Tracheal swab was used by inserting the swab inside the trachea several times then insert the swab into the sample collection tube containing assay diluents. Then mixing until the sample has been dissolved in the assay diluents, and the tube was left until the large particles have settled down in the bottom of the tube. Then four drops of supernatant were taken by disposable dropper and added to the sample hole on the test device. As the test begins to work, the purple color was observed moving across the result window in the center of the test device and the test results were read at 10 minutes.

Reverse transcription real time PCR
preparation of tissue samples: after thawing the samples, 100 mg of tissue was put in sterile mortar and started grinding by pestle with 1ml of phosphate buffer saline (PBS) to obtain homogenous suspension (10%). After that the suspension was transferred into an eppendorf tube and centrifuged at (1200 rpm) in cooling centrifuge at (5°C) for (15 min.). Then the supernatant fluid was collected then filtered in (0.22µm) mile pore filter, after that stored in deep freeze at (-70 ºC) in the central laboratory of the general state of veterinary services in Baghdad until used.

RNA extraction
The viral RNA was extracted from tissue samples by using (RNase Mini kit, QIAGEN, USA) according to manufacturer's instructions. IBV was detected using one step Real-Time PCR kit (IBV Real-Time detection kit, QIAGEN, USA).

Master mix
Real- Time PCR master mix was prepared by Real-Time PCR Detection Kit (Gen-Kam, Germany) which composed from three reagents (A,B and Y) and control positive (D1), control negative (D2). Then all these reagents were mixed together on vortex with total volume 18 µl for each well of 96 PCR microtiter plate, then 2 µl of control positive, control negative and sample were added. The amplification was carried out in Applied Bio system 7300 Real-Time PCR device thermal
cycler (USA). For cycling conditions: reverse transcription for synthesis of cDNA was performed at (42 °C) for (60) minute, followed by (70 °C) for (10) minute to inactivate RT-enzyme and activate the taq polymerase. Then followed by extension at (95 °C) for (15 second) and final extension at (60 °C) for (1 minute), 40 cycles.

Results
Clinical signs
The result of clinical examination showed that there were rales, sneezing, gasping during breathing, coughing, ocular and nasal discharge, sometimes accompanied by lacrimation, conjunctivitis and facial swelling, loss of appetite, weakness, depression, and ruffled feather, Figure (1).

Gross lesions
The results of gross lesions examination showed that there was tracheal congestion; exudates in trachea and sometime there were hemorrhage, cast plug in the bifurcation of the trachea figure (2), caseated pus in the lungs, air sacculitis, hemorrhages of cecal tonsils and nephritis.

Results of rapid immunochromatographic assay
The results of rapid immunochromatographic assay showed that out of 30 flocks were 28(93.33%) positive for IB.

Results of Real-Time PCR
The results of Real-Time PCR showed that out of 30 flocks were all (100%) positive for IBV. Table (1), figure (3).

Discussion
Infectious bronchitis is a highly contagious viral disease in chicken with significant economic losses throughout the world and is able to spread very rapidly in non-protected birds (3). The result of clinical examination showed that there were rales,
sneezing, gasping during breathing, coughing, ocular and nasal discharge, sometimes accompanied by lacrimation, conjunctivitis and facial swelling, loss of appetite, weakness, depression, and ruffled feather. These results are companionable with (7) who found that sneezing, coughing and dyspnea was characteristic clinical signs of infectious bronchitis and avian influenza (H9 subtype). While (8) who found tracheal rales, coughing, poor weight gain, and reduced feed efficiency in broilers and a decline in egg production in layers were important clinical signs for IBV. Whereas (9), (10) recorded gasping, sneezing, tracheal rales, and nasal discharge. While (11) reported that inoculated birds with IBV experimentally showed severe conjunctivitis, associated with abundant lacrimation, edema, and cellulitis of the periorbital tissues at 48 hours following challenge with IBV. The results of gross lesions examination showed that there were tracheal congestion, exudates in trachea and sometime there were hemorrhage, cast plug in the bifurcation of the trachea, airsacculitis, hemorrhages of cecal tonsils and nephritis. This result is agreement with (12) who found post-mortem lesions of dead birds revealed increased trachea mucus, severe renal congestion, urates filled ureters as well as congestion in liver and spleen in the infection with nephropathogenic strain of avian infectious bronchitis virus. While (7) found tracheal congestion, Lung hyperemia, air sacculitis and swollen kidney, tubular cast formation in tracheal bifurcation were observed in all dead birds, these casts extended to the lower bronchi. The results of rapid immunochromatographic assay showed that out of 30 flocks were 28(93.33%) positive for IB. The test is characterized by rapidity which can be done in the field, cheap test as compared with other tests and also consider one of most screening test which gave picture about of the presence of viral antigen (13). The results of Real-Time PCR showed that out of 30 flocks were all (100%) positive for IBV. In molecular technique survey of IBV in Iran by RT-PCR and type specific nested PCR, the viral RNA was detected in 42.8% of broiler flocks from different regions of Iran (14). This result were less than our results of IBV percentage by RT-PCR and this may due to the differences in vaccination program and application of other control measures and correction of management in addition to the geographical distribution and climatic factors.

References

