
Java 9
Recipes

A Problem-Solution Approach
—
Third Edition
—
Josh Juneau

Java 9 Recipes
A Problem-Solution Approach

Third Edition

Josh Juneau

Java 9 Recipes: A Problem-Solution Approach

Josh Juneau
Hinckley, Illinois, USA

ISBN-13 (pbk): 978-1-4842-1975-1 ISBN-13 (electronic): 978-1-4842-1976-8
DOI 10.1007/978-1-4842-1976-8

Library of Congress Control Number: 2017943502

Copyright © 2017 by Josh Juneau

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Vinay Kumar
Coordinating Editor: Jill Balzano
Copy Editor: Brendan Frost
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484219751. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484219751
http://www.apress.com/source-code

This book is dedicated to my wife and children.

v

Contents at a Glance

About the Author �� xliii

About the Technical Reviewer ��xlv

Acknowledgments ��xlvii

Introduction ���xlix

 ■Chapter 1: Getting Started with Java 9 ��� 1

 ■Chapter 2: Java 9 Enhancements �� 35

 ■Chapter 3: Strings�� 47

 ■Chapter 4: Numbers and Dates �� 65

 ■Chapter 5: Object-Oriented Java ��� 99

 ■Chapter 6: Lambda Expressions �� 137

 ■Chapter 7: Data Sources and Collections �� 159

 ■Chapter 8: Input and Output �� 195

 ■Chapter 9: Exceptions and Logging ��� 221

 ■Chapter 10: Concurrency ��� 239

 ■Chapter 11: Debugging and Unit Testing ��� 267

 ■Chapter 12: Unicode, Internationalization, and Currency Codes ����������������������� 285

 ■Chapter 13: Working with Databases �� 305

 ■Chapter 14: JavaFX Fundamentals �� 355

 ■Chapter 15: Graphics with JavaFX �� 429

 ■Chapter 16: Media with JavaFX ��� 471

■ Contents at a GlanCe

vi

 ■Chapter 17: Java Web Applications with JavaServer Faces ������������������������������ 499

 ■Chapter 18: Nashorn and Scripting ��� 529

 ■Chapter 19: E-mail ��� 553

 ■Chapter 20: JSON and XML Processing ��� 563

 ■Chapter 21: Networking �� 585

 ■Chapter 22: Java Modularity ��� 605

Index ��� 615

vii

Contents

About the Author �� xliii

About the Technical Reviewer ��xlv

Acknowledgments ��xlvii

Introduction ���xlix

 ■Chapter 1: Getting Started with Java 9 ��� 1

1-1. Creating a Development Environment .. 1
Problem .. 1

Solution... 1

How It Works ... 2

1-2. Getting to “Hello, World” ... 3
Problem .. 3

Solution... 3

How It Works ... 7

1-3. Configuring the CLASSPATH .. 9
Problem .. 9

Solution... 9

How It Works ... 10

1-4. Organizing Code with Packages ... 11
Problem .. 11

Solution... 11

How It Works ... 12

1-5. Declaring Variables and Access Modifiers .. 14
Problem .. 14

Solution... 14

How It Works ... 16

■ Contents

viii

1-6. Compiling and Executing from the Command-Line or Terminal Interpreter 17

Problem .. 17

Solution... 17

How It Works ... 18

1-7. Developing Within the Interactive jShell ... 19

Problem .. 19

Solution... 20

How It Works ... 22

1-8. Converting to and from a String .. 24

Problem .. 24

Solution... 24

How It Works ... 24

1-9. Passing Arguments via Command-Line Execution ... 25

Problem .. 25

Solution... 25

How It Works ... 26

1-10. Executing a Script via the jShell ... 27

Problem .. 27

Solution... 27

How It Works ... 27

1-11. Accepting Input from the Keyboard .. 28

Problem .. 28

Solution... 28

How It Works ... 29

1-12. Documenting Your Code .. 30

Problem .. 30

Solution... 30

How It Works ... 31

■ Contents

ix

1-13. Reading Environment Variables .. 33

Problem .. 33

Solution... 33

How It Works ... 34

Summary .. 34

 ■Chapter 2: Java 9 Enhancements �� 35

2-1. Avoiding Redundancy in Interface Code ... 35

Problem .. 35

Solution... 35

How It Works ... 36

2-2. Creating Modules for Simplifying and Code Reuse ... 36

Problem .. 36

Solution... 36

How It Works ... 38

2-3. Easily Retrieving Information on OS Processes .. 38

Problem .. 38

Solution... 38

How It Works ... 40

2-4. Handling Errors with Ease .. 40

Problem .. 40

Solution... 41

How It Works ... 41

2-5. Filtering Data Before and After a Condition with Streams 42

Problem .. 42

Solution... 42

How It Works ... 42

2-6. Developing a Concise HTTP Client .. 43

Problem .. 43

Solution... 43

How It Works ... 44

■ Contents

x

2-7. Redirecting Platform Logs .. 44

Problem .. 44

Solution... 44

How It Works ... 45

2-8. Utilizing Factory Methods to Create Immutable Collections 45

Problem .. 45

Solution... 45

How It Works ... 46

Summary .. 46

 ■Chapter 3: Strings�� 47

Compact Strings: Java 9 String Enhancements ... 47

3-1. Obtaining a Subsection of a String ... 47

Problem .. 47

Solution... 47

How It Works ... 48

3-2. Comparing Strings .. 48

Problem .. 48

Solution... 48

How It Works ... 50

3-3. Trimming Whitespace.. 51

Problem .. 51

Solution... 51

How It Works ... 52

3-4. Changing the Case of a String .. 52

Problem .. 52

Solution... 52

How It Works ... 52

3-5. Concatenating Strings .. 53

Problem .. 53

Solution 1.. 53

■ Contents

xi

Solution 2.. 53

Solution 3.. 54

How It Works ... 54

3-6. Converting Strings to Numeric Values .. 55

Problem .. 55

Solution 1.. 55

Solution 2.. 55

How It Works ... 55

3-7. Iterating Over the Characters of a String .. 56

Problem .. 56

Solution... 56

How It Works ... 57

3-8. Finding Text Matches .. 58

Problem .. 58

Solution 1.. 58

Solution 2.. 59

How It Works ... 59

3-9. Replacing All Text Matches ... 60

Problem .. 60

Solution... 61

How It Works ... 61

3-10. Determining Whether a File Suffix Matches a Given String 61

Problem .. 61

Solution... 62

How It Works ... 62

3-11. Making a String That Can Contain Dynamic Information 62

Problem .. 62

Solution 1.. 62

Solution 2.. 63

How It Works ... 63

Summary .. 64

■ Contents

xii

 ■Chapter 4: Numbers and Dates �� 65

4-1. Rounding Float and Double Values to Integers ... 66

Problem .. 66

Solution... 66

How It Works ... 66

4-2. Formatting Double and Long Decimal Values ... 67

Problem .. 67

Solution... 67

How It Works ... 68

4-3. Comparing int Values .. 69

Problem .. 69

Solution 1.. 69

Solution 2.. 69

How It Works ... 70

4-4. Comparing Floating-Point Numbers .. 70

Problem .. 70

Solution 1.. 70

Solution 2.. 71

How It Works ... 71

4-5. Calculating Monetary Values .. 71

Problem .. 71

Solution 1.. 71

Solution 2.. 72

How It Works ... 73

4-6. Randomly Generating Values .. 74

Problem .. 74

Solution 1.. 74

Solution 2.. 75

How It Works ... 75

■ Contents

xiii

4-7. Obtaining the Current Date Without Time ... 76

Problem .. 76

Solution... 76

How It Works ... 76

4-8. Obtaining a Date Object Given Date Criteria ... 76

Problem .. 76

Solution... 76

How It Works ... 77

4-9. Obtaining a Year-Month-Day Date Combination .. 77

Problem .. 77

Solution 1.. 77

Solution 2.. 77

How It Works ... 78

4-10. Obtaining and Calculating Times Based on the Current Time 78

Problem .. 78

Solution... 78

How It Works ... 79

4-11. Obtaining and Using the Date and Time Together ... 80

Problem .. 80

Solution 1.. 80

Solution 2.. 82

Solution 3.. 82

How It Works ... 83

4-12. Obtaining a Machine Timestamp .. 84

Problem .. 84

Solution... 84

How It Works ... 85

4-13. Converting Dates and Times Based on the Time Zone .. 85

Problem .. 85

Solution... 85

How It Works ... 87

■ Contents

xiv

4-14. Comparing Two Dates ... 88

Problem .. 88

Solution... 88

How It Works ... 89

4-15. Finding the Interval Between Dates and Times .. 89

Problem .. 89

Solution 1.. 89

Solution 2.. 90

Solution 3.. 91

How It Works ... 91

4-16. Obtaining Date-Time from a Specified String ... 92

Problem .. 92

Solution... 92

How It Works ... 93

4-17. Formatting Dates for Display .. 94

Problem .. 94

Solution 1.. 94

Solution 2.. 94

How It Works ... 95

4-18. Writing Readable Numeric Literals ... 97

Problem .. 97

Solution... 97

How It Works ... 97

4-19. Declaring Binary Literals ... 97

Problem .. 97

Solution... 98

How It Works ... 98

Summary .. 98

■ Contents

xv

 ■Chapter 5: Object-Oriented Java ��� 99

5-1. Controlling Access to Members of a Class .. 99

Problem .. 99

Solution... 99

How It Works ... 100

5-2. Making Private Fields Accessible to Other Classes .. 100

Problem .. 100

Solution... 100

How It Works ... 100

5-3. Creating a Class with a Single Instance ... 101

Problem .. 101

Solution 1.. 101

Solution 2.. 103

How It Works ... 103

5-4. Generating Instances of a Class ... 104

Problem .. 104

Solution... 104

How It Works ... 106

5-5. Creating Reusable Objects .. 106

Problem .. 106

Solution... 106

How It Works ... 107

5-6. Defining an Interface for a Class .. 108

Problem .. 108

Solution... 108

How It Works ... 108

5-7. Modifying Interfaces Without Breaking Existing Code .. 110

Problem .. 110

Solution... 110

How It Works ... 111

■ Contents

xvi

5-8. Constructing Instances of the Same Class with Different Values 112

Problem .. 112

Solution... 112

How It Works ... 115

5-9. Interacting with a Class via Interfaces .. 116

Problem .. 116

Solution... 116

How It Works ... 116

5-10. Making a Class Cloneable ... 117

Problem .. 117

Solution... 117

How It Works ... 121

5-11. Comparing Objects ... 121

Problem .. 121

Solution 1.. 121

Solution 2.. 122

How It Works ... 125

5-12. Extending the Functionality of a Class .. 126

Problem .. 126

Solution... 126

How It Works ... 129

5-13. Defining a Template for Classes to Extend.. 129

Problem .. 129

Solution... 129

How It Works ... 130

5-14. Increasing Class Encapsulation .. 131

Problem .. 131

Solution... 131

How It Works ... 134

Summary .. 136

■ Contents

xvii

 ■Chapter 6: Lambda Expressions �� 137

6-1. Writing a Simple Lambda Expression ... 137

Problem .. 137

Solution... 137

How It Works ... 138

6-2. Enabling the Use of Lambda Expressions ... 140

Problem .. 140

Solution 1.. 140

Solution 2.. 140

How It Works ... 141

6-3. Invoking Existing Methods by Name ... 143

Problem .. 143

Solution... 144

How It Works ... 145

6-4. Sorting with Fewer Lines of Code ... 147

Problem .. 147

Solution 1.. 148

Solution 2.. 148

How It Works ... 149

6-5. Filtering a Collection of Data ... 149

Problem .. 149

Solution... 150

How It Works ... 150

6-6. Implementing Runnable .. 150

Problem .. 150

Solution... 150

How It Works ... 151

6-7. Replacing Anonymous Inner Classes .. 151

Problem .. 151

Solution... 151

How It Works ... 152

■ Contents

xviii

6-8. Accessing Class Variables from a Lambda Expression ... 153

Problem .. 153

Solution... 153

How It Works ... 154

6-9. Passing Lambda Expressions to Methods .. 155

Problem .. 155

Solution... 155

How It Works ... 157

Summary .. 157

 ■Chapter 7: Data Sources and Collections �� 159

7-1. Defining a Fixed Set of Related Constants .. 159

Problem .. 159

Solution... 159

How It Works ... 161

7-2. Designing Intelligent Constants .. 162

Problem .. 162

Solution... 162

How It Works ... 165

7-3. Executing Code Based on a Specified Value ... 166

Problem .. 166

Solution... 166

How It Works ... 169

7-4. Working with Fix-Sized Arrays .. 170

Problem .. 170

Solution... 170

How It Works ... 172

7-5. Safely Enabling Types or Methods to Operate on Objects of Various Types 174

Problem .. 174

Solution... 175

How It Works ... 176

■ Contents

xix

7-6. Working with Dynamic Arrays ... 180

Problem .. 180

Solution... 180

How It Works ... 182

7-7. Making Your Objects Iterable .. 183

Problem .. 183

Solution... 183

How It Works ... 185

7-8. Iterating Over Collections .. 186

Problem .. 186

Solution... 186

How It Works ... 188

7-9. Iterating Over a Map ... 189

Problem .. 189

Solution... 189

How It Works ... 190

7-10. Executing Streams in Parallel ... 192

Problem .. 192

Solution... 192

How It Works ... 193

Summary .. 193

 ■Chapter 8: Input and Output �� 195

8-1. Serializing Java Objects .. 196

Problem .. 196

Solution... 196

How It Works ... 197

8-2. Serializing Java Objects More Efficiently .. 199

Problem .. 199

Solution... 199

How It Works ... 199

■ Contents

xx

8-3. Serializing Java Objects as XML ... 200

Problem .. 200

Solution... 200

How It Works ... 201

8-4. Creating a Socket Connection and Sending Serializable Objects
Across the Wire ... 202

Problem .. 202

Solution... 202

How It Works ... 204

8-5. Obtaining the Java Execution Path ... 205

Problem .. 205

Solution... 205

How It Works ... 205

8-6. Copying a File ... 205

Problem .. 205

Solution... 206

How It Works ... 206

8-7. Moving a File... 206

Problem .. 206

Solution... 206

How It Works ... 207

8-8. Creating a Directory .. 207

Problem .. 207

Solution 1.. 207

Solution 2.. 207

How It Works ... 208

8-9. Iterating Over Files in a Directory ... 208

Problem .. 208

Solution... 208

How It Works ... 209

■ Contents

xxi

8-10. Querying (and Setting) File Metadata ... 209

Problem .. 209

Solution... 209

How It Works ... 210

8-11. Monitoring a Directory for Content Changes... 211

Problem .. 211

Solution... 211

How It Works ... 212

8-12. Reading Property Files .. 212

Problem .. 212

Solution... 213

How It Works ... 214

8-13. Uncompressing Files .. 214

Problem .. 214

Solution... 214

How It Works ... 215

8-14. Managing Operating System Processes ... 216

Problem .. 216

Solution... 216

How It Works ... 217

Summary .. 219

 ■Chapter 9: Exceptions and Logging ��� 221

9-1. Catching Exceptions ... 222

Problem .. 222

Solution... 222

How It Works ... 223

9-2. Guaranteeing a Block of Code Is Executed ... 223

Problem .. 223

Solution... 224

How It Works ... 224

■ Contents

xxii

9-3. Throwing Exceptions ... 224

Problem .. 224

Solution... 225

How It Works ... 225

9-4. Catching Multiple Exceptions.. 225

Problem .. 225

Solution 1.. 225

Solution 2.. 226

How It Works ... 226

9-5. Catching the Uncaught Exceptions ... 227

Problem .. 227

Solution 1.. 227

Solution 2.. 227

How It Works ... 228

9-6. Managing Resources with try/catch Blocks ... 228

Problem .. 228

Solution... 228

How It Works ... 229

9-7. Creating an Exception Class ... 229

Problem .. 229

Solution 1.. 229

Solution 2.. 230

How It Works ... 230

9-8. Rethrowing the Caught Exception... 230

Problem .. 230

Solution... 230

How It Works ... 231

9-9. Logging Events Within Your Application .. 231

Problem .. 231

Solution... 231

How It Works ... 232

■ Contents

xxiii

9-10. Rotating and Purging Logs .. 233

Problem .. 233

Solution... 233

How It Works ... 233

9-11. Logging Exceptions ... 234

Problem .. 234

Solution... 234

How It Works ... 235

9-12. Logging with the Unified JVM Logger ... 235

Problem .. 235

Solution... 235

How It Works ... 236

Summary .. 237

 ■Chapter 10: Concurrency ��� 239

10-1. Starting a Background Task .. 239

Problem .. 239

Solution... 239

How It Works ... 240

10-2. Updating (and Iterating) a Map ... 240

Problem .. 240

Solution... 241

How It Works ... 241

10-3. Inserting a Key into a Map Only If the Key Is Not Already Present 242

Problem .. 242

Solution... 242

How It Works ... 243

10-4. Iterating Through a Changing Collection ... 244

Problem .. 244

Solution 1.. 244

Solution 2.. 244

How It Works ... 244

■ Contents

xxiv

10-5. Coordinating Different Collections .. 245

Problem .. 245

Solution 1.. 245

Solution 2.. 246

How It Works ... 247

10-6. Splitting Work into Separate Threads ... 249

Problem .. 249

Solution... 249

How It Works ... 249

10-7. Coordinating Threads .. 250

Problem .. 250

Solution 1.. 250

Solution 2.. 251

Solution 3.. 252

How It Works ... 253

10-8. Creating Thread-Safe Objects ... 255

Problem .. 255

Solution 1.. 255

Solution 2.. 256

How It Works ... 256

10-9. Implementing Thread-Safe Counters .. 257

Problem .. 257

Solution... 257

How It Works ... 257

10-10. Breaking Down Tasks into Discrete Units of Work .. 258

Problem .. 258

Solution... 258

How It Works ... 260

■ Contents

xxv

10-11. Updating a Common Value Across Multiple Threads ... 261

Problem .. 261

Solution... 261

How It Works ... 263

10-12. Executing Multiple Tasks Asynchronously .. 264

Problem .. 264

Solution... 264

How It Works ... 265

Summary .. 266

 ■Chapter 11: Debugging and Unit Testing ��� 267

11-1. Understanding Exceptions .. 267

Problem .. 267

Solution... 267

How It Works ... 268

11-2. Locking Down Behavior of Your Classes ... 268

Problem .. 268

Solution... 269

How It Works ... 270

11-3. Scripting Your Unit Tests ... 270

Problem .. 270

Solution... 271

How It Works ... 273

11-4. Finding Bugs Early .. 273

Problem .. 273

Solution... 274

How It Works ... 275

11-5. Monitoring Garbage Collection in Your Application ... 276

Problem .. 276

Solution 1.. 276

Solution 2.. 276

How It Works ... 278

■ Contents

xxvi

11-6. Obtaining a Thread Dump ... 278

Problem .. 278

Solution... 278

How It Works ... 284

 ■Chapter 12: Unicode, Internationalization, and Currency Codes ����������������������� 285

12-1. Converting Unicode Characters to Digits .. 285

Problem .. 285

Solution... 285

How It Works ... 287

12-2. Creating and Working with Locales .. 287

Problem .. 287

Solution... 287

How It Works ... 290

12-3. Setting the Default Locale... 291

Problem .. 291

Solution... 291

How It Works ... 292

12-4. Matching and Filtering Locales ... 293

Problem .. 293

Solution... 293

How It Works ... 295

12-5. Searching Unicode with Regular Expressions .. 295

Problem .. 295

Solution 1.. 295

Solution 2.. 297

How It Works ... 297

12-6. Overriding the Default Currency ... 298

Problem .. 298

Solution... 298

How It Works ... 299

■ Contents

xxvii

12-7. Converting Byte Arrays to and from Strings.. 300

Problem .. 300

Solution... 300

How It Works ... 301

12-8. Converting Character Streams and Buffers .. 302

Problem .. 302

Solution 1.. 302

Solution 2.. 302

How It Works ... 303

12-9. Setting the Search Order of Locale-Sensitive Services 304

Problem .. 304

Solution... 304

How It Works ... 304

Summary .. 304

 ■Chapter 13: Working with Databases �� 305

13-1. Connecting to a Database ... 305

Problem .. 305

Solution 1.. 305

Solution 2.. 306

How It Works ... 306

13-2. Handling Connection and SQL Exceptions .. 308

Problem .. 308

Solution... 308

How It Works ... 309

13-3. Querying a Database and Retrieving Results .. 310

Problem .. 310

Solution... 310

How It Works ... 310

■ Contents

xxviii

13-4. Performing CRUD Operations .. 312

Problem .. 312

Solution... 312

How It Works ... 314

13-5. Simplifying Connection Management ... 315

Problem .. 315

Solution... 315

How It Works ... 318

13-6. Guarding Against SQL Injection ... 318

Problem .. 318

Solution... 319

How It Works ... 320

13-7. Performing Transactions ... 322

Problem .. 322

Solution... 322

How It Works ... 324

13-8. Creating a Scrollable ResultSet .. 326

Problem .. 326

Solution... 326

How It Works ... 327

13-9. Creating an Updatable ResultSet .. 328

Problem .. 328

Solution... 328

How It Works ... 329

13-10. Caching Data for Use When Disconnected .. 330

Problem .. 330

Solution... 330

How It Works ... 333

■ Contents

xxix

13-11. Joining RowSet Objects When Not Connected to the Data Source 335

Problem .. 335

Solution... 335

How It Works ... 340

13-12. Filtering Data in a RowSet .. 341

Problem .. 341

Solution... 341

How It Works ... 345

13-13. Querying and Storing Large Objects ... 346

Problem .. 346

Solution... 347

How It Works ... 348

13-14. Invoking Stored Procedures .. 349

Problem .. 349

Solution... 350

How It Works ... 350

13-15. Obtaining Dates for Database Use .. 351

Problem .. 351

Solution... 351

How It Works ... 352

13-16. Closing Resources Automatically .. 352

Problem .. 352

Solution... 352

How It Works ... 353

Summary .. 353

 ■Chapter 14: JavaFX Fundamentals �� 355

14-1. Creating a Simple User Interface .. 356

Problem .. 356

Solution 1.. 356

Solution 2.. 357

How It Works ... 359

■ Contents

xxx

14-2. Drawing Text ... 360

Problem .. 360

Solution... 360

How It Works ... 361

14-3. Changing Text Fonts .. 362

Problem .. 362

Solution 1.. 362

Solution 2.. 363

How It Works ... 365

14-4. Creating Shapes .. 367

Problem .. 367

Solution... 367

How It Works ... 370

14-5. Assigning Colors to Objects .. 372

Problem .. 372

Solution... 372

How It Works ... 375

14-6. Creating Menus ... 376

Problem .. 376

Solution... 376

How It Works ... 378

14-7. Adding Components to a Layout ... 380

Problem .. 380

Solution... 380

How It Works ... 381

14-8. Generating Borders ... 382

Problem .. 382

Solution... 382

How It Works ... 384

■ Contents

xxxi

14-9. Binding Expressions ... 384

Problem .. 384

Solution... 384

How It Works ... 388

14-10. Creating and Working with Observable Lists .. 389

Problem .. 389

Solution... 389

How It Works ... 391

14-11. Generating a Background Process .. 392

Problem .. 392

Solution... 392

How It Works ... 395

14-12. Associating Keyboard Sequences with Applications .. 397

Problem .. 397

Solution... 397

How It Works ... 399

14-13. Creating and Working with Tables .. 399

Problem .. 399

Solution... 399

How It Works ... 404

14-14. Organizing the UI with Split Views .. 405

Problem .. 405

Solution... 405

How It Works ... 407

14-15. Adding Tabs to the UI .. 408

Problem .. 408

Solution... 408

How It Works ... 410

■ Contents

xxxii

14-16. Developing a Dialog Box ... 411

Problem .. 411

Solution... 411

How It Works ... 415

14-17. Printing with JavaFX ... 416

Problem .. 416

Solution... 416

How It Works ... 422

14-18. Embedding Swing Content in JavaFX ... 423

Problem .. 423

Solution... 423

How It Works ... 427

Summary .. 427

 ■Chapter 15: Graphics with JavaFX �� 429

15-1. Creating Images .. 430

Problem .. 430

Solution... 430

How It Works ... 435

15-2. Generating an Animation .. 438

Problem .. 438

Solution... 438

How It Works ... 442

15-3. Animating Shapes Along a Path .. 446

Problem .. 446

Solution... 447

How It Works ... 450

15-4. Manipulating Layout via Grids .. 452

Problem .. 452

Solution... 452

How It Works ... 460

■ Contents

xxxiii

15-5. Enhancing the Interface with CSS .. 463

Problem .. 463

Solution... 463

How It Works ... 467

Summary .. 469

 ■Chapter 16: Media with JavaFX ��� 471

16-1. Playing Audio .. 471

Problem .. 471

Solution... 472

How It Works ... 478

16-2. Playing Video .. 481

Problem .. 481

Solution... 482

How It Works ... 486

16-3. Controlling Media Actions and Events .. 490

Problem .. 490

Solution... 490

How It Works ... 491

16-4. Marking a Position in a Video.. 492

Problem .. 492

Solution... 492

How It Works ... 495

16-5. Synchronizing Animation and Media .. 495

Problem .. 495

Solution... 496

How It Works ... 497

Summary .. 497

■ Contents

xxxiv

 ■Chapter 17: Java Web Applications with JavaServer Faces ������������������������������ 499

17-1. Creating and Configure a Web Project .. 499

Problem .. 499

Solution... 500

How It Works ... 503

17-2. Developing a JSF Application ... 506

Problem .. 506

Solution... 506

How It Works ... 509

17-3. Developing a Model for Data ... 511

Problem .. 511

Solution... 511

How It Works ... 513

17-4. Writing View Controllers .. 517

Problem .. 517

Solution... 517

How It Works ... 519

17-5. Developing Asynchronous Views .. 519

Problem .. 519

Solution... 519

How It Works ... 521

17-6. Applying the Correct Scope... 522

Problem .. 522

Solution... 522

How It Works ... 522

17-7. Generating and Applying a Template .. 523

Problem .. 523

Solution... 523

How It Works ... 526

Summary .. 527

■ Contents

xxxv

 ■Chapter 18: Nashorn and Scripting ��� 529

18-1. Loading and Executing JavaScript from Java ... 529

Problem .. 529

Solution... 529

How It Works ... 530

18-2. Executing JavaScript via the Command Line .. 531

Problem .. 531

Solution 1.. 531

Solution 2.. 532

How It Works ... 533

18-3. Embedding Expressions in Strings ... 533

Problem .. 533

Solution... 533

How It Works ... 534

18-4. Passing Java Parameters ... 534

Problem .. 534

Solution... 534

How It Works ... 535

18-5. Passing Return Values from JavaScript to Java ... 535

Problem .. 535

Solution... 535

How It Works ... 536

18-6. Using Java Classes and Libraries ... 537

Problem .. 537

Solution... 537

How It Works ... 539

18-7. Accessing Java Arrays and Collections in Nashorn .. 540

Problem .. 540

Solution... 540

How It Works ... 540

■ Contents

xxxvi

18-8. Implementing Java Interfaces .. 541

Problem .. 541

Solution... 541

How It Works ... 542

18-9. Extending Java Classes .. 542

Problem .. 542

Solution... 542

How It Works ... 543

18-10. Creating Executable Scripts in Unix .. 544

Problem .. 544

Solution... 544

How It Works ... 544

18-11. Implementing JavaFX with Nashorn ... 545

Problem .. 545

Solution 1.. 545

Solution 2.. 547

How It Works ... 549

18-12. Utilizing ECMAScript6 Features .. 550

Problem .. 550

Solution... 550

How It Works ... 551

Summary .. 551

 ■Chapter 19: E-mail ��� 553

19-1. Installing JavaMail .. 553

Problem .. 553

Solution... 553

How It Works ... 553

19-2. Sending an E-Mail ... 554

Problem .. 554

Solution... 554

How It Works ... 554

■ Contents

xxxvii

19-3. Attaching Files to an E-Mail Message ... 555

Problem .. 555

Solution... 555

How It Works ... 556

19-4. Sending an HTML E-Mail .. 556

Problem .. 556

Solution... 556

How It Works ... 557

19-5. Sending E-Mail to a Group of Recipients .. 557

Problem .. 557

Solution... 557

How It Works ... 558

19-6. Checking E-Mail .. 558

Problem .. 558

Solution... 558

How It Works ... 559

19-7. Monitoring an E-Mail Account ... 559

Problem .. 559

Solution... 559

How It Works ... 561

Summary .. 561

 ■Chapter 20: JSON and XML Processing ��� 563

20-1. Writing an XML File ... 563

Problem .. 563

Solution... 563

How It Works ... 565

20-2. Reading an XML File ... 566

Problem .. 566

Solution 1.. 566

Solution 2.. 567

How It Works ... 569

■ Contents

xxxviii

20-3. Transforming XML ... 569

Problem .. 569

Solution... 569

How It Works ... 570

20-4. Validating XML .. 572

Problem .. 572

Solution... 573

How It Works ... 573

20-5. Creating Java Bindings for an XML Schema ... 574

Problem .. 574

Solution... 574

How It Works ... 575

20-6. Unmarshalling XML to a Java Object .. 575

Problem .. 575

Solution... 575

How It Works ... 576

20-7. Building an XML Document with JAXB ... 576

Problem .. 576

Solution... 577

How It Works ... 577

20-8. Parsing an XML Catalog .. 578

Problem .. 578

Solution... 578

How It Works ... 578

20-9. Working with JSON ... 579

Problem .. 579

Solution... 579

How It Works ... 580

■ Contents

xxxix

20-10. Building a JSON Object ... 580

Problem .. 580

Solution... 580

How It Works ... 580

20-11. Writing a JSON Object to File .. 581

Problem .. 581

Solution... 581

How It Works ... 581

20-12. Parsing a JSON Object .. 582

Problem .. 582

Solution... 582

How It Works ... 583

Summary .. 584

 ■Chapter 21: Networking �� 585

21-1. Listening for Connections on the Server ... 585

Problem .. 585

Solution... 585

How it Works ... 587

21-2. Defining a Network Connection to a Server .. 588

Problem .. 588

Solution... 588

How it Works ... 590

21-3. Bypassing TCP for InfiniBand to Gain Performance Boosts 591

Problem .. 591

Solution... 591

How it Works ... 592

21-4. Broadcasting to a Group of Recipients ... 593

Problem .. 593

Solution... 593

How it Works ... 595

■ Contents

xl

21-5. Generating and Reading from URLs .. 598

Problem .. 598

Solution... 598

How it Works ... 599

21-6. Parsing a URL ... 600

Problem .. 600

Solution... 600

How it Works ... 601

21-7. Making HTTP Requests and Working with HTTP Responses 602

Problem .. 602

Solution... 602

How it Works ... 603

Summary .. 604

 ■Chapter 22: Java Modularity ��� 605

22-1. Constructing a Module .. 605

Problem .. 605

Solution... 605

How It Works ... 606

22-2. Compiling and Executing a Module .. 606

Problem .. 606

Solution... 606

How It Works ... 607

22-3. Creating a Module Dependency .. 607

Problem .. 607

Solution... 607

How It Works ... 608

22-4. Packaging a Module ... 609

Problem .. 609

Solution... 609

How It Works ... 609

■ Contents

xli

22-5. Listing Dependencies or Determining JDK-Internal API Use 610

Problem .. 610

Solution... 611

How It Works ... 612

22-6. Providing Loose Coupling Between Modules .. 612

Problem .. 612

Solution... 612

How It Works ... 613

22-7. Linking Modules .. 613

Problem .. 613

Solution... 613

How It Works ... 614

Summary .. 614

Index ��� 615

xliii

About the Author

Josh Juneau has been developing software and enterprise applications
since the early days of Java EE. Application and database development
have been his focus since the start of his career. He became an Oracle
database administrator and adopted the PL/SQL language for performing
administrative tasks and developing applications for the Oracle database.
In an effort to build more complex solutions, he began to incorporate Java
into his PL/SQL applications and later developed stand-alone and web
applications with Java. Josh wrote his early Java web applications utilizing
JDBC and servlets or JSP to work with back-end databases. Later, he began
to incorporate frameworks into his enterprise solutions, such as Java EE
and JBoss Seam. Today, he primarily develops enterprise web solutions
utilizing Java EE and other technologies. He also includes the use of
alternative languages, such as Jython and Groovy, for some of his projects.

Over the years, Josh has dabbled in many different programming languages, including alternative
languages for the JVM, in particular. In 2006, Josh began devoting time to the Jython Project as editor
and publisher of the Jython Monthly newsletter. In late 2008, he began a podcast dedicated to the Jython
programming language. Josh was the lead author for The Definitive Guide to Jython, Oracle PL/SQL Recipes,
and Java 7 Recipes, and a solo author of Java EE 7 Recipes and Introducing Java EE 7, which were all
published by Apress. He works as an application developer and system analyst at Fermi National Accelerator
Laboratory, and he also writes technical articles for Oracle and OTN. He was a member of the JSR 372 and
JSR 378 expert groups, and is an active member of the Java Community, helping to lead the Chicago Java
User Group’s Adopt-a-JSR effort.

When not coding or writing, Josh enjoys spending time with his wonderful wife and five children,
especially swimming, fishing, playing ball, and watching movies. To hear more from Josh, follow his blog at
http://jj-blogger.blogspot.com. You can also follow him on Twitter at @javajuneau.

http://jj-blogger.blogspot.com/

xlv

About the Technical Reviewer

Vinay Kumar is an Oracle ACE and technology evangelist. He has
extensive experience in designing and implementing large-scale
projects in Oracle Enterprise Technologies. He has implemented
multiple Enterprise Portal on web and intranet using Oracle WebCenter
Portal/ADF and open source. He is a technology advisor, trainer, and
architect. He loves exploring emerging solutions and applications mainly
related to Oracle Middleware and open source. He loves spending his
time in mentoring, writing technical blogs (www.techartifact.com),
publishing white papers & maintaining dedicated education channel at
youtube for Java, ADF/ WebCenter. He also authored a book on Enterprise
Portal (WebCenter 12c) of Apress publication.

Find his views at @vinaykuma201.

http://www.techartifact.com

xlvii

Acknowledgments

To my wife Angela: As the years pass, I will continue to be amazed by you. I want to thank for being a great
wife, mother, and sidekick, always giving your all to me and the children. You’ve helped me make it through
this book and my other projects, and your inspiration always keeps me moving forward. Thanks for always
supporting the work I do. It was great to finally have you at JavaOne in 2016, and it was great to spend time
away. I love you very much.

To my children, Kaitlyn, Jacob, Matthew, Zachary, and Lucas: I love you all so much and I cherish every
moment we have together. You all continue to make me so proud through your schoolwork, Scouting, sports,
and the myriad of other things that you achieve. I hate to see you growing up so quickly…sometimes I wish
that I could pause time. I hope that you will understand why I’ve worked so hard at times on the nights and
weekends when you read this book some day.

I want to thank my original coauthors of the first edition of this book: Carl Dea, Freddy Guime, John
O’Conner, and Mark Beaty. You guys are Java gurus, and your expertise is engrained within the pages of this
second edition just as much as the first. I had a great time working with you on the original and hope to do so
again in the future.

To the folks at Apress: I thank you for providing me with the chance to share my knowledge with
others. I especially thank Jonathan Gennick for the continued support of my work and for providing the
continued guidance to produce useful content for our readers. I also thank Jill Balzano for doing a great job
coordinating this project. The technical reviewer, Vinay Kumar, has done an excellent job of solidifying the
book content. I really thank you for your hard work and expertise. Lastly, I’d like to thank everyone else at
Apress who had a hand in this book.

To the Java community: Thanks for continuing to make the Java platform such an innovative and
effective platform for application development. We all have the privilege of working with a mature and
robust platform, and it would not be successful today if it weren’t for everyone’s continued contributions to
the technology. I thank all of the Oracle and community Java experts. Once again, the roadmap for the future
is continuing to look great. I am looking forward to using Java technology for many years to come.

xlix

Introduction

The Java programming language was introduced in 1995 by Sun Microsystems. Derived from languages such
as C and C++, Java was designed to be more intuitive and easier to use than older languages, specifically due
to its simplistic object model and automated facilities such as memory management. At the time, Java drew
the interest of developers because of its object-oriented, concurrent architecture; its excellent security and
scalability; and because applications developed in the Java language could run on any operating system
that contained a Java Virtual Machine (JVM). Since its inception, Java has been described as a language that
allows developers to “write once, run everywhere” as code is compiled into class files that contain bytecode,
and the resulting class files can run on any compliant JVM. This concept made Java an immediate success
for desktop development, which later branched off into different technological solutions over the years,
including development of web-based applications and rich Internet applications (RIAs). Today, Java is
deployed on a broad range of devices, including mobile phones, printers, medical devices, Blu-ray players,
and so on.

The Java platform consists of a hierarchy of components, starting with the Java Development Kit (JDK),
which is composed of the Java Runtime Environment (JRE), the Java programming language, and platform
tools that are necessary to develop and run Java applications. The JRE contains the JVM, plus the Java
application programming interfaces (APIs) and libraries that assist in the development of Java applications.
The JVM is the base upon which compiled Java class files run and is responsible for interpreting compiled
Java classes and executing the code. Every operating system that is capable of running Java code has its
own version of the JVM. To that end, the JRE must be installed on any system that will be running local
Java desktop or stand-alone Java applications. Oracle provides JRE implementations for most of the major
operating systems. Each operating system can have its own flavor of the JRE. For instance, mobile devices
can run a scaled-down version of the full JRE that is optimized to run Java Mobile Edition (ME) and Java SE
embedded applications. The Java platform APIs and libraries are a collection of predefined classes that are
used by all Java applications. Any application that runs on the JVM makes uses the Java platform APIs and
libraries. This allows applications to use the functionality that has been predefined and loaded into the JVM
and leaves developers with more time to worry about the details of their specific application. The classes
that comprise the Java platform APIs and libraries allow Java applications to use one set of classes in order
to communicate with the underlying operating system. As such, the Java platform takes care of interpreting
the set of instructions provided by a Java application into operating system commands that are required for
the machine on which the application is being executed. This creates a facade for Java developers to write
code against so that they can develop applications that can be written once and run on every machine that
contains a relevant JVM.

The JVM and the Java platform APIs and libraries play key roles in the life cycle of every Java application.
Entire books have been written to explore the platform and JVM. This book focuses on the Java language
itself, which is used to develop Java applications, although the JVM and Java platform APIs and libraries are
referenced as needed. The Java language is a robust, secure, and modern object-oriented language that can
be used to develop applications to run on the JVM. The Java programming language has been refined over
several iterations and it becomes more powerful, secure, and modern with each new release. This book
covers many features of the Java programming language from those that were introduced in Java 1.0 through
those that made their way into the language in Java 9. In 2014, Oracle Corporation released Java 8, which
was another milestone release for the Java ecosystem. Not only was Java already the most modern, statically

■ IntroduCtIon

l

typed, object-oriented language available for development, but Java 8 added important new enhancements
to the language, such as lambda expressions, streams processing, and default methods. JavaFX 8 was also
released at the same time, advancing desktop Java applications more than ever. JavaFX 8 can be used for
developing rich desktop and Internet applications using the Java language, or any other language that runs
on the JVM. It provides a rich set of graphical and media user interfaces to develop extraordinary visual
applications. This release is another nice update to the JavaFX platform, adding in features such as the
Swing node and the Print API. In 2017, Java 9 is released, enhancing the platform with features such as
modularity, an updated Process API, and jShell. This book covers the fundamentals of Java development,
such as installing the JDK, writing classes, and running applications. It delves into essential topics such
as the development of object-oriented constructs, exception handling, unit testing, and localization. The
book also provides solutions for desktop application development using the JavaFX, and some web-based
and database solutions. It covers JavaFX in depth and is an essential guide for developers beginning to
use JavaFX 8+. This book can be used as a guide for solving problems that ordinary Java developers may
encounter at some point. A broad range of topics is discussed, and the solutions to the problems that are
covered in this book are concise and to the point. If you are a novice Java developer, we hope that this
book will help you get started on your journey to working with one of the most advanced and widely used
programming languages available today. For those of you who have used the Java language for some time,
we hope that this book will provide you with updated material that is new to Java 9, JavaFX, and even some
Java web development so that you can further refine your Java development skills. I ensure that advanced
Java application developers will also learn a thing or two regarding the new features of the language and
perhaps even stumble upon some techniques that were not used in the past. Whatever your skill level, this
book is good to have close at hand as a reference for solutions to those problems that you encounter in your
daily programming.

Who This Book Is For
This book is intended for all those who are interested in learning the Java programming language and/or
already know the language but would like some information regarding the new features included in Java
SE 9 and JavaFX. Those who have not yet programmed in the Java language can read this book, and it will
allow them to start from scratch to get up and running quickly. Intermediate and advanced Java developers
who are looking to update their arsenal with the latest features that Java SE 9 makes available to them can
also read the book to quickly update and refresh their skill set. Java desktop programmers will find this book
useful for its content on developing desktop applications using the JavaFX API. There is, of course, a myriad
of other essential topics that will be useful to Java developers of any type.

How This Book Is Structured
This book is structured such that it does not have to be read from cover to cover. In fact, it is structured
so that developers can chose which topics they wish to read about and jump right to them. Each recipe
contains a problem to solve, one or more solutions to solve that problem, and a detailed explanation of
how the solution works. Although some recipes may build upon concepts that have been discussed in other
recipes, they contain the appropriate references so that the developer can find other related recipes that are
beneficial to the solution. The book is designed to allow developers to get up and running quickly with a
solution so that they can be home in time for dinner.

1© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_1

CHAPTER 1

Getting Started with Java 9

In this chapter we present a handful of recipes to help programmers who are new to the Java language, as
well as those having experience in other languages, become accustomed to Java 9. You will learn to install
Java, and also install an Integrated Development Environment (IDE) from which you’ll develop applications
and experiment with the solutions provided in this book. You will learn basics of Java such as how to create
a class and how to accept keyboard input. Documentation is often overlooked, but in this chapter you will
quickly learn how to create great documentation for your Java code.

 ■ Note Java 9 Recipes is not intended as a complete tutorial. Rather, it covers key concepts of the Java
language. If you are truly new to Java, we recommend buying and reading one of the many Beginning Java
books that are also published by Apress.

1-1. Creating a Development Environment
Problem
You want to install Java and experiment with the language. You’d also like a reasonable IDE to use with it.

Solution
Install Java Development Kit 9 (JDK. That gives you the language and a compiler. Then install the NetBeans
IDE to provide a more productive working environment.

Java Standard Edition (Java SE) is sufficient for most recipes in this book. To download the release, visit
the following page on the Oracle Technology Network (OTN):

http://www.oracle.com/technetwork/java/javase/overview/index.html

Figure 1-1 shows the Downloads tab, and you can see the Java Platform download link and image
prominently on the page. Next to that link is an image for the NetBeans IDE, which provides the option of
downloading the JDK and NetBeans together. Choose the option that you prefer, download the release for
your platform, and run the setup wizard to install. For the purposes of this book, I am using NetBeans IDE 8.2.

http://www.oracle.com/technetwork/java/javase/overview/index.html

ChApteR 1 ■ GettInG StARted wIth JAvA 9

2

 ■ Note If you chose to only install the Java platform (JdK) and not netBeans, you can download netBeans at
a later time by visiting netbeans.org.

How It Works
The name Java™ is a trademark owned by Oracle Corporation. The language itself is open source, and its
evolution is controlled by a process known as the Java Community Process (JCP). You can read more about
that process at www.jcp.org.

While the language is not owned per se by Oracle Corporation, its core development tends to be steered
by that company. It is Oracle Corporation that runs the JCP, and that owns the jcp.org domain.

There are many editions of Java, such as the Mobile Edition (ME) and the Enterprise Edition (EE). Java
SE is the Standard Edition and represents the heart of the language. We’ve built the recipes in this book for
Java SE programmers. Those interested in the development of embedded applications for devices such as
Raspberry Pi may be interested in learning more about Java ME. Similarly, those interested in developing
web applications and working with enterprise solutions may be interested in learning more about Java EE.

 ■ Note enterprise developers may want to buy and read a copy of Java EE 7 Recipes by Josh Juneau
(Apress, 2013).

There are several good websites that you can visit to learn more about Java and keep up to date with the
latest on the platform. A good place to begin for all things Java is the following page on the OTN:

http://www.oracle.com/technetwork/java/index.html

Figure 1-1. Java SE Downloads page on the OTN

http://www.jcp.org/
http://www.oracle.com/technetwork/java/index.html

ChApteR 1 ■ GettInG StARted wIth JAvA 9

3

The wealth of resources available from this page can be overwhelming at first, but it’s worth your time to
look around and get passingly familiar with the many links that are available.

One of the links will be to Java SE, which takes you to the page shown earlier in Figure 1-1. It is from
there that you can download Java SE and the NetBeans IDE. Also from there you have access to the official
documentation, to community resources such as forums and newsletters, and to training resources designed
to help you build knowledge in Java and become certified in the language.

1-2. Getting to “Hello, World”
Problem
You’ve installed Java SE 9 and the NetBeans IDE. Now you want to run a simple Java program to verify that
your installation is working properly.

Solution
Begin by opening the NetBeans IDE. You should see a workspace resembling the one in Figure 1-2. You may
see some projects in the left-hand pane if you’ve already been working on projects within the IDE.

Figure 1-2. Opening the NetBeans IDE

ChApteR 1 ■ GettInG StARted wIth JAvA 9

4

Go to the File menu and select New Project. You’ll see the dialog in Figure 1-3. Choose the Java category,
and then Java Application. Click Next to advance to the dialog shown in Figure 1-4.

Figure 1-3. Creating a new Java SE project

ChApteR 1 ■ GettInG StARted wIth JAvA 9

5

Give your project a name. For the project related to this book, use the name Java9Recipes. Enter the
project name into the Project Name text box at the top of the dialog in Figure 1-4.

Then specify the name of your main class in the Create Main Class text box. Give the following name:

org.java9recipes.chapter01.recipe1_02.HelloWorld

Be sure to that you’ve entered the project name and class name just as we provide them here,
because the code to follow depends upon your doing so. Make sure the “Project Name” text box specifies
Java9Recipes. Make sure the “Create Main Class” text box specifies org.java9recipes.chapter01.
recipe1_02.HelloWorld.

 ■ Tip pay attention to case; Java is case-sensitive.

Press “Finish” to complete the wizard and create a skeleton project. You should now be looking at a Java
source file. Skeleton code is generated for you, and your NetBeans IDE window should resemble the one in
Figure 1-5.

Figure 1-4. Naming the project

ChApteR 1 ■ GettInG StARted wIth JAvA 9

6

Place your cursor anywhere in the source code pane. Press Ctrl-A to select all the skeleton code. Then
press Delete to get rid of it. Replace the deleted code with that from Listing 1-1.

You can find the code in Listing 1-1 as part of our example download for the book. There are two files named
HelloMessage.java and HelloWorld.java, which reside in a Java package named org.java9recipes.chapter01.
recipe1_02. Note that all recipe solutions of substance throughout this book are in that example download.

The first class, HelloMessage, is a container class that is used to hold a String-based message.

Listing 1-1. A “Hello, World” Example

package org.java9recipes.chapter01.recipe1_02;

public class HelloMessage {
 private String message = "";

 public HelloMessage() {
 this.message = "Default Message";
 }

 public void setMessage (String m) {
 this.message = m;
 }

 public String getMessage () {
 return message.toUpperCase();
 }
}

The next class is named HelloWorld, and it initiates the program:

public class HelloWorld {
 /* The main method begins in this class */

Figure 1-5. Viewing the skeleton code generated by NetBeans

ChApteR 1 ■ GettInG StARted wIth JAvA 9

7

 public static void main(String[] args) {

 HelloMessage hm;
 hm = new HelloMessage();

 System.out.println(hm.getMessage());

 hm.setMessage("Hello, World");

 System.out.println(hm.getMessage());
 }
}

Make sure you have pasted (or typed) the code from Listing 1-1. Compile and run the program, and you
should see the following output:

run:
DEFAULT MESSAGE
HELLO, WORLD
BUILD SUCCESSFUL (total time: 1 second)

This output will appear in a new pane named “Output” that is opened by NetBeans at the bottom of the
IDE window.

How It Works
You can run almost all the solutions in this chapter using the same general technique shown in this recipe.
We’ve been painstakingly detailed for that reason, showing the step-by-step screenshots just this one time.

Packages
The solution example begins by creating a Java package:

package org.java9recipes.chapter01.recipe1_02;

Packages are a way of grouping related classes together into a shared namespace. The idea is to achieve
universal uniqueness by working your way down your organization’s domain name in reverse order. It is also
customary to write package names in all lowercase.

NetBeans will create a directory structure to imitate your package path. In this case, NetBeans created
the following directory path:

C:\Users\JonathanGennick\Documents\NetBeansProjects\
Java9Recipes\src\org\java9recipes\chapter01\recipe1_02

Following are some things to notice about this path:

•	 The front part is C:\Users\...\NetBeansProjects. NetBeans creates all projects
under a NetbeansProject directory unless you specify otherwise, which you can do
from the dialog in Figure 1-4. Many developers specify shorter paths.

•	 Next is the first occurrence of Java9Recipes. This occurrence corresponds to the
project name you gave when you filled in the Project Name text box from Figure 1-4.

ChApteR 1 ■ GettInG StARted wIth JAvA 9

8

•	 Any source files you create go into the src directory. NetBeans creates other
directories at this level. For example, NetBeans creates a build directory, and then
underneath it is a classes subdirectory to hold your compiled class files.

•	 Last are the directories mirroring the package path that you specify, in this case org\
java9recipes\chapter01\recipe1_02. When you compile your code, an identical
structure is created under the build\classes directory. Note that if using another
IDE, you may see differences in the directories that are created.

You do not need to explicitly create a package. If you do not create one, the Java compiler will create
one for you, and give it a name that is hidden from you. We prefer to be explicit, and you should too. Being
thoughtful and explicit about Java package names is de rigueur in the professional setting. Organization, as
well as judiciously chosen naming conventions, is important when developing any significant application.

JavaBeans-Style Classes
Next in the solution example you see a class definition following the JavaBeans pattern. The definition of
HelloMessage follows a pattern that you’ll encounter often in Java programming, and we include it for that
reason. The class is a simple one, capable of holding a single, String field named message.

Three methods are defined on the class:

HelloMessage(). This method, also known as the constructor, is named the
same as the class. In this case, it takes no arguments. It’s automatically invoked
whenever you create a new object of the class. Note that this is known as a
“no-arg” constructor because it is typed out within the class, and it takes no
arguments. If you do not supply a constructor, the JVM will supply a default
constructor (also takes no arguments) automatically.

setMessage(String). This accessor method begins with the word set. It takes
one parameter. It specifies the message to be returned by the corresponding get
method.

getMessage(). This accessor method returns the currently defined message. In
our example, we choose to uppercase the message.

 ■ Note Accessor methods are used in JavaBeans classes to access any privately declared class members.
In this case, the private variable identified as message can be accessed using these methods. Accessor methods
are more commonly referred to as “getters” and “setters.”

Methods beginning with set and get are termed as setter and getter methods. The variable message is
private to the class, which means you have no direct access to message from outside of the class.

You’ll see the keyword this used in the class. It is a special keyword in Java used to reference the
current object. Its use is redundant in Listing 1-1, but would be needed if any of the methods happened to
create variables of their own that were also named message. It is common practice to make use of the “this”
keyword to reference the class members from within the “getter” and “setter” methods.

It is common in Java to mediate access to class variables through setter and getter methods like those
in our example. Those methods represent a contract of sorts with other classes and your main program.
Their benefit is that you can change the storage implementation of HelloMessage however you like. Other
code that depends upon HelloMessage will continue to work properly so long as you maintain the external
behavior of setMessage() and getMessage().

ChApteR 1 ■ GettInG StARted wIth JAvA 9

9

The Main Program
The incantation public static void main(...) is used from within a public class to denote the entry
point of a Java program. That declaration begins an executable method named main. You must specify one
parameter that is an array of Strings, and typically that parameter is defined as String[] args.

When you execute the currently selected class, NetBeans compiles the code to a set of binary files, and
then transfers control to the main() method. NetBeans can also be configured to recompile on save, which
would then cause the transfer of control to the main() method. That method, in turn, does the following:

 1. Executes HelloMessage to create a variable named hm that is capable of holding
an instance of the class HelloMessage. The variable hm is empty at this point.

 2. Invokes new HelloMessage() to create an object of the class by that name. The
no-argument constructor will be executed, and "Default Message" is now set as
the greeting text. The new object is now stored in the variable hm.

 3. Makes a call to System.out.println() to show that the object’s no-argument
constructor has indeed executed as expected. The greeting "DEFAULT MESSAGE"
is displayed in the “Output” pane.

 4. Sets the message to be the traditional text "Hello, World".

 5. Makes another call to System.out.println() to output the new message
that has just been set. Now you see the greeting "HELLO, WORLD" added to the
“Output” pane.

The pattern in the solution is common in Java programming. The main() method is where execution
begins. Variables are defined, and objects are created using the new operator. Object variables are often set
and retrieved using setter and getter methods.

 ■ Tip Command-line apps are passé. System administrators and programmers sometimes write them as
utilities, or to batch-process large amounts of data. But in the main, most of today’s applications are GUI applications.
JavaFX is the way forward in writing standard desktop applications, and you can learn about it in Chapters 14
through 16. Recipe 14-1 provides what is essentially a “hello, world” application in GUI form. Javaee offers options
for developing web-based applications for the Java platform, and you can learn more about that in Chapter 17.

1-3. Configuring the CLASSPATH
Problem
You want to execute a Java program, or include an external Java library in the application you are executing.

Solution
Set the CLASSPATH variable equal to the directory location of the user-defined Java classes or Java Archive
(JAR) files that you need to have access to for executing your application. Let’s say that you have a directory
named JAVA_DEV located at the root of your OS drive, and all the files your applications needs to access are
located in this directory. If this is the case, then you would execute a command such as the following:

set CLASSPATH=C:\JAVA_DEV\some-jar.jar

http://dx.doi.org/10.1007/978-1-4842-1976-8_14
http://dx.doi.org/10.1007/978-1-4842-1976-8_16
http://dx.doi.org/10.1007/978-1-4842-1976-8_17

ChApteR 1 ■ GettInG StARted wIth JAvA 9

10

Or on Unix and Linux systems:

export CLASSPATH=/JAVA_DEV/some-jar.jar

Alternately, the javac command provides an option for specifying the location of resources that need
to be loaded for an application. On all platforms, setting the CLASSPATH using this technique can be done via
the -classpath option as follows:

javac –classpath /JAVA_DEV/some-jar.jar

Of course, on Microsoft Windows machines the file path will use the backslash (\) instead.

 ■ Note the javac –cp option may be used, rather than specifying the –classpath option.

How It Works
Java implements the concept of a classpath. This is a directory search path that you can specify system-wide
using the CLASSPATH environment variable. You can also specify the classpath for a specific invocation of the
JVM via the java command’s -classpath option. (See Recipe 1-4 for an example.)

 ■ Note the CLASSpAth is certainly going to remain important for many Java applications into the future.
however, the new module system, introduced in Java 9, replaces the need to use the brittle CLASSpAth for
those applications that are built to take advantage of modularization. See Chapter 22 for more information on
Java Modularity.

When executing Java programs, the JVM finds and loads classes as needed using the following search
order:

 1. The classes that are fundamental to the Java platform and are contained in the
Java installation directory.

 2. Any packages or JAR files that are located within the extension directory of the
JDK.

 3. Packages, classes, JAR files, and libraries that are loaded somewhere on the
specified class path.

You may need to access more than one directory or JAR file for an application. This could be the case
if your dependencies are located in more than one location. To do so, simply use the delimiter for your
operating system (; or :) as a separator between the locations specified by the CLASSPATH variable. Following
is an example of specifying multiple JAR files in the CLASSPATH environment variable on Unix and Linux
systems:

export CLASSPATH=/JAVA_DEV/some-jar.jar:/JAVA_LIB/myjar.jar

Alternatively, you can specify the class path via a command-line option:

javac –classpath /JAVA_DEV/some-jar.jar:/JAVA_LIB/myjar.jar

http://dx.doi.org/10.1007/978-1-4842-1976-8_22

ChApteR 1 ■ GettInG StARted wIth JAvA 9

11

When loading the resources for a Java application, the JVM loads all the classes and packages that are
specified in the first location, followed by the second, and so on. This is important because the order of
loading may make a difference in some instances.

 ■ Note JAR files are used to package applications and Java libraries into a distributable format. If you have
not packaged your application in that manner, you may simply specify the directory or directories in which your
.class files reside.

Sometimes you’ll want to include all JAR files within a specified directory. Do that by specifying the
wildcard character (*) after the directory containing the files. For example:

javac –classpath /JAVA_DEV/*:/JAVA_LIB/myjar.jar

Specifying a wildcard will tell the JVM that it should be loading JAR files only. It will not load class files
that are located in a directory specified with the wildcard character. You’ll need to specify a separate path
entry for the same directory if you also want the class files. For example:

javac –classpath /JAVA_DEV/*:/JAVA_DEV

Subdirectories within the class path will not be searched. In order to load files that are contained within
subdirectories, those subdirectories and/or files must be explicitly listed in the class path. However, Java
packages that are equivalent to the subdirectory structure will be loaded. Therefore, any Java classes that
reside within a Java package that is equivalent to the subdirectory structure will be loaded.

 ■ Note It is a good idea to organize your code; it is also good to organize where you place your code on
the computer. A good practice is to place all your Java projects within the same directory; it can become
your workspace. place all the Java libraries that are contained in JAR files into the same directory for easier
management.

1-4. Organizing Code with Packages
Problem
Your application consists of a set of Java classes, interfaces, and other types. You want to organize these
source files to make them easier to maintain and avoid potential class-naming conflicts.

Solution
Create Java packages and place source files within them much like a filing system. Java packages can be used
to organize logical groups of source files within an application. Packages can help to organize code, reduce
naming conflicts among different classes and other Java type files, and provide access control. To create a
package, simply create a directory within the root of your application source folder and name it. Packages
are usually nested within each other and conform to a standard naming convention. For the purposes of this

ChApteR 1 ■ GettInG StARted wIth JAvA 9

12

recipe, assume that the organization is named Juneau and that the organization makes widgets. To organize
all the code for the widget application, create a group of nested packages conforming to the following
directory structure:

/org/juneau

Any source files that are placed within a package must contain the package statement as the first line
in the source. The package statement lists the name of the package in which the source file is contained. For
instance, suppose that the main class for the widget application is named JuneauWidgets.java. To place
this class into a package named org.juneau, physically move the source file into a directory named juneau,
which resides within the org directory, which in turn resides within the root of the source folder for the
application. The directory structure should look like the following:

/org/juneau/JuneauWidgets.java

The source for JuneauWidgets.java is as follows:

package org.juneau;

/**
 * The main class for the Juneau Widgets application.
 * @author juneau
 */
public class JuneauWidgets {
 public static void main(String[] args){
 System.out println("Welcome to my app!");
 }
}

The first line in the source contains the package statement, which lists the name of the package that the
source file is located within. The entire package path is listed in the statement, and the names in the path are
separated by dots.

 ■ Note A package statement must be the first statement listed within the Java source. however, there may
be a comment or Javadoc comment written before the package statement. For more information on comments
or Javadoc, please see Recipe 1-12.

An application can consist of any number of packages. If the widget application contains a few classes
that represent widget objects, they could be placed within the org.juneau.widget package. The application
may have interfaces that can be used to interact with the widget objects. In this case, a package named org.
juneau.interfaces may also exist to contain any such interfaces.

How It Works
Java packages are useful for organizing source files, controlling access to different classes, and ensuring that
there are no naming conflicts. Packages are represented by a series of physical directories on a file system,
and they can contain any number of Java source files. Each source file must contain a package statement

ChApteR 1 ■ GettInG StARted wIth JAvA 9

13

before any other statements in the file. This package statement lists the name of the package in which the
source file resides. In the solution to this recipe, the source included the following package statement:

package org.juneau;

This package statement indicates that the source file resides within a directory named juneau, and that
directory resides within another directory named org. Package-naming conventions can vary by company
or organization. However, it is important that words are in all lowercase so they do not conflict with any Java
class file names. Many companies or organizations will use the reverse of their domain name for package
naming. However, if a domain name includes hyphens, underscores should be used instead.

 ■ Note when a class resides within a Java package, it is no longer referenced by only the class name, but
instead the package name is prepended to the class name, which is known as the fully qualified name. For
instance, because the class that resides within the file JuneauWidgets.java is contained within the org.
juneau package, the class is referenced using org.juneau.JuneauWidgets, not simply JuneauWidgets.
An identically named class can reside within a different package (for instance, org.java9recipes.
JuneauWidgets).

Packages are very useful for establishing levels of security as well as organization. By default, different
classes that reside within the same package have access to each other. If a source file resides within a
different package than another file that it needs to use, an import statement must be declared at the top
of the source file (underneath the package statement) to import that other file for use; otherwise, the fully
qualified package.class name must be used within the code. Classes may be imported separately, as
demonstrated in the following import statement:

import org.juneau.JuneauWidgets;

However, it is often likely that all classes and type files that reside within a package need to be used.
A single import statement utilizing a wildcard character (*) can import all files within a named package as
follows:

import org.juneau.*;

Although it is possible to import all files, it is not recommended unless absolutely necessary. As a
matter of fact, it is considered a poor programming practice to include many import statements that use the
wildcard. Instead, classes and type files should be imported individually.

Organizing classes within packages can prove to be very helpful. Suppose that the widget application
that was described in the solution to this recipe includes different Java classes for each different widget
object. Each of the widget classes could be grouped into a single package named org.juneau.widgets.
Similarly, each of the widgets could extend some Java type or interface. All such interfaces could be
organized into a package named org.juneau.interfaces.

Any substantial Java application will include packages. Any Java library or Application Programming
Interface (API) that you use includes packages. When you import classes or types from those libraries and
APIs, you are really importing packages.

ChApteR 1 ■ GettInG StARted wIth JAvA 9

14

1-5. Declaring Variables and Access Modifiers
Problem
You want to create some variables and manipulate data within your program. Furthermore, you wish to
make some of the variables available to only the current class, whereas others should be available to all
classes, or just the other classes within the current package.

Solution
Java implements eight primitive data types. There is also special support for the String class type. Listing 1-2
shows an example declaration of each. Draw from the example to declare the variables needed in your own
application.

Listing 1-2. Declarations for Primitive and String Types

package org.java9recipes.chapter01.recipe1_05;

public class DeclarationsExample {
 public static void main (String[] args) {
 boolean BooleanVal = true; /* Default is false */

 char charval = 'G'; /* Unicode UTF-16 */
 charval = '\u0490'; /* Ukrainian letter Ghe(Ґ) */

 byte byteval; /* 8 bits, -127 to 127 */
 short shortval; /* 16 bits, -32,768 to 32,768 */
 int intval; /* 32 bits, -2147483648 to 2147483647 */
 long longval; /* 64 bits, -(2^64) to 2^64 - 1 */

 float floatval = 10.123456F; /* 32-bit IEEE 754 */
 double doubleval = 10.12345678987654; /* 64-bit IEEE 754 */

 String message = "Darken the corner where you are!";
 message = message.replace("Darken", "Brighten");
 }
}

 ■ Note If you’re curious about the Ukrainian letter in Listing 1-2, it is the Cyrillic letter Ghe with upturn. You
can read about its history at: http://en.wikipedia.org/wiki/Ghe_with_upturn. You can find its code point
value in the chart at http://www.unicode.org/charts/PDF/U0400.pdf. And the URL http://www.unicode.
org/charts/ is a good place to start whenever you need to find the code point corresponding to a given
character.

Variables are subject to the concept of visibility. Those created in Listing 1-2 are visible from the main()
method after they have been created, and they are deallocated when the main() method ends. They have no
“life” beyond the main() method, and are not accessible from outside of main().

http://en.wikipedia.org/wiki/Ghe_with_upturn
http://www.unicode.org/charts/PDF/U0400.pdf
http://www.unicode.org/charts/
http://www.unicode.org/charts/

ChApteR 1 ■ GettInG StARted wIth JAvA 9

15

Variables created at the class level are a different story. Such variables can be termed as class fields or
class members, as in fields or members of the class. Use of a member can be restricted to objects of the class
in which it is declared, to the package in which it is declared, or it can be accessible from any class in any
package. Listing 1-3 shows some of how to control visibility via the private and public keywords.

Listing 1-3. Visibility and the Concept of Fields

package org.java9recipes.chapter01.recipe1_05;

class TestClass {
 private long visibleOnlyInThisClass;
 double visibleFromEntirePackage;
 void setLong (long val) {
 visibleOnlyInThisClass = val;
 }

 long getLong () {
 return visibleOnlyInThisClass;
 }
}

public class VisibilityExample {
 public static void main(String[] args) {
 TestClass tc = new TestClass();
 tc.setLong(32768);
 tc.visibleFromEntirePackage = 3.1415926535;
 System.out.println(tc.getLong());
 System.out.println(tc.visibleFromEntirePackage);
 }
}

Output:

32768
3.1415926535

Members are typically bound to an object of a class. Each object of a class contains an instance of each
member in the class. However, you can also define so-called static fields that occur just once, and with a
single value that is shared by all instances of the given class. Listing 1-4 illustrates the difference.

Listing 1-4. Static Fields

package org.java9recipes.chapter01.recipe1_05;

class StaticDemo {
 public static boolean oneValueForAllObjects = false;
}

public class StaticFieldsExample {
 public static void main (String[] args) {
 StaticDemo sd1 = new StaticDemo();
 StaticDemo sd2 = new StaticDemo();
 System.out.println(sd1.oneValueForAllObjects);

ChApteR 1 ■ GettInG StARted wIth JAvA 9

16

 System.out.println(sd2.oneValueForAllObjects);
 sd1.oneValueForAllObjects = true;
 System.out.println(sd1.oneValueForAllObjects);
 System.out.println(sd2.oneValueForAllObjects);
 }

}

Listing 1-4 produces the following output:

false
false
true
true

The field oneValueForAllObjects was set to true only for the class instance named sd1. Yet it is true for
instance sd2 also. This is because of the keyword static used in declaring that field. Static fields occur one
time for all objects of their class.

How It Works
Listing 1-2 illustrates the basic format of a variable declaration:

type variable;

It’s common to initialize variables when declaring them, so you’ll often see:

type variable = initialValue;

Field declarations can be preceded by modifiers. For example:

public static variable = initialValue;
protected variable;
private variable;

It’s common to put the visibility modifier — public, protected, or private — first, but you are free to
list the modifiers in any order you like. Be aware that there are additional modifiers that you will encounter
and need to learn about as you get deeper into the language. By default, if no modifier has been specified,
the class or member is made package-private, meaning that only other classes within the package have
access to the member. If a class member is specified as protected, then it is also package-private, with the
exception that any subclass of its class in another package also has access.

The String type is special in Java. It’s really a class type, but syntactically you can treat it as a primitive
type. Java automatically creates a String object whenever you enclose a String of characters within double
quotes ("..."). You aren’t required to invoke a constructor, nor to specify the new keyword. Yet String is
a class, and there are methods in that class that are available to you. One such method is the replace()
method shown at the end of Listing 1-2.

Strings are composed of characters. Java’s char type is a two-byte construct for storing a single character
in Unicode-s UTF-16 encoding. You can generate literals of the char type in two ways:

•	 If a character is easy to type, then enclose it within single quotes (e.g.: 'G').

•	 Otherwise, specify the four-digit UTF-16 code point value prefaced by \u
(e.g.: '\u0490').

ChApteR 1 ■ GettInG StARted wIth JAvA 9

17

Some Unicode code points require five digits. These cannot be represented in a single char value.
See Chapter 12 if you need more information on Unicode and internationalization.

Avoid using any of the primitive types for monetary values. Especially avoid either of the floating-point
types for that purpose. Refer instead to Chapter 12 and its recipe on using the Java Money API to calculate
monetary amounts (Recipe 12-10). BigDecimal can also be useful anytime you need accurate, fixed-decimal
arithmetic.

If you are new to Java, you may be unfamiliar with the String[] array notation, as demonstrated in
the examples. Please see Chapter 7 for more information on arrays. It covers enumerations, arrays, and
also generic data types. Also in that chapter are examples showing how to write iterative code to work with
collections of values such as an array.

1-6. Compiling and Executing from the Command-Line or
Terminal Interpreter
Problem
You aren’t able to install an IDE, or prefer to use a standard text editor for development. Moreover, you want
to compile and execute your Java programs from the command line or terminal so that you have complete
control over the environment.

Solution
Compile your programs using the javac command. Then execute them via the java command.

Begin by making sure you have your JDK’s bin directory in your execution path. You might need to
execute a command such as one of the following.

Windows:

setx path "%path%;C:\Program Files\Java\jdk1.9.0\bin"

OS X:

export PATH=/Library/Java/JavaVirtualMachines/jdk1.9.0.jdk/Contents/Home/bin

Then make sure your CLASSPATH environment variable includes the directory containing your Java code.
The following is an example of setting the environment variable under Windows:

set CLASSPATH=<<path-to-my-Java>>

Now change your current working directory to be the one corresponding to your project. Recipe 1-2
had you create a project named Java9Recipes. Change to that project’s directory on a Windows system as
follows:

cd <path-to-project>\Java9Recipes

Descend one level into the src subdirectory:

cd src

http://dx.doi.org/10.1007/978-1-4842-1976-8_12
http://dx.doi.org/10.1007/978-1-4842-1976-8_12
http://dx.doi.org/10.1007/978-1-4842-1976-8_7

ChApteR 1 ■ GettInG StARted wIth JAvA 9

18

From here, you can issue javac commands to compile any classes in your project. Prepend the
appropriate package name as part of your path leading to each source file to be compiled. Be sure to
include the .java extension after your file name. For example, issue the following command to compile the
HelloWorld class from Recipe 1-2.

Windows:

javac org\java9recipes\chapter01\recipe1_02\HelloWorld.java

OS X:

javac org/java9recipes/chapter01/recipe1_02/HelloWorld.java

Once the compilation is complete, you will have a .class file in the same directory as your .java file.
For example, if you perform a directory listing, you should see four files:

dir org\java9recipes\chapter01\recipe1_02

HelloMessage.class
HelloWorld.class
HelloMessage.java
HelloWorld.java

Compilation produces two files. One is for HelloMessage, and the other is for the class named
HelloWorld implementing the main() method.

Execute the main() method by issuing the java command to invoke the Java Virtual Machine (JVM).
Pass the fully qualified class name as a parameter to the command. Qualify the class name by prepending
the package name, but this time use the same dot-notation as used in your source file. For example:

java org.java9recipes.chapter1.recipe1_02.HelloWorld

Do not specify .class at the end of the command. You are referencing HelloWorld now as a class name,
and not as a file name. You should see the same output as from Recipe 1-2.

 ■ Tip One must compile source code. Source code is kept in files with a .java suffix, so your operating
system’s file and directory-path notation is appropriate. One executes a class. A class is an abstract concept in
the language, so the language’s dot-notation becomes appropriate. Keep this distinction in mind to help yourself
remember when to use which notation.

How It Works
The first two solution steps are housekeeping steps. You must have the Java compiler and the virtual
machine in your execution path. It’s also necessary for any classes used by your program to be found
somewhere along what is termed the classpath. One way to specify the class path is through the CLASSPATH
environment variable. See Recipe 1-3 for more information on the classpath.

ChApteR 1 ■ GettInG StARted wIth JAvA 9

19

 ■ Note the Java Modularity system added a couple of options to the javac compiler. please see Chapter 22
for more information.

The command java with no c at the end is for executing compiled code. Pass as a parameter the
qualified name of the class containing your main method. The JVM will interpret and execute the byte-
code within that class, beginning from the main method. The JVM will search along the classpath for any
additionally required classes such as HelloMessage.

The compiler’s default behavior is to place each generated class file into the same directory as holds the
corresponding source file. You can override that behavior through the -d option. For example:

javac -d "<specify-different-location>" "<path-to-project>
\Java9Recipes\src\org\java9recipes\chapter1\recipe1_02\HelloWorld.java"

The -d option in this command designates a directory in our own environment as the target for holding
generated class files. The command also specifies the full path and file name of the source file. Thus, the
command can be executed with the same result regardless of the current working directory.

 ■ Tip Configure your system so that your command-line environment has the execution path and classpath
set correctly by default. the typical approach in Linux- or Unix-based operating systems is to put appropriate
commands into your .profile or .bash_profile files. Under windows you can specify environment variable
defaults from the Control panel window named System, by clicking the Advanced system settings link, and then
the environment variables button.

There may be times when you need to specify a custom class path for a specific execution of the JVM.
You can do that through the -cp parameter, as follows:

java -cp ".;<path-to-project>\Java9Recipes\build\classes\org\java9recipes\chapter1\
recipe1_02"
org.java9recipes.chapter1.recipe1_02.HelloWorld

This execution will search first in the current working directory (the leading dot in the classpath), and
then under the specified package directory corresponding to where NetBeans would place the compiled
classes.

 ■ Note See Recipe 1-3 for more on configuring your classpath.

1-7. Developing Within the Interactive jShell
Problem
You wish to write Java code and have it interpreted immediately, so that you can test, prototype, and alter
your code quickly, without the need to wait for compilation or the ceremony of writing an entire Java class to
perform a trivial task.

http://dx.doi.org/10.1007/978-1-4842-1976-8_22

ChApteR 1 ■ GettInG StARted wIth JAvA 9

20

Solution
Make use of the interactive jShell, new in Java 9, by opening a command prompt or terminal, and executing
the jshell utility. The jshell is located in your JDK home bin directory, just like the java and javac utilities.
Assuming that the <JDK>/bin directory is in the CLASSPATH, the jShell can be invoked using as such:

jshell
| Welcome to JShell -- Version 1.9.0
| Type /help for help

->

Once the interpreter has been started, declarations can be defined for the lifetime of the jShell session,
expressions and statements can be typed and executed immediately, and so on. The jShell also allows Java
developers to write a shorthand version of the language by eliminating superfluous constructs such as
semicolons. Listing 1-5 demonstrates some of the basic functionality that is provided by the jShell. Keep in
mind that when you are using the interactive shell, if you at any time need assistance, you can type the /help
command.

Listing 1-5. Interactive jShell

-> System.out.println("Hello World")
Hello World
-> 1 + 1
| Expression value is: 2
| assigned to temporary variable $1 of type int
-> System.out.println("Hello Java 9")
Hello Java 9

-> // working with classes

-> class Main {
>> // Main method
>> public static void main(String[] args) {
>> System.out.println("Classes within jShell");
>> int index = 0;
>> while(index <= 10){
>> System.out.println("Looping: " + index);
>> index++;
>> }
>> }
>> }
| Added class Main

-> // List classes currently loaded in jShell
-> /classes
| class Main
-> // Execute Class
-> Main.main(null)
Classes within jShell
Looping: 0
Looping: 1

ChApteR 1 ■ GettInG StARted wIth JAvA 9

21

Looping: 2
Looping: 3
Looping: 4
Looping: 5
Looping: 6
Looping: 7
Looping: 8
Looping: 9
Looping: 10

-> // Reset the state of the jshell
-> /r
| Resetting state.
-> /classes

-> // Using imports
-> import java.util.ArrayList
-> import java.util.List
-> List<String> colors = new ArrayList<>();
| Added variable colors of type List<String> with initial value []
-> colors.add("red")
| Expression value is: true
| assigned to temporary variable $4 of type boolean
-> colors.add("orange")
| Expression value is: true
| assigned to temporary variable $5 of type boolean
-> colors.add("yellow")
| Expression value is: true
| assigned to temporary variable $6 of type boolean
-> colors
| Variable colors of type List<String> has value [red, orange, yellow]

-> // List the current jShell session variables
-> /v
| List<String> colors = [red, orange, yellow]
| boolean $4 = true
| boolean $5 = true
| boolean $6 = true

-> // List the commands that have been executed
-> /list

 1 : import java.util.ArrayList;
 2 : import java.util.List;
 3 : List<String> colors = new ArrayList<>();
 4 : colors.add("red")
 5 : colors.add("orange")
 6 : colors.add("yellow")
 7 : colors

ChApteR 1 ■ GettInG StARted wIth JAvA 9

22

As mentioned previously, one of the boons to having an interactive shell is for prototyping code. In
many cases, developers wish to prototype classes and objects. Listing 1-5 demonstrates how to type the code
for a class into the jShell, along with some of the commands that can be useful while working with classes.
When prototyping, it can oftentimes be helpful to copy code from your favorite editor and paste it into the
jShell, then execute commands against it.

How It Works
The jShell provides a Read Evaluate Print Loop (REPL) environment for developers to type or paste in code
“snippets” and have them executed immediately. Much like the REPL environments or other languages such
as Groovy, Python, and JRuby, the jShell provides an excellent environment for prototyping code, and even
for executing stored scripts of Java code on the fly.

The jShell allows one to write abbreviated Java code, otherwise known as snippets. This can be beneficial
as it allows one to focus on the logic, rather than the syntax. One of the most used shortcuts is the ability to
leave semicolons off the end of a line. To facilitate rapid prototyping, variables can be declared outside of
classes, expressions and methods can be typed on the fly outside of classes and interfaces, and expressions
leave no side effects. Along with the ability to write code on the fly, the jShell provides a system that facilitates
the addition, modification, and removal of code fragments within an active session or instance.

An active session or instance of the jShell environment constitutes a single JShellState. An instance
of the JShellState includes all previously defined variables, methods, classes, import statements, and
so on, that have been made within that same jShell session. Once the jShell instance is terminated, the
JShellState is ended, and therefore all declarations are lost.

There are a number of helper commands that can be typed into the jShell to retrieve information
regarding the current JShellState. The /classes command lists all of the classes that have been typed
into the current JShellState. The /list command lists all of the statements, expressions, classes, methods,
imports, and so on, that have been typed into the current JShellState. The /list command provides a line
number next to each of the listings, which enables one to easily re-execute that line of code using typing
/ followed by the line number that you wish to re-execute. Therefore, if you wish to execute line number
2 again, you would type /2 to have that line executed again. Table 1-1 contains a complete listing of the
commands available within jShell.

Table 1-1. jShell Commands

Command Description

/l or /list Lists the sources typed into the current session.

/e or /edit [name or id of source] Opens JShell Edit Pad. Optionally type the name or id of the source
entry to edit.

/d or /drop [name/id of source] Deletes or drops the source referenced by name or id.

/s or /save [all|history] Saves sources that have been typed in the current session.

/o or /open Opens a file of source within the jShell.

/v or /vars Lists variables that have been declared in the current session along
with their current values.

/m or /methods Lists the methods that have been declared in the current session.

/c or /classes Lists the classes that have been declared in the current session.

/x or /exit Exits the current jShell session.

/r or /reset Resets the JShellState for the current session.

(continued)

ChApteR 1 ■ GettInG StARted wIth JAvA 9

23

If you type the /e command, a scratch pad editor known as “JShell Edit Pad” will open containing the
sources that you’ve entered for the current JShellState, as shown in Figure 1-6. You can edit the sources
within this pad and then click the “Accept” button to have those sources evaluated within jShell.

Figure 1-6. JShell Edit Pad

Command Description

/f or /feedback [level] Initiates feedback- options include (off, concise, normal, verbose,
default, or ?).

/p or /prompt Toggles the display of the prompt within the shell.

/cp or /classpath [path] Adds the typed path to the current CLASSPATH.

/h or /history Lists the history of the active JShellState.

/setstart [file] Reads and sets the startup definition file.

/savestart [file] Saves the current session’s definitions to the designated startup file.

/! Re-executes the last code snippet.

/<n> Re-executes the nth code snippet.

/-<n> Re-executes the nth previous code snippet.

Table 1-1. (continued)

ChApteR 1 ■ GettInG StARted wIth JAvA 9

24

Other useful features of the jShell are that you can bring up the previously typed command by pressing
the up arrow on your keyboard. The interactive shell also features tab-completion. If you begin typing a
statement and then press the Tab key, either the statement will be autocompleted for you or a list of options
for the characters currently typed will be displayed. It is also possible to set up a predefined list of imports so
that each time a jShell session is started, those imports will occur automatically.

The jShell provides an interactive environment that allows immediate feedback while typing code
snippets. This can be beneficial for prototyping or learning the language. Other languages, such as Groovy,
Python, and Scala, have similar REPL environments. Now that the jShell is available for Java, it opens the
door for a more interactive environment for classroom use and increased developer prototyping productivity.

 ■ Tip to learn more about the commands available within the jShell, simply type /help once the shell has
opened. the help feature displays an extensive listing of the features available in the jShell.

1-8. Converting to and from a String
Problem
You have a value stored within a primitive data type, and you want to represent that value as a human-
readable String. Or, you want to go in the other direction by converting a human-readable String into a
primitive data type.

Solution
Follow one of the patterns from Listing 1-6. The listing shows conversion from a String to a double-precision
floating-point value, and shows two methods for getting back to a String again.

Listing 1-6. General Pattern for String Conversions

package org.java9recipes.chapter01.recipe1_08;

public class StringConversion {

 public static void main (String[] args) {
 double pi;
 String strval;

 pi = Double.parseDouble("3.14");
 System.out.println(strval = String.valueOf(pi));
 System.out.println(Double.toString(pi));
 }

}

How It Works
The solution illustrates some conversion patterns that work for all the primitive types. First, there is the
conversion of a floating-point number from its human-readable representation into the IEEE 754 format
used by the Java language for floating-point arithmetic:

pi = Double.parseDouble("3.14");

ChApteR 1 ■ GettInG StARted wIth JAvA 9

25

Notice the pattern. You can replace Double with Float, or by Long, or by whatever other type is your
target data type. Each primitive type has a corresponding wrapper class by the same name but with the
initial letter uppercase. The primitive type here is double, and the corresponding wrapper is Double. The
wrapper classes implement helper methods such as Double.parseDouble(), Long.parseLong(), Boolean.
parseBoolean(), and so forth. These parse methods convert human-readable representations into values of
the respective types.

Going the other way, it is often easiest to invoke String.valueOf(). The String class implements this
method, and it is overloaded for each of the primitive data types. Alternatively, the wrapper classes also
implement toString() methods that you can invoke to convert values of the underlying type into their
human-readable forms. It’s your own preference as to which approach to take.

Conversions targeting the numeric types require some exception handling to be practical. You generally
need to gracefully accommodate a case in which a character-string value is expected to be a valid numeric
representation, but it’s not. Chapter 9 covers exception handling in detail, and the upcoming Recipe 1-10
provides a simple example to get you started.

 ■ Caution Literals for the Boolean type are "true" and "false". they are case-sensitive. Any value
other than these two is silently interpreted as false when converting from a String using the Boolean
parseBoolean() conversion method.

1-9. Passing Arguments via Command-Line Execution
Problem
You want to pass values into a Java application that is being invoked via the command line via the java
utility.

Solution
Run the application using the java utility, and specify the arguments that you want to pass into it after the
application name. If you’re passing more than one argument, each should be separated by a space. For
example, suppose you want to pass the arguments to the class created in Listing 1-7.

Listing 1-7. Example of Accessing Command-Line Arguments

package org.java9recipes.chapter01.recipe1_09;

public class PassingArguments {
 public static void main(String[] args){
 if(args.length > 0){
 System.out.println("Arguments that were passed to the program: ");
 for (String arg:args){
 System.out.println(arg);
 }
 } else {
 System.out.println("No arguments passed to the program.");
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-1976-8_9

ChApteR 1 ■ GettInG StARted wIth JAvA 9

26

First, make sure to compile the program so that you have a .class file to execute. You can do that from
within NetBeans by right-clicking the file and choosing the “Compile File” option from the context menu, or
via the javac utility at the command line or terminal.

Next, open a Command Prompt or terminal window and traverse into the build\classes directory for
your project. (See Recipe 1-6 for an extensive discussion of executing from the command line). For example:

cd <path-to-project>\Java9Recipes\build\classes

Now issue a java command to execute the class, and type some arguments on the command line
following the class name. The following example passes two arguments:

java org.java9recipes.chapter01.recipe1_09.PassingArguments Upper Peninsula

You should see the following output:

Arguments that were passed to the program:
Upper
Penninsula

Spaces separate arguments. Enclose Strings in double quotes when you want to pass an argument
containing spaces or other special characters. For example:

java org.java9recipes.chapter01.recipe1_09.PassingArguments "Upper Peninsula"

The output now shows just one argument:

Arguments that were passed to the program:
Upper Penninsula

The double quotes translate the String "Upper Peninsula" into a single argument.

How It Works
All Java classes that are executable from the command line or terminal contain a main() method. If you look
at the signature for the main() method, you can see that it accepts a String[] argument. In other words,
you can pass an array of String objects into the main() method. Command-line interpreters such as the
Windows Command Prompt and the various Linux and Unix shells build an array of Strings out of your
command-line arguments, and pass that array to the main() method on your behalf.

The main() method in the example displays each argument that is passed. First, the length of the array
named args is tested to see whether it is greater than zero. If it is, the method will loop through each of the
arguments in the array by executing a for loop, displaying each argument along the way. If there are no
arguments passed, the length of the args array will be zero, and a message indicating such will be printed.
Otherwise, you see a different message followed by a list of arguments.

Command-line interpreters recognize spaces and sometimes other characters as delimiters. It’s
generally safe to pass numeric values as arguments delimited by spaces without bothering to enclose each
value within quotes. However, you should get into the habit of enclosing character-string arguments in
double quotes, as shown in the final solution example. Do that to eliminate any ambiguity over where each
argument begins and ends.

ChApteR 1 ■ GettInG StARted wIth JAvA 9

27

 ■ Note All arguments are seen by Java as character Strings. If you pass numeric values as parameters, they
enter Java as character Strings in human-readable form. You can convert them into their appropriate numeric
types using the conversion methods shown in Recipe 1-8.

1-10. Executing a Script via the jShell
Problem
You wish to write a prototype or script and execute it via the jShell utility from the command line or terminal.

Solution
While the jShell is not intended to provide a new language syntax for Java development, it is possible to
save source snippets for execution within the jShell into a file, and then pass the file to the jShell utility for
execution. In this solution, we’ll save a simple snippet into a file named myScript.java, and execute it with
the jShell utility.

To get started, save the following source code into a file named myScript.java, and save it to your file
system.

System.out.println("Hello from jShell")
/x

Execute the script using the following syntax:

jShell <path-to-file>/myScript.java

Output:

Hello from jShell

How It Works
Sometimes it can be beneficial to use a text editor or the JShell Edit Pad (see Recipe 1-7) to save sources that
can be executed within the jShell environment. This increases the ability to rapidly prototype code, and it
also facilitates the ability to develop scripts that can be executed time and time again. This can be useful for
development of scheduled tasks or administrative tasks that can be executed by the JVM. As such, sources
for the jShell can be stored into a file containing the extension of your choice, and then the file can be passed
to the jShell for execution.

In the solution, a simple String is printed as output, and then the jShell environment is exited. Notice
that the /x command is placed on a separate line after the sources within the file. The /x command tells the
jShell environment to exit upon completion. If exiting upon completion, any variables, method, classes,
and so on, that are defined within the file are lost once the sources have run to completion and the jShell
environment is closed.

It is not recommended to write applications using the jShell environment for execution. In fact, GUI
applications are out of scope for the jShell, and debuggers are also not supported. The environment is clearly
intended for educational and prototyping purposes. However, some may find it handy to save snippets of
code for execution via the jShell at a later time.

ChApteR 1 ■ GettInG StARted wIth JAvA 9

28

1-11. Accepting Input from the Keyboard
Problem
You are interested in writing a command-line or terminal application that will accept user input from the
keyboard.

Solution
Make use of the java.io.BufferedReader and java.io.InputStreamReader classes to read keyboard entry
and store it into local variables. Listing 1-8 shows a program that will keep prompting for input until you
enter some characters that represent a valid value of type long.

Listing 1-8. Keyboard Input and Exception Handling

package org.java9recipes.chapter01.recipe1_11;

import java.io.*;

public class AcceptingInput {
 public static void main(String[] args){
 BufferedReader readIn = new BufferedReader(
 new InputStreamReader(System.in)
);
 String numberAsString = "";
 long numberAsLong = 0;

 boolean numberIsValid = false;
 do {
 /* Ask the user for a number. */
 System.out.println("Please enter a number: ");
 try {
 numberAsString = readIn.readLine();
 System.out.println("You entered " + numberAsString);
 } catch (IOException ex){
 System.out.println(ex);
 }

 /* Convert the number into binary form. */
 try {
 numberAsLong = Long.parseLong(numberAsString);
 numberIsValid = true;
 } catch (NumberFormatException nfe) {
 System.out.println ("Not a number!");
 }
 } while (numberIsValid == false);
 }
}

ChApteR 1 ■ GettInG StARted wIth JAvA 9

29

Following is an example run of this program:

Please enter a number:
No
You entered No
Not a number!
Please enter a number:
Yes
You entered Yes
Not a number!
Please enter a number:
42
You entered 42
BUILD SUCCESSFUL (total time: 11 seconds)

The first two inputs did not represent valid values in the long data type. The third value was valid, and
the run ended.

How It Works
Quite often our applications need to accept user input of some kind. Granted, most applications are not
used from the command line or terminal nowadays, but having the ability to create an application that
reads input from the command line or terminal helps to lay a good foundation, and may be useful in some
applications or scripts. Terminal input can also be useful in developing administrative applications that you
or a system administrator may use.

Two helper classes were used in the solution to this recipe. They are java.io.BufferedReader and
java.io.InputStreamReader. The early portion of the code that’s using those classes is especially important
to understand:

BufferedReader readIn = new BufferedReader(
 new InputStreamReader(System.in)
);

The innermost object in this statement is System.in. It represents the keyboard. You do not need to
declare System.in. Java’s runtime environment creates the object for you. It is simply available to be used.

System.in provides access to raw bytes of data from the input device, which is the keyboard in our
example. It is the job of the InputStreamReader class to take those bytes and convert them into characters
in your current character set. System.in is passed to the InputStreamReader() constructor to create an
InputStreamReader object.

InputStreamReader knows about characters, but not about lines. It is the BufferedReader class’s
job to detect line breaks in the input stream, and to enable you to conveniently read a line at a time.
BufferedReader also aids efficiency by allowing physical reads from the input device to be done in different-
size chunks than by which your application consumes the data. This aspect can make a difference when the
input stream is a large file rather than the keyboard.

Following is how the program in Listing 1-8 makes use of an instance (named readIn) of the
BufferedReader class to read a line of input from the keyboard:

numberAsString = readIn.readLine();

ChApteR 1 ■ GettInG StARted wIth JAvA 9

30

Executing this statement triggers the following sequence:

 1. System.in returns a sequence of bytes.

 2. InputStreamReader converts those bytes into characters.

 3. BufferedReader breaks the character stream into lines of input.

 4. readLine() returns one line of input to the application.

I/O calls must be wrapped in try-catch blocks. These blocks are used to catch any exceptions that may
occur. The try part in the example will fail in the event a conversion is unsuccessful. A failure prevents the
numberIsValid flag from being set to true, which causes the do loop to make another iteration so that the
user can try again at entering a valid value. To learn more about catching exceptions, please see Chapter 9.

The following statement at the top of Listing 1-8 deserves some mention:

import java.io.*;

This statement makes available the classes and methods defined in the java.io package. These include
InputStreamReader and BufferedReader. Also included is the IOException class used in the first try-catch
block.

1-12. Documenting Your Code
Problem
You want to document some of your Java classes to assist in future maintenance.

Solution
Use Javadoc to place comments before any class, method, or field that you want to document. To begin such
a comment, write the characters /**. Then begin each subsequent line with an asterisk (*). Lastly, close the
comment with the characters */ on a line by themselves at the end. Listing 1-9 shows a method commented
with Javadoc.

Listing 1-9. Comments Made in Javadoc Form

package org.java9recipes.chapter01.recipe1_12;

import java.math.BigInteger;

public class JavadocExample {
 /**
 * Accepts an unlimited number of values and
 * returns the sum.
 *
 * @param nums Must be an array of BigInteger values.
 * @return Sum of all numbers in the array.
 */

http://dx.doi.org/10.1007/978-1-4842-1976-8_9

ChApteR 1 ■ GettInG StARted wIth JAvA 9

31

 public static BigInteger addNumbers(BigInteger[] nums) {
 BigInteger result = new BigInteger("0");
 for (BigInteger num:nums){
 result = result.add(num);
 }

 return result;
 }
 /**
 * Test the addNumbers method.
 * @param args not used
 */
 public static void main (String[] args) {
 BigInteger[] someValues = {BigInteger.TEN, BigInteger.ONE};
 System.out.println(addNumbers(someValues));
 }
}

Comments can be added to the beginning of classes and fields in the same way. The comments
are helpful to you and other programmers maintaining the code, and their specific format enables easy
generation of an HTML reference to your code.

Generate the HTML reference by invoking the tool named Javadoc. This is a command-line tool
that parses a named Java source file and formulates HTML documentation based upon the defined class
elements and Javadoc comments. For example:

javadoc JavadocExample.java

This command will produce several HTML files containing the documentation for the class, methods,
and fields. If no Javadoc comments exist within the source, some default documentation will still be
produced. To view the documentation, load the following file into your browser:

index.html

The file will be in the same directory as the class or package that you are documenting. There will also
be an index-all.html file giving a strict alphabetical listing of documented entities.

Keep in mind that the same rules apply when using the Javadoc tool as when using javac. You must
reside within the same directory as the source file, or prepend the name of the file with the path to where the
file is located.

How It Works
Generating documentation for applications from scratch can be quite tedious. Maintaining documentation
can be even more troublesome. The JDK comes packaged with an extensive system for documentation
known as Javadoc. Placing some special comments throughout your code source and running a simple
command-line tool makes it easy to generate useful documentation and keep it current. Moreover, even
if some of the classes, methods, or fields in an application are not commented specifically for the Javadoc
utility, default documentation will still be produced for such elements.

ChApteR 1 ■ GettInG StARted wIth JAvA 9

32

Formatting the Documentation
To create a Javadoc comment, begin with the characters /**. Although optional since Java 1.4, a common
practice is to include an asterisk as the first character of every subsequent line within the comment. Another
good practice is to indent the comment so that it aligns with the code that is being documented. Lastly, close
the comment with the characters */.

Javadoc comments should begin with a short description of the class or method. Fields are rarely
commented using Javadoc, unless they are declared public static final (constants), in which case it is a
good idea to supply a comment. A comment can be several lines in length, and can even contain more than
one paragraph. If you want to break comments into paragraphs, then separate those paragraphs using the
<p> tag. Comments can include several tags that indicate various details regarding the method or class that is
being commented. Javadoc tags begin with an ampersand (@), and some of the common tags are as follows:

@param: Name and description of a parameter
@return: What is returned from the method
@see: Reference to another piece of code

You may also include inline links within Javadoc to reference URLs. To include an inline link, use the
tag {@link My Link}, where link is the actual URL that you want to point at and My Link is the text that you
want to have appear. There are also many other tags that can be used within Javadoc comments, including
{@literal}, {@code}, {@value org}, and many others. For a complete listing, see the Javadoc reference on
the OTN website.

Executing the Tool
The Javadoc tool can also be run against entire packages or source. Simply pass a package name to the
Javadoc tool rather than individual source file names. For instance, if an application includes a package
named org.juneau.beans, all source files within that package can be documented by running the tool as
follows:

javadoc org.juneau.beans

To generate Javadoc for more than one package at a time, separate the package names with spaces as
follows:

javadoc org.juneau.beans org.juneau.entity

Another option is to specify the path to the source files using the –sourcepath flag. For example:

javadoc –sourcepath /java/src

By default, the Javadoc tool will generate HTML and place it into the same package as the code being
documented. That result can become a cluttered nightmare if you like to have source files separate from
documentation. You can instead set up a destination for the generated documentation by passing the –d flag
to the Javadoc tool.

ChApteR 1 ■ GettInG StARted wIth JAvA 9

33

1-13. Reading Environment Variables
Problem
The application you are developing needs to make use of some environment variables. You want to read the
values that have been set from the operating-system level.

Solution
Make use of the Java System class to retrieve any environment variable values. The System class has
a method called getenv(), which accepts a String argument corresponding to the name of a system
environment variable. The method will then return the value of the given variable. If no matching
environment variable exists, a NULL value will be returned. Listing 1-10 provides an example. The class
ReadOneEnvVariable accepts an environment variable name as a parameter, and displays the variable’s
value that has been set at the operating-system level.

Listing 1-10. Reading an Environment Variable’s Value

package org.java9recipes.chapter1.recipe1_13;

public class ReadOneEnvVariable {
 public static void main(String[] args) {
 if (args.length > 0) {
 String value = System.getenv(args[0]);
 if (value != null) {
 System.out.println(args[0].toUpperCase() + " = " + value);
 } else {
 System.out.println("No such environment variable exists");
 }
 } else {
 System.out.println("No arguments passed");
 }
 }
}

If you are interested in retrieving the entire list of environment variables that is defined on a system, do
not pass any arguments to the System.getenv() method. You’ll receive back an object of type Map having all
the values. You can iterate through them as shown in Listing 1-11.

Listing 1-11. Iterating Through a Map of Environment Variables

package org.java9recipes.chapter1.recipe1_13;

import java.util.Map;

public class ReadAllEnvVariables {
 public static void main(String[] args){
 if(args.length > 0){
 String value = System.getenv(args[0]);
 if (value != null) {
 System.out.println(args[0].toUpperCase() + " = " + value);

ChApteR 1 ■ GettInG StARted wIth JAvA 9

34

 } else {
 System.out.println("No such environment variable exists");
 }
 } else {
 Map<String, String> vars = System.getenv();
 for(String var : vars.keySet()){
 System.out.println(var + " = " + vars.get(var));
 }
 }
 }
}

How It Works
The System class contains many different utilities that can aid in application development. One of those is
the getenv() method, which will return a value for a given system environment variable.

You can also return the values from all variables, in which case those values are stored in a map. A map
is a collection of name/value pairs. Chapter 7 provides additional information about maps, including a
recipe showing in detail how to iterate over them.

The method invoked to obtain environment variable values in Listings 1-10 and 1-11 is the same. It’s
been overloaded to handle both cases shown in the solution. Pass the name of a variable as a String if you
want to obtain just that variable’s value. Pass no argument at all to get back the names and values of all
variables that are currently set.

Summary
This chapter included recipes that allow you to get started working with Java quickly. It covered installation
of the JDK, to installation and use of the NetBeans IDE. The chapter also covered basics such as declaring
variables, compiling code, and documentation. The rest of this book dives deeper into each of the different
areas of the Java language, covering a variety of topics from beginner to expert. Refer to this chapter for
configuration specifics as you work through the examples in the rest of the book.

http://dx.doi.org/10.1007/978-1-4842-1976-8_7

35© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_2

CHAPTER 2

Java 9 Enhancements

Each release of the JDK brings forth new enhancements and capability to the Java platform. Each release
also carries with it backward compatibility with previous releases. This book includes a number of recipes
covering the new features for Java 9, and this chapter showcases a few of the top enhancements to whet your
appetite. By no means is this chapter a complete listing of all Java 9 enhancements. Rather, it is a jump start
to get you going on some of the hot new features of Java 9.

2-1. Avoiding Redundancy in Interface Code
Problem
You would like to implement two or more default methods within an interface that will contain very similar
code. Rather than copying code into each of the different default methods and maintaining each default
method separately, you’d like to encapsulate the similar code into its own method for reuse.

Solution
Make use of a private method in an interface to alleviate this issue. Java 9 provides the ability to include
private methods within an interface. A private method is only available within that interface, and it cannot
be used by any class that implements the interface. However, each default method implementation that is
part of the interface can make use of the private method.

The following interface includes two default methods and one private method. The private method
encapsulates functionality that can then be used in each of the default method implementations.

public interface Pool {

 /**
 * Calculate volume (gal) for a fixed depth square or rectangular pool.
 */
 public default double squareOrRectConstantDepth(double length, double width,

double depth){
 return volumeCalc(length, width, depth);
 }

 /**
 * Calculate volume (gal) for a variable depth square or rectangular pool.
 */

Chapter 2 ■ Java 9 enhanCements

36

 public default double squareOrRectVariableDepth(double length, double width,
 double shallowDepth, double middleDepth,
 double deepDepth){
 double avgDepth = (shallowDepth + middleDepth + deepDepth) / 3;
 return volumeCalc(length, width, avgDepth);
 }

 /**
 * Standard square or rectangular volume calculation.
 */
 private double volumeCalc(double length, double width, double depth){
 return length * width * depth * 7.5;
 }
}

How It Works
Prior to Java 8, it was not possible to include code implementation within a Java interface. An interface
is a reference type in Java, similar to a class. However, its original intent only allowed abstract methods,
constants, static methods, and nested types. Therefore, classes that implemented an interface must
implement each of the abstract methods. In Java 8, that restriction was lifted, and it became possible
to include method implementations in the form of default methods. A default method can contain an
implementation in the interface, or its implementation could be overridden by an implementing class.
Hence, the name default method, meaning that the default method implementation resides in the interface
if one is not provided by the implementation class. Private methods were not allowed in interfaces.

Situations have arisen by which multiple default methods within an interface may contain similar
code. This code can now be encapsulated within a private method implementation within the interface. The
private method implementation cannot be used outside of the interface. It can only be used by any default
methods contained within the same interface. In the solution to this recipe, the volumeCalc() method
returns the calculated volume of a square or rectangular swimming pool using a standard formula. Each of
the default methods within the interface are able to utilize the volumeCalc() method to find the volume.
However, the volumeCalc() method will not be available for use outside of the interface.

This seems to be a controversial topic, as interfaces were originally intended for field and method
declarations only, but it can also be argued that copying the same code throughout a number of default
method implementations would be a bad practice. Take it as you will, this feature makes it easier to reuse
code within an interface, thereby reducing the chance for errors and making maintenance much easier.

2-2. Creating Modules for Simplifying and Code Reuse
Problem
You are writing a utility library or a Java application, and you do not wish to rely upon the classpath to
manage dependencies with other libraries. Furthermore, you wish to package your library such that it can
easily be integrated into other projects.

Solution
Develop your library or application as a module. Creation of modules is quite easy. However, modules can
themselves become quite complex. This example will cover the creation of a very simple module that does
not depend upon any other modules. No other modules will depend upon the module either. Begin by

Chapter 2 ■ Java 9 enhanCements

37

creating a new directory somewhere on your file system…in this case name it “recipe2-2.” Create a new
folder named src within it, and then create a file named module-info.java, which is the module descriptor,
within the src folder. In this file, list the module name as follows:

module org.acme {}

Next, create a folder named org.acme.wordcount within the src directory that was created previously
(Figure 2-1). Next, create a folder named org within the org.acme.wordcount folder. Subsequently, create an
acme folder within the org folder, followed by a wordcount folder within the acme folder.

Figure 2-1. Module folder hierarchy

Now, create the bulk of the module by adding a new file named WordCount.java inside of the wordcount
folder. Place the following code within the WordCount.java file:

package org.acme.wordcount;
public class WordCount {

 public static void main(String[] args) {
 int counter = 0;
 if (args.length > 0){
 for(String arg:args){
 System.out.println("Position " + counter + ": " + arg.length());
 counter++;
 }
 }
 }
}

Make use of the javac utility to compile the module by using the command line or terminal and
traversing inside of the src directory you created earlier. Issue the javac command, specifying the -d flag
to list the folder into which the compiled code will be placed. List each of the source files to be compiled,
including the module-info.java descriptor, separating each with a space. The following command compiles
the sources that were developed in and places the result into a directory named mods/org.acme.wordcount.

javac -d src/mods/org.acme.wordcount src/module-info.java src/org.acme.wordcount/org/acme/
wordcount/WordCount.java

Chapter 2 ■ Java 9 enhanCements

38

Now that the code has been compiled, it is time to execute the module. Use the java executable,
specifying the --module-path option, which is new in Java 9, to indicate the path of the module sources. The
-m option is used to specify the Main class of the module. Traverse inside of the src directory and issue the
following:

java --module-path mods -m org.acme.wordcount/org.acme.wordcount.WordCount testing one two
three

This example passes the words “testing,” “one,” “two,” “three” to the module to be counted. The output
should look as follows:

Position 0: 7
Position 1: 3
Position 2: 3
Position 3: 5

How It Works
Project Jigsaw brought modules into fruition for the Java platform, finally introducing a means to do away with
the classpath of the old, and make use of a newer, more pluggable architecture. The Java 9 module system
allows one to package self contained modules of code and make them versatile such that a module can be
made to depend upon other modules, or on the other hand, other modules can be made to depend upon it.
This modular dependency takes place of the old classpath system, although the classpath is still available for
use to accommodate backward compatibility and also for cases where modularity makes little sense.

Creation of a module consists of a module-info.java descriptor file. This file is used to indicate the
package containing the module, as well as the dependency contracts that the module shares with other
modules. Please see Chapter 22 for more details on the descriptor file.

The self-contained application in this recipe resides within the org.acme.wordcount.WordCount.java
file, and it can be compiled with javac, and executed with the java executable, as one would imagine. These
two utilities have new options available to support modularity, and the recipe demonstrates the use of these
new options for compiling and executing the module. For more details regarding module compilation and
execution, see Recipe 22-2.

2-3. Easily Retrieving Information on OS Processes
Problem
You would like the ability to find information regarding operating system processes.

Solution
Make use of the updated Process API in Java 9. The new ProcessHandle interface allows one to easily obtain
information regarding operating system processes. In the following code, all operating system processes are
listed and printed to the command line.

public static void listProcesses(){
 ProcessHandle.allProcesses()
 .forEach(System.out::println);
}

http://dx.doi.org/10.1007/978-1-4842-1976-8_22

Chapter 2 ■ Java 9 enhanCements

39

However, this is not very helpful, as it simply lists the process number of each operating system
process…which is not very useful. To obtain more detail on the process, we need to obtain the
ProcessHandle and call upon its helper methods, which is quite easy to do. The following code will print
much more information regarding each process, as it prints the ProcessHandle.Info itself.

public static void detailListProcesses(){
 ProcessHandle.allProcesses()
 .forEach(h->System.out.println(formattedProcess(h)));
}

public static String formattedProcess(ProcessHandle handle){
 long pid = handle.getPid();
 boolean alive = handle.isAlive();
 Optional<Duration> cpuDuration = handle.info().totalCpuDuration();
 Optional<String> handleName = handle.info().command();
 return pid + " " + alive + " " + handleName + ":"+ cpuDuration;
 }

Sample output may look as follows:

17584 true Optional[/Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/Home/bin/
java]:Optional[PT0.250501S]
17581 true Optional[/Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/Home/bin/
java]:Optional.empty
17576 true Optional.empty:Optional.empty
17575 true Optional.empty:Optional.empty
17574 true Optional.empty:Optional.empty
17364 true Optional[/System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.
framework/Versions/A/Support/mdworker]:Optional.empty
17247 true Optional[/Applications/Google Chrome.app/Contents/Versions/56.0.2924.87/Google
Chrome Helper.app/Contents/MacOS/Google Chrome Helper]:Optional.empty

If you wish to retrieve information pertaining to the user that is running the process, that is easy to do
as well.

public static void detailListProcessUsers(){
 ProcessHandle.allProcesses()
 .forEach(h->System.out.println(listOsUser(h)));
}

public static String listOsUser(ProcessHandle handle){
 ProcessHandle.Info procInfo = handle.info();
 return handle.getPid() + ": " +procInfo.user();
}

Sample output using this technique may look as follows:

17584: Optional[Juneau]
17581: Optional[Juneau]
17576: Optional[_postfix]
17575: Optional[_postfix]
17574: Optional[root]

Chapter 2 ■ Java 9 enhanCements

40

How It Works
Prior to the release of Java 9, it was cumbersome to obtain information regarding operating system
processes. We had to obtain process IDs using the ManagementFactory.getRuntimeMXBean() method and
then parse the String that was returned. The ProcessHandle interface is introduced in Java 9, making the
retrieval of operating system process information a first class citizen of the JDK. Table 2-1 shows the methods
that can be called upon within ProcessInfo in order to retrieve the desired information.

Table 2-1. ProcessHandle Interface

Method Description

allProcesses() Snapshot of all processes that are visible to the current process.

children() Snapshot of the children of the current process.

compareTo(ProcessHandle) Compare one ProcessHandle to another.

current() Returns the ProcessHandle for the current process.

descendants() Snapshot of all descendants of the current process.

destroy() Requests the process to be killed. Returns a boolean to indicate result.

destroyForcibly() Requests the process to be killed forcibly. Returns a boolean to indicate
result.

equals(Object) Returns a true if the object passed in is not null, and represents the same
system process, otherwise returns a false.

getPid() Returns the process ID for the process.

hashCode() Returns hash code value for the process.

info() Returns ProcessHandle.Info, which is a snapshot of information about
the current process.

isAlive() Returns a boolean to indicate whether the process is alive.

of(long) Returns Optional<ProcessHandle> for an existing native process.

onExit() Returns CompletableFuture<ProcessHandle> for the termination of the
process. The CompletableFuture can then be called upon to determine
status.

parent() Returns Optional<ProcessHandle> for the parent of the current process.

supportsNormalTermination() Returns true if implementation of destroy() will terminate the process
normally.

2-4. Handling Errors with Ease
Problem
You’d like to easily manage the closing of effectively final variables.

Chapter 2 ■ Java 9 enhanCements

41

Solution
The try-with-resources construct was introduced in Java 7, and it allows for easy management of resources.
In Java 9, it became even easier as there is no need to effectively create a new variable for the sake of the
construct. In the following code, the writeFile() method takes a BufferedWriter as an argument, and
since it is passed into the method and ready to use, it is effectively final. This means that it can simply be
listed in the try-with-resources, rather than creating a new variable.

public static void main(String[] args) {
 try {
 writeFile(new BufferedWriter(
 new FileWriter("Easy TryWithResources")),
 "This is easy in Java 9");
 } catch (IOException ioe) {
 System.out.println(ioe);
 }
}

public static void writeFile(BufferedWriter writer, String text) {
 try (writer) {
 writer.write(text);
 } catch (IOException ioe) {
 System.out.println(ioe);
 }
}

Prior to Java 9, the writeFile would have looked as follows:

public static void writeFile(BufferedWriter writer, String text) {
 try (BufferedWriter w = writer) {
 w.write(text);
 } catch (IOException ioe) {
 System.out.println(ioe);
 }
}

This code will create a new file named “Easy TryWithResources” and it will put the text “This is easy in
Java 9” into the file.

How It Works
The try-with-resources construct has become even easier with Java 9. The try-with-resources construct was
introduced in Java 8, which allows one to handle the opening and closing of resources very easily. If we have
a resource, such as a database Connection or a BufferedStream, it is a good idea to manage wisely. In other
words, open the resource, then use it accordingly, and finally close the resource when finished to ensure that
there are no resource leaks. The try-with-resources construct allows one to open a resource within the try
block and have it automatically cleaned up once the block completes.

In the solution, the original way to handle resources is shown, followed by the new way in Java 9. It is
now possible to simply begin making use of a resource within a try-with-resources construct if it is passed
into a method as an argument or if it is a final field. This means that is no longer necessary to create a
placeholder variable for the purposes of utilization within the try-with-resources. While this is not a major
language change, it will certainly make handling resources a bit easier, and it certainly makes the try-with-
resources block even easier to understand.

Chapter 2 ■ Java 9 enhanCements

42

2-5. Filtering Data Before and After a Condition with
Streams
Problem
You wish to utilize streams for effective manipulation of your collections. While doing so, you wish to filter
those streams before and/or after a specified condition occurs. In the end, you want to retrieve all data
within the collection before a given predicate condition is met. You also wish to retrieve all data within the
collection that is placed after a given predicate condition is met.

Solution
Utilize the new Java 9 takeWhile() and dropWhile() constructs with your stream. Suppose we have the following
collection of data, and we wish to retrieve all of the elements prior to the element containing the word “Java.”

List<String> myLangs = Arrays.asList("Jython is great","Groovy is awesome",
"Scala is functional", "JRuby is productive","Java is streamlined","","Kotlin is
interesting");

To retrieve all elements prior to the element containing the String “Java”, we could use the takeWhile()
construct, as follows:

Stream.of("Jython is great","Groovy is awesome","Scala is functional",
 "JRuby is productive","Java is streamlined","","Kotlin is interesting")
 .takeWhile(s -> !s.contains("Java"))
 .forEach(System.out::println);

Let’s suppose that we wish to retrieve all elements that occur after the element containing the String
“Java”. We could use the dropWhile() construct, as follows:

Stream.of("Jython is great","Groovy is awesome","Scala is functional",
 "JRuby is productive","Java is streamlined","","Kotlin is interesting")
 .dropWhile(s -> !s.contains("Java"))
 .forEach(System.out::println);

How It Works
Streams changed the way that we develop code and handle collections of data in Java. The original set of
filters that were available for use with streams was fairly generous. However, in Java 8, even more options
have been added, making it even easier to refine data with streams. The takeWhile() and dropWhile()
constructs allow streams to be parsed, returning a new stream that contains all elements before the first one
that fails the specified predicate condition, or returning a new stream containing all elements including and
after the first element that fails a specified predicate, respectively.

In the solution to this recipe, the list of Strings is parsed, printing each of the elements to the
command line for the first pass. The takeWhile() construct is then applied to the same stream of Strings
and the elements from the stream before the element that fails the specified condition will be printed to
the command line. The takeWhile() accepts a predicate condition, which it then applies to each of the
elements in the stream, and then only those elements that are iterated before the predicate condition is not
matched will be returned. All elements that reside in the stream at and after the position where the condition
is not met will not be returned.

Chapter 2 ■ Java 9 enhanCements

43

The opposite result occurs when using the dropWhile() construct. In the solution, all stream elements
will be ignored up until the first element upon which the specified condition is no longer met will be
returned. Each subsequent element in the stream will also be returned.

The takeWhile and dropWhile constructs are very similar to the filter, with the exception that only one
failed condition will cause the remaining elements to be ignored or returned, respectively.

2-6. Developing a Concise HTTP Client
Problem
You wish to develop an HTTP client within a Java application.

Solution
Make use of the updated HTTP/2 client for Java 9. In the following example, the Apress website is parsed and
returned via HTTP client code. In the following example, the Apress web page for US is returned as a String.

HttpResponse r1;
try {
 r1 = HttpRequest.create(new URI("http://www.apress.com/us/"))
 .GET()
 .response();

 int responseCode = r1.statusCode();
 if(responseCode == 200){
 System.out.println(r1.body(asString()));
 }

 } catch (URISyntaxException|IOException|InterruptedException ex) {
 // Log error
}

The output will look something like the following (abbreviated for brevity):

<!DOCTYPE html>
<!--[if lt IE 7]> <html lang="en" class="no-js ie6 lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 7]> <html lang="en" class="no-js ie7 lt-ie9 lt-ie8"> <![endif]-->
<!--[if IE 8]> <html lang="en" class="no-js ie8 lt-ie9"> <![endif]-->
<!--[if IE 9]> <html lang="en" class="no-js ie9"> <![endif]-->
<!--[if gt IE 9]><!--> <html lang="en" class="no-js"> <!--<![endif]-->
<head><meta http-equiv="x-ua-compatible" content="IE=edge">
<script type="text/javascript" src="//static.springer.com/spcom/js/vendor/googleapis/ajax/
libs/jquery/1.9.1/jquery.min.js"></script>
<script type="text/javascript" src="//cdn.optimizely.com/js/8200882355.js"></script>
<script type="text/javascript" id="angular-script" src="//static.springer.com/spcom/js/
vendor/googleapis/ajax/libs/angularjs/1.2.17/angular.min.js"></script>
<script type="text/javascript" id="script--1908162026" src="//static.springer.com/spcom/min/
prod.js?r=201702071421-9"></script>
<link rel="stylesheet" type="text/css" href="//static.springer.com/spcom/min/modern_sprcom-
cms-frontend_apress.css?r=201702071421-9" />

Chapter 2 ■ Java 9 enhanCements

44

<!--[if (lt IE 9) & (!IEMobile)]><link rel="stylesheet" type="text/css" href="//static.
springer.com/spcom/min/ielt9_sprcom-cms-frontend_apress.css?r=201702071421-9" media="screen"
/><![endif]-->
<link rel="stylesheet" type="text/css" href="//static.springer.com/spcom/min/print.
css?r=201702071421-9" media="print" />
<link rel="stylesheet" type="text/css" href="/spcom/css/vendor/font-awesome.min.
css?r=201702071421-9" />
<!--[if lt IE 9]><script type="text/javascript" id="ielt9js" charset="utf-8" src="//static.
springer.com/spcom/min/ielt9.js"></script>

 ■ Note this is an excellent example to try out in the Java 9 jshell utility. to start the utility, open a command
prompt or terminal and type jshell –add-modules java.httpclient to start the shell including the httpclient
module. this assumes that the jshell executable utility resides within the path.

How It Works
The new javax.httpclient module has been added to Java 9, and it comprises of high level HTTP and
WebSocket client APIs. The API provides synchronous and asynchronous implementations for the HTTP
Client, and asynchronous implementations for WebSocket. The API resides within the java.net.http package.

The HttpClient is a container for configuration information that is common to the HttpRequests type.
An HttpClient is generated by initiating an HttpRequest.Builder, passing the URI for the request, and then
calling upon the create() method. The create() method returns an immutable HttpClient. As seen in
the solution to this recipe, the client can be used to perform a number of activities, both synchronously and
asynchronously. Asynchronous requests will return a CompleteableFuture object for use. For more details
regarding the HTTP and WebSocket clients, please refer to Recipe 21-7 and Recipe 21-8.

2-7. Redirecting Platform Logs
Problem
You wish to filter logs and redirect them to a specific file if they match the specified filtering criteria.

Solution
Utilize the Java 9 Unified Logging API to filter the logs and route accordingly. In the following excerpt from
the command line or terminal, the java executable is invoked to execute a class named Recipe02_07. The
-Xlog option is specified, passing gc=debug:file=gc.txt:none. This indicates that all log messages tagged
with ‘gc’ using the ‘debug’ level should be written to the file gc.txt, and no decorations should be used.

java -Xlog:gc=debug:file=gc.txt:none Recipe02_07

This will result in the creation of a file named gc.txt in the current directory, and all log messages
pertaining to the specified –Xlog option will be written to it.

Chapter 2 ■ Java 9 enhanCements

45

How It Works
The JVM is a complex system, and it can sometimes be difficult to pinpoint the cause of the issue. The Unified
JVM Logging system, which was added in Java 9, provides a finer grained solution for helping to find the
cause of issues. The new command-line option –Xlog controls this functionality, providing a number of tags,
level, decorations, and output options for achieving superior logging. Tags can be specified by name, such as
gc, threads, compiler, and so forth. Different logging levels are possible, including error, warning, info, debug,
trace, and develop. If the “off” level is specified, then logging will be disabled. Decorators can be specified to
provide detailed information regarding the message. Decorators can be specified in a custom ordering, such
that the desired results will be logged. Table 2-2 contains a listing of the different decorators that can be used.

Table 2-2. -Xlog Decorators

Decorator Function

Time Provides current time and date in ISO-8601 format.

uptime Time that JVM has been up and running (in seconds and milliseconds).

timemillis Value returned from System.currentTimeInMillis();

uptimemillis Uptime of JVM in milliseconds.

timenanos Value returned from System.nanoTime();

uptimenanos Uptime of JVM in nanoseconds.

pid Process identifier.

tid Thread identifier.

level Log message level.

tags Tag-set associated with log message.

Three types of output are supported, those being: stdout, stderr, and text file. Rotation configuration
for the output files is possible. When all of these options are specified together, the logging can become
extremely detailed. For a complete listing of possible options, please refer to the JEP (http://openjdk.java.
net/jeps/158).

2-8. Utilizing Factory Methods to Create Immutable
Collections
Problem
You wish to generate an immutable Collection of values.

Solution
Utilize the Collection.of() construct to generate an immutable collection. In the following example,
two Collections are created. The first is an immutable List<String>, and the second is an immutable
Map<Integer, String>.

http://openjdk.java.net/jeps/158
http://openjdk.java.net/jeps/158

Chapter 2 ■ Java 9 enhanCements

46

List<String> jvmLanguages = List.of("Java", "Scala", "JRuby", "Groovy", "Jython", "Kotlin");
System.out.println(jvmLanguages);
try {
 jvmLanguages.add("Exception");
} catch (UnsupportedOperationException uoe){
 System.out.println(uoe);
}
Map <Integer, String> players = Map.of(1, "Josh Juneau", 2, "Jonathan Gennick", 3, "Freddy
Guime", 4, "Carl Dea");
System.out.println(players.values());
System.out.println("Player 2: " + players.get(2));

The output would look like the following. Note that in the example I have added a try-catch block to
catch the UnsupportedOperationException that is thrown when I attempt to modify the List.

[Java, Scala, JRuby, Groovy, Jython, Kotlin]
java.lang.UnsupportedOperationException
[Carl Dea, Jonathan Gennick, Freddy Guime, Josh Juneau]
Player 2: Jonathan Gennick

How It Works
Java has historically been a verbose language for performing small tasks. In the past, constructing a
populated Collection of data took a few lines of code. On the first line, the Collection must be initialized,
followed by a line of code for each item that was added to it. Java 9 adds the convenient API for quickly
producing an unmodifiable Collection of data, whereby one can now initialize and populate the construct in
one line of code.

Factory methods have been added to the List, Set, and Map interfaces for creating such unmodifiable
collections of data. The factory methods consist of the of() method, which accepts up to ten values, for
quickly creating an immutable collection. The Map factory method accepts up to ten key/value pairs. If more
than ten pairs is needed for the Map, then it is possible to call upon the Map.ofEntries() method, passing
an arbitrary number of Map.Entry<k,v>. Furthermore, no null values can be used to populate as elements,
keys, or values.

Summary
This chapter covered a handful of the new features and enhancements that have been added to Java 9.
While certainly not a complete listing of new features, this chapter delved into a few of the most anticipated
features, including modularity, Process API, and easy error handling. To gain a more complete knowledge
of new features, the entire book should be read through. However, this chapter gave you a taste for what is to
come.

47© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_3

CHAPTER 3

Strings

Strings are one of the most commonly used data types in any programming language. They can be used
for obtaining text from a keyboard, printing messages to a command line, and much more. Given the fact
that Strings are used so often, there have been many features added to the String object over time in order
to make them easier to work with. After all, a String is an object in Java, so it contains methods that can be
used to manipulate the contents of the String. Strings are also immutable in Java, which means that their
state cannot be changed or altered. This makes them a bit different to work with than some of the mutable,
or changeable, data types. It is important to understand how to properly make use of immutable objects,
especially when attempting to change or assign different values to them.

This chapter focuses on some of the most commonly used String methods and techniques for working
with String objects. We also cover some useful techniques that are not inherent of String objects.

Compact Strings: Java 9 String Enhancements
Since the Java language was introduced, Strings have been stored into an array of type UTF-16 char. The
char array contains two bytes for each character, which eventually produces a large memory heap since
Strings are used so often in our applications. In Java 9, Strings are stored in an array of type byte, and stored
characters are encoded either as ISO-8859-1/Latin-1 (one byte per character), or as UTF-16 (two bytes per
character). There is also an encoding flag on the char array, which is used to indicate which type of encoding
is used for the String. These changes are otherwise known as compact Strings.

These changes do not affect the way in which we utilize Strings, nor do they alter the helper methods
of the String class in any way. They may, however, significantly decrease the amount of memory used by an
application.

3-1. Obtaining a Subsection of a String
Problem
You would like to retrieve a portion of a String.

Solution
Use the substring() method to obtain a portion of the String between two different positions. In the
solution that follows, a String is created and then various portions of the String are printed out using the
substring() method.

Chapter 3 ■ StringS

48

public static void substringExample(){
 String originalString = "This is the original String";
 System.out.println(originalString.substring(0, originalString.length()));
 System.out.println(originalString.substring(5, 20));
 System.out.println(originalString.substring(12));
 }

Running this method would yield the following results:

This is the original String
is the original
original String

How It Works
The String object contains many helper methods. One such method is substring(), which can be used
to return portions of the String. There are two variations of the substring() method. One of them accepts
a single argument, that being the starting index; and the other accepts two arguments: startingindex
and endingindex. Having two variations of the substring() method makes it seem as though the second
argument is optional; if it is not specified, the length of the calling String is used in its place. It should be
noted that indices begin with zero, so the first position in a String has the index of 0, and so on.

As you can see from the solution to this recipe, the first use of substring() prints out the entire
contents of the String. This is because the first argument passed to the substring() method is 0, and the
second argument passed is the length of the original String. In the second example of substring(), an index
of 5 is used as the first argument, and an index of 20 is used as the second argument. This effectively causes
only a portion of the String to be returned, beginning with the character in the String that is located in the
sixth position, or index 5 because the first position has an index of 0; and ending with the character in the
String that is located in the 20th position, the index of 19. The third example specifies only one argument;
therefore, the result will be the original String beginning with the position specified by that argument.

 ■ Note the substring() method only accepts positive integer values. if you attempt to pass a negative
value, an exception will be thrown.

3-2. Comparing Strings
Problem
An application that you are writing needs to have the ability to compare two or more String values.

Solution
Use the built-in equals(), equalsIgnoreCase(), compareTo(), and compareToIgnoreCase() methods to
compare the values contained within the Strings. The following is a series of tests using different String-
comparison operations.

Chapter 3 ■ StringS

49

As you can see, various if statements are used to print out messages if the comparisons are equal:

String one = "one";
String two = "two";

String var1 = "one";
String var2 = "Two";

String pieceone = "o";
String piecetwo = "ne";

// Comparison is equal
if (one.equals(var1)){
 System.out.println ("String one equals var1 using equals");
}

// Comparison is NOT equal
if (one.equals(two)){
 System.out.println ("String one equals two using equals");
}

// Comparison is NOT equal
if (two.equals(var2)){
 System.out.println ("String two equals var2 using equals");
}

// Comparison is equal, but is not directly comparing String values using ==
if (one == var1){
 System.out.println ("String one equals var1 using ==");
}

// Comparison is equal
if (two.equalsIgnoreCase(var2)){
 System.out.println ("String two equals var2 using equalsIgnoreCase");
}

System.out.println("Trying to use == on Strings that are pieced together");

String piecedTogether = pieceone + piecetwo;

// Comparison is equal
if (one.equals(piecedTogether)){
 System.out.println("The Strings contain the same value using equals");
}

// Comparison is NOT equal using ==
if (one == piecedTogether) {
 System.out.println("The String contain the same value using == ");
}

Chapter 3 ■ StringS

50

// Comparison is equal
if (one.compareTo(var1) == 0){
 System.out.println("One is equal to var1 using compareTo()");
}

Results in the following output:

String one equals var1 using equals
String one equals var1 using ==
String two equals var2 using equalsIgnoreCase
Trying to use == on Strings that are pieced together
The Strings contain the same value using equals
One is equal to var1 using compareTo()

How It Works
One of the trickier parts of using a programming language can come when attempting to compare two or
more values, particularly String values. In the Java language, comparing Strings can be fairly straightforward,
keeping in mind that you should not use the == for String comparison. This is because the comparison
operator (==) is used to compare references, not values of Strings. One of the most tempting things to do
when programming with Strings in Java is to use the comparison operator, but you must not because the
results can vary.

 ■ Note Java uses interning of Strings to speed up performance. this means that the JVM contains a table of
interned Strings, and each time the intern() method is called on a String, a lookup is performed on that table
to find a match. the interning returns a canonical representation of the String. if no matching String resides
within the table, the String is added to the table and a reference is returned. if the String already resides within
the table, the reference is returned. Java will automatically intern String literals, and this can cause variation
when using the == comparison operator.

In the solution to this recipe, you can see various different techniques for comparing String values. The
equals() method is a part of every Java object. The Java String equals() method has been overridden so
that it will compare the values contained within the String rather than the object itself. As you can see from
the following examples that have been extracted from the solution to this recipe, the equals() method is a
safe way to compare Strings.

// Comparison is equal
if (one.equals(var1)){
 System.out.println ("String one equals var1 using equals");
}
// Comparison is NOT equal
if (one.equals(two)){
 System.out.println ("String one equals two using equals");
}

Chapter 3 ■ StringS

51

The equals() method will first check to see whether the Strings reference the same object using the
== operator; it will return true if they do. If they do not reference the same object, equals() will compare
each String character by character to determine whether the Strings being compared to each other contain
exactly the same values. What if one of the Strings has a different case setting than another? Do they still
compare equal to each other using equals()? The answer is no, and that is why the equalsIgnoreCase()
method was created. Comparing two values using equalsIgnoreCase() will cause each of the characters
to be compared without paying attention to the case. The following examples have been extracted from the
solution to this recipe:

// Comparison is NOT equal
if (two.equals(var2)){
 System.out.println ("String two equals var2 using equals");
}
// Comparison is equal
if (two.equalsIgnoreCase(var2)){
 System.out.println ("String two equals var2 using equalsIgnoreCase");
}

The compareTo()and compareToIgnoreCase() methods perform a lexicographical comparison of the
Strings. This comparison is based upon the Unicode value of each character contained within the Strings.
The result will be a negative integer if the String lexicographically precedes the argument String. The result
will be a positive integer if the String lexicographically follows the argument String. The result will be zero if
both Strings are lexicographically equal to each other. The following excerpt from the solution to this recipe
demonstrates the compareTo() method:

// Comparison is equal
if (one.compareTo(var1) == 0){
 System.out.println("One is equal to var1 using compareTo()");
}

Inevitably, many applications contain code that must compare Strings at some level. The next time
you have an application that requires String comparison, consider the information discussed in this recipe
before you write the code.

3-3. Trimming Whitespace
Problem
One of the Strings you are working with contains some whitespace on either end. You would like to get rid of
that whitespace.

Solution
Use the String trim() method to eliminate the whitespace. In the following example, a sentence is printed
including whitespace on either side. The same sentence is then printed again using the trim() method to
remove the whitespace so that the changes can be seen.

String myString = " This is a String that contains whitespace. ";
System.out.println(myString);
System.out.println(myString.trim());

Chapter 3 ■ StringS

52

The output will print as follows:

 This is a String that contains whitespace.
This is a String that contains whitespace.

How It Works
Regardless of how careful we are, whitespace can always become an issue when working with Strings of
text. This is especially the case when comparing Strings against matching values. If a String contains an
unexpected whitespace character then that could be disastrous for a pattern-searching program. Luckily, the
Java String object contains the trim() method that can be used to automatically remove whitespace from
each end of any given String.

The trim() method is very easy to use. In fact, as you can see from the solution to this recipe, all that
is required to use the trim() method is a call against any given String. Because Strings are objects, they
contain many helper methods, which can make them very easy to work with. After all, Strings are one of the
most commonly used data types in any programming language…so they’d better be easy to use! The trim()
method returns a copy of the original String with all leading and trailing whitespace removed. If, however,
there is no whitespace to be removed, the trim() method returns the original String instance. It does not get
much easier than that!

3-4. Changing the Case of a String
Problem
A portion of your application contains case-sensitive String values. You want to change all the Strings to
uppercase before they are processed in order to avoid any case sensitivity issues down the road.

Solution
Make use of the toUpperCase() and toLowerCase() methods. The String object provides these two helper
methods to assist in performing a case change for all of the characters in a given String.

For example, given the String in the following code, each of the two methods will be called:

String str = "This String will change case.";
System.out.println(str.toUpperCase());
System.out.println(str.toLowerCase());

The following output will be produced:

THIS STRING WILL CHANGE CASE.
this String will change case.

How It Works
To ensure that the case of every character within a given String is either upper or lowercase, use the
toUpperCase() and toLowerCase() methods, respectively. There are a couple of items to note when using
these methods. First, if a given String contains an uppercase letter, and the toUpperCase() method is called
against it, the uppercase letter is ignored. The same concept holds true for calling the toLowerCase()
method. Any punctuation or numbers contained within the given String are also ignored.

Chapter 3 ■ StringS

53

There are two variations for each of these methods. One of the variations does not accept any
arguments, while the other accepts an argument pertaining to the locale you wish to use. Calling these
methods without any arguments will result in a case conversion using the default locale. If you want to
use a different locale, you can pass the desired locale as an argument, using the variation of the method
that accepts an argument. For instance, if you want to use an Italian or French locale, you would use the
following code:

System.out.println(str.toUpperCase(Locale.ITALIAN));
System.out.println(str.toUpperCase(new Locale("it","US")));
System.out.println(str.toLowerCase(new Locale("fr", "CA")));

Converting Strings to upper or lowercase using these methods can make life easy. They are also very
useful for comparing Strings that are taken as input from an application. Consider the case in which a user is
prompted to enter a username, and the result is saved into a String. Now consider that later in the program
that String is compared against all the usernames stored within a database to ensure that the username is
valid. What happens if the person who entered the username types it with an uppercase first character?
What happens if the username is stored within the database in all uppercase? The comparison will never be
equal. In such a case, a developer can use the toUpperCase() method to alleviate the problem. Calling this
method against the Strings that are being compared will result in a comparison in which the case is the same
in both Strings.

3-5. Concatenating Strings
Problem
There are various Strings that you want to combine into one.

Solution 1
If you want to concatenate Strings onto the end of each other, use the concat() method. The following
example demonstrates the use of the concat() method:

String one = "Hello";
String two = "Java9";
String result = one.concat(" ".concat(two));

The result is this:

Hello Java9

Solution 2
Use the concatenation operator to combine the Strings in a shorthand manner. In the following example, a
space character has been placed in between the two Strings:

String one = "Hello";
String two = "Java9";
String result = one + " " + two;

Chapter 3 ■ StringS

54

The result is this:

Hello Java9

Solution 3
Use StringBuilder or StringBuffer to combine the Strings. The following example demonstrates the use of
StringBuffer to concatenate two Strings:

String one = "Hello";
String two = "Java9";
StringBuffer buffer = new StringBuffer();
buffer.append(one).append(" ").append(two);
String result = buffer.toString();
System.out.println(result);

The result is this:

Hello Java9

How It Works
The Java language provides a couple of different options for concatenating Strings of text. Although none
is better than the others, you may find one or the other to work better in different situations. The concat()
method is a built-in String helper method. It provides the ability to append one String onto the end of
another, as demonstrated by solution 1 to this recipe. The concat() method will accept any String value;
therefore, you can explicitly type a String value to pass as an argument if you want. As demonstrated in
solution 1, simply passing one String as an argument to this method will append it to the end of the String,
which the method is called upon. However, if you wanted to add a space character in between the two
Strings, you could do so by passing a space character as well as the String you want to append as follows:

String result = one.concat(" ".concat(two));

As you can see, having the ability to pass any String or combination of Strings to the concat() method
makes it very useful. Because all of the String helper methods actually return copies of the original String
with the helper method functionality applied, you can pass Strings calling other helper methods to concat()
(or any other String helper method) as well. Consider that you want to display the text "Hello Java" rather
than "Hello Java9". The following combination of String helper methods would allow you to do just that:

String one = "Hello";
String two = "Java9";
String result = one.concat(" ".concat(two.substring(0, two.length()-1)));

The concatenation operator (+) can be used to combine any two Strings. It is almost thought of as
a shorthand form of the concat() method. The last technique that is demonstrated in solution 3 to this
example is the use of StringBuffer, which is a mutable sequence of characters, much like a String, except
that it can be modified through method calls. The StringBuffer class contains a number of helper methods
for building and manipulating character sequences. In the solution, the append() method is used to append
two String values. The append() method places the String that is passed as an argument at the end of the
StringBuffer. For more information regarding the use of StringBuffer, refer to the online documentation
at http://docs.oracle.com/javase/9/docs/api/java/lang/StringBuffer.html.

http://docs.oracle.com/javase/9/docs/api/java/lang/StringBuffer.html

Chapter 3 ■ StringS

55

3-6. Converting Strings to Numeric Values
Problem
You want to have the ability to convert any numeric values that are stored as Strings into integers.

Solution 1
Use the Integer.valueOf() helper method to convert Strings to int data types. For example:

String one = "1";
String two = "2";
int result = Integer.valueOf(one) + Integer.valueOf(two);

As you can see, both of the String variables are converted into integer values. After that, they are used to
perform an addition calculation and then stored into an int.

 ■ Note a technique known as autoboxing is used in this example. autoboxing is a feature of the Java
language that automates the process of converting primitive values to their appropriate wrapper classes. For
instance, this occurs when you assign an int value to an integer. Similarly, unboxing automatically occurs
when you try to convert in the opposite direction, from a wrapper class to a primitive. For more information on
autoboxing, refer to the online documentation at http://docs.oracle.com/javase/tutorial/java/data/
autoboxing.html.

Solution 2
Use the Integer.parseInt() helper method to convert Strings to int data types. For example:

String one = "1";
String two = "2";
int result = Integer.parseInt(one) + Integer.parseInt(two);
System.out.println(result);

How It Works
The Integer class contains the valueOf() and parseInt() methods, which are used to convert Strings or
int types into integers. There are two different forms of the Integer class’s valueOf() type that can be used
to convert Strings into integer values. Each of them differs by the number of arguments that they accept.
The first valueOf() method accepts only a String argument. This String is then parsed as an integer value if
possible, and then an integer holding the value of that String is returned. If the String does not convert into
an integer correctly, then the method will throw a NumberFormatException.

The second version of Integer’s valueOf() method accepts two arguments: a String argument that will
be parsed as an integer and an int that represents the radix that is to be used for the conversion.

http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

Chapter 3 ■ StringS

56

 ■ Note Many of the Java type classes contain valueOf() methods that can be used for converting
different types into that class’s type. Such is the case with the String class because it contains many different
valueOf() methods that can be used for conversion. For more information on the different valueOf() methods
that the String class or any other type class contains, see the online Java documentation at http://docs.oracle.
com/javase/9/docs

There are also two different forms of the Integer class’s parseInt() method. One of them accepts one
argument: the String you want to convert into an integer. The other form accepts two arguments: the String
that you want to convert to an integer and the radix. The first format is the most widely used, and it parses
the String argument as a signed decimal integer. A NumberFormatException will be thrown if a parsable
unsigned integer is not contained within the String. The second format, which is less widely used, returns
an Integer object holding the value that is represented by the String argument in the given radix, given a
parsable unsigned integer is contained within that String.

 ■ Note One of the biggest differences between parseint() and valueOf() is that parseint() returns an int and
valueOf() returns an integer from the cache.

3-7. Iterating Over the Characters of a String
Problem
You want to iterate over the characters in a String of text so that you can manipulate them at the character
level.

Solution
Use a combination of String helper methods to gain access to the String at a character level. If you use
a String helper method within the context of a loop, you can easily traverse a String by character. In the
following example, the String named str is broken down using the toCharArray() method.

String str = "Break down into chars";
System.out.println(str);
for (char chr:str.toCharArray()){
 System.out.println(chr);
}

The same strategy could be used with the traditional version of the for loop. An index could be created
that would allow access to each character of the String using the charAt() method.

for (int x = 0; x <= str.length()-1; x++){
System.out.println(str.charAt(x));
}

http://docs.oracle.com/javase/9/docs
http://docs.oracle.com/javase/9/docs

Chapter 3 ■ StringS

57

Both of these solutions will yield the following result:

B
r
e
a
k

d
o
w
n

i
n
t
o

c
h
a
r
s

 ■ Note the first example using toCharArray() generates a new character array. therefore, the second
example, using the traditional for loop, might perform faster.

How It Works
String objects contain methods that can be used for performing various tasks. The solution to this recipe
demonstrates a number of different String methods. The toCharArray() method can be called against a
String in order to break the String into characters and then store those characters in an array. This method
is very powerful and it can save a bit of time when performing this task is required. The result of calling the
toCharArray() method is a char[], which can then be traversed using an index. Such is the case in the
solution to this recipe. An enhanced for loop is used to iterate through the contents of the char[] and print
out each of its elements.

The String length() method is used to find the number of characters contained within a String. The
result is an int value that can be very useful in the context of a for loop, as demonstrated in the solution
to this recipe. In the second example, the length() method is used to find the number of characters in the
String so that they can be iterated over using the charAt() method. The charAt() method accepts an int
index value as an argument and returns the character that resides at the given index in the String.

Often the combination of two or more String methods can be used to obtain various results. In this case,
using the length() and charAt() methods within the same code block provided the ability to break down a
String into characters.

Chapter 3 ■ StringS

58

3-8. Finding Text Matches
Problem
You want to search a body of text for a particular sequence of characters.

Solution 1
Make use of regular expressions and the String matches() helper method to determine how many matches
exist. To do this, simply pass a String representing a regular expression to the matches() method against
any String you are trying to match. In doing so, the String will be compared with the String that matches() is
being called upon. Once evaluated, matches() will yield a boolean result, indicating whether it is a match.
The following code excerpt contains a series of examples using this technique. The comments contained
within the code explain each of the matching tests.

String str = "Here is a long String...let's find a match!";
// This will result in a "true" since it is an exact match
boolean result = str.matches("Here is a long String...let's find a match!");
System.out.println(result);
// This will result iin "false" since the entire String does not match
result = str.matches("Here is a long String...");

System.out.println(result);

str = "true";

// This will test against both upper & lower case "T"...this will be TRUE
result = str.matches("[Tt]rue");
System.out.println(result);

// This will test for one or the other
result = str.matches("[Tt]rue|[Ff]alse]");
System.out.println(result);

// This will test to see if any numbers are present, in this case the
// person writing this String would be able to like any Java release!
str = "I love Java 8!";
result = str.matches("I love Java [0-9]!");
System.out.println(result);

// This will test TRUE as well...
str = "I love Java 7!";
result = str.matches("I love Java [0-9]!");
System.out.println(result);

// The following will test TRUE for any language that contains
// only one word for a name. This is because it tests for
// any alphanumeric combination. Notice the space character
// between the numeric sequence...
result = str.matches("I love .*[0-9]!");
System.out.println(result);

Chapter 3 ■ StringS

59

// The following String also matches.
str = "I love Jython 2.5.4!";
result = str.matches("I love .*[0-9]!");

System.out.println(result);

Each of the results printed out in the example will be true, with the exception of the second example
because it does not match.

Solution 2
Use the regular expression Pattern and Matcher classes for a better-performing and more versatile matching
solution than the String matches() method. Although the matches() method will get the job done most of
the time, there are some occasions in which you will require a more flexible way of matching. Using this
solution is a three-step process:

 1. Compile a pattern into a Pattern object.

 2. Construct a Matcher object using the matcher() method on the Pattern.

 3. Call the matches() method on the Matcher.

In the following example code, the Pattern and Matcher technique is demonstrated:

String str = "I love Java 9!";
boolean result = false;

Pattern pattern = Pattern.compile("I love .*[0-9]!");
Matcher matcher = pattern.matcher(str);
result = matcher.matches();

System.out.println(result);

The previous example will yield a TRUE value just like its variant that was demonstrated in solution 1.

How It Works
Regular expressions are a great way to find matches because they allow patterns to be defined so that an
application does not have to explicitly find an exact String match. They can be very useful when you want to
find matches against some text that a user may be typing into your program. However, they could be overkill
if you are trying to match Strings against a String constant you have defined in your program because the
String class provides many methods that could be used for such tasks. Nevertheless, there will certainly
come a time in almost every developer’s life when regular expressions can come in handy. They can be
found in just about every programming language used today. Java makes them easy to use and understand.

 ■ Note although regular expressions are used in many different languages today, the expression syntax for
each language varies. For complete information regarding regular expression syntax, see the documentation
online at http://docs.oracle.com/javase/9/docs/api/java/util/regex/Pattern.html.

http://docs.oracle.com/javase/9/docs/api/java/util/regex/Pattern.htmlJust a note to check the validity of these URLs after Java 9 is released

Chapter 3 ■ StringS

60

The easiest way to make use of regular expressions is to call the matches() method on the String object.
Passing a regular expression to the matches() method will yield a boolean result that indicates whether the
String matches the given regular expression pattern or not. At this point, it is useful to know what a regular
expression is and how it works.

A regular expression is a String pattern can be matched against other Strings in order to determine its
contents. Regular expressions can contain a number of different patterns that enable them to be dynamic in
that they can have the ability to match many different Strings that contain the same format. For instance, in
the solution to this recipe, the following code can match several different Strings:

result = str.matches("I love Java [0-9]!");

The regular expression String in this example is "I love Java [0-9]!", and it contains the pattern [0-9],
which represents any number between 0 and 9. Therefore, any String that reads "I love Java" followed by the
numbers 0 through 9 and then an exclamation point will match the regular expression String. To see a listing of
all the different patterns that can be used in a regular expression, see the online documentation available at the
URL in the previous note.

A combination of Pattern and Matcher objects can also be used to achieve similar results as the String
matcher() method. The Pattern object can be used to compile a String into a regular expression pattern. A
compiled pattern can provide performance gains to an application if the pattern is used multiple times. You
can pass the same String–based regular expressions to the Pattern.compile() method as you would pass to
the String matches() method. The result is a compiled Pattern object that can be matched against a String
for comparison. A Matcher object can be obtained by calling the Pattern object’s matcher() method against
a given String. Once a Matcher object is obtained, it can be used to match a given String against a Pattern
using any of the following three methods, which each return a boolean value indicating a match. The
following three lines of solution 2 could be used as an alternate solution to using the Pattern.matches()
method, minus the reusability of the compile pattern:

Pattern pattern = Pattern.compile("I love .*[0-9]!");
Matcher matcher = pattern.matcher(str);
result = matcher.matches();

•	 The Matcher matches() method attempts to match the entire input String with the
pattern.

•	 The Matcher lookingAt() method attempts to match the input String to the pattern
starting at the beginning.

•	 The Matcher find() method scans the input sequence looking for the next
matching sequence in the String.

In the solution to this recipe, the matches() method is called against the Matcher object in order
to attempt to match the entire String. In any event, regular expressions can be very useful for matching
Strings against patterns. The technique used for working with the regular expressions can vary in different
situations, using whichever method works best for the situation.

3-9. Replacing All Text Matches
Problem
You have searched a body of text for a particular sequence of characters, and you are interested in replacing
all matches with another String value.

Chapter 3 ■ StringS

61

Solution
Use a regular expression pattern to obtain a Matcher object; then use the Matcher object’s replaceAll()
method to replace all matches with another String value. The example that follows demonstrates this
technique:

String str = "I love Java 8! It is my favorite language. Java 8
 is the "
 + "8th version of this great programming language.";
Pattern pattern = Pattern.compile("[0-9]");
Matcher matcher = pattern.matcher(str);
System.out.println("Original: " + str);
System.out.println(matcher.matches());
System.out.println("Replacement: " + matcher.replaceAll("9"));

This example will yield the following results:

Original: I love Java 8! It is my favorite language. Java 8 is the 8th version of this great
programming language.
Replacement: I love Java 9! It is my favorite language. Java 9 is the 9th version of this
great programming language.

How It Works
The replaceAll() method of the Matcher object makes it easy to find and replace a String or a portion of
String that is contained within a body of text. In order to use the replaceAll() method of the Matcher object,
you must first compile a Pattern object by passing a regular expression String pattern to the Pattern.
compile() method. Use the resulting Pattern object to obtain a Matcher object by calling its matcher()
method. The following lines of code show how this is done:

Pattern pattern = Pattern.compile("[0-9]");
Matcher matcher = pattern.matcher(str);

Once you have obtained a Matcher object, call its replaceAll() method by passing a String that you
want to use to replace all the text that is matched by the compiled pattern. In the solution to this recipe, the
String "9" is passed to the replaceAll() method, so it will replace all the areas in the String that match the
"[0-9]" pattern.

3-10. Determining Whether a File Suffix Matches a
Given String
Problem
You are reading a file from the server and you need to determine what type of file it is in order to read it
properly.

Chapter 3 ■ StringS

62

Solution
Determine the suffix of the file by using the endsWith() method on a given file name. In the following
example, assume that the variable filename contains the name of a given file, and the code is using the
endsWith() method to determine whether filename ends with a particular String:

if(filename.endsWith(".txt")){
 System.out.println("Text file");
} else if (filename.endsWith(".doc")){
 System.out.println("Document file");
} else if (filename.endsWith(".xls")){
 System.out.println("Excel file");
} else if (filename.endsWith(".java")){
System.out.println("Java source file");
} else {
 System.out.println("Other type of file");
}

Given that a file name and its suffix are included in the filename variable, this block of code will read its
suffix and determine what type of file the given variable represents.

How It Works
As mentioned previously, the String object contains many helper methods that can be used to perform
tasks. The String object’s endsWith() method accepts a character sequence and then returns a boolean
value representing whether the original String ends with the given sequence. In the case of the solution to
this recipe, the endsWith() method is used in an if block. A series of file suffixes is passed to the endsWith()
method to determine what type of file is represented by the filename variable. If any of the file name suffixes
matches, a line is printed, stating what type of file it is.

3-11. Making a String That Can Contain Dynamic
Information
Problem
You would like to generate a String that has the ability to contain a dynamic placeholder such that the String
can change depending upon application data variations.

Solution 1
Utilize the String format() built-in method for generating a String containing placeholders for dynamic data.
The following example demonstrates a String that contains a dynamic placeholder that allows different
data to be inserted into the same String. In the example, as the temperature variable changes, the String is
dynamically altered.

Chapter 3 ■ StringS

63

public static void main(String[] args){
 double temperature = 98.6;
 String temperatureString = "The current temperature is %.1f degrees Farenheit.";

 System.out.println(String.format(temperatureString, temperature));

 temperature = 101.2;

 System.out.println(String.format(temperatureString, temperature));
}

Output:

The current temperature is 98.6 degrees Farenheit.
The current temperature is 101.2 degrees Farenheit.

Solution 2
If you wish to print the contents of the String out, rather than store them for later use, the System.
out.printf() method can be used to position dynamic values within a String. The following example
demonstrates the same concept as that in solution 1, except this time rather than using the String.format()
method, a String is simply printed out, and the placeholders passed to the System.out.printf() method
are replaced with the dynamic content at runtime.

public static void main(String[] args){
 double temperature = 98.6;
 System.out.printf("The current temperature is %.1f degrees Farenheit.\n", temperature);

 temperature = 101.2;

 System.out.printf("The current temperature is %.1f degrees Farenheit.", temperature);
}

Output:

The current temperature is 98.6 degrees Farenheit.
The current temperature is 101.2 degrees Farenheit.

How It Works
When you require the use of dynamic String content, the format() utility can come in handy. The format()
built-in method allows one to position a placeholder within a String, such that the placeholder will be
replaced with dynamic content at runtime. The format method accepts a String, along with a series of
variables that will be used to displace the placeholders within the String with dynamic content at runtime.
The placeholders must be designated specifically for the type of content with which they will be displaced.
Table 3-1 contains a list of each placeholder or conversion type for the String.format() function.

Chapter 3 ■ StringS

64

Each placeholder must begin with a % character to denote that it is a placeholder within the String.
The placeholder can also contain flags, width, and precision indicators to help format the dynamic value
appropriately. The following format should be used to build each placeholder:

%[flags][width][.precision]conversion_indicator

The second solution demonstrates how to utilize the System.out.printf() method, which accepts the
same arguments as the System.format() method. The main difference between the two is that the System.
out.printf() method is handy for printing formatted content. If your application requires the need to store
a formatted value, you will be more likely to use the String.format() method.

Summary
This chapter covered the basics of working with Strings. Although a String may look like a simple String of
characters, it is an object that contains many methods that can be useful for obtaining the required results.
Although Strings are immutable objects, many methods within the String class contain a copy of the String,
modified to suit the request. This chapter covered a handful of these methods, demonstrating features such
as concatenation, how to obtain portions of Strings, trimming whitespace, and replacing portions of a String.

Table 3-1. String.format() Conversion Types

Conversion Content Type

b boolean

h hex

s String

c Unicode character

d decimal integer

o octal integer

x hexadecimal integer

e floating point decimal number in computerized scientific notation

f floating point decimal number

g floating point using computerized scientific notation or decimal format, depending
upon the precision and value after rounding

a hexadecimal floating-point number with significand and exponent

t date/time

n platform-specific line separator

65© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_4

CHAPTER 4

Numbers and Dates

Numbers play a significant role in many applications. As such, it is helpful to know how to use them correctly
within the context of the work that you are trying to perform. This chapter helps you understand how
to perform some of the most basic operations with numbers, and it also provides insight on performing
advanced tasks such as working with currency. There are a number of ways to work with currency, and this
chapter will focus on a couple of them.

Dates are also important as they can be used for many purposes within an application. In Java 8, the
new Date-Time package called java.time was introduced. The Date-Time API uses the calendar defined in
ISO-8601 as the default. Therefore, the calendar is based on the Gregorian calendar system, and in this chapter,
you will learn how to work with date, time, and time zone data. The Date-Time API adheres to several design
principles, in that it’s clear, fluent, immutable, and extensible. The API uses a clear language that is concise and
very well defined. It is also very fluent, so code dealing with date-time data is easy to read and understand. Most
of the classes within the Date-Time API are immutable, so in order to alter a date-time object you must create
a modified copy of the original. As such, many of the methods in the date-time classes are named accordingly,
such as of() and with(), so that you know you are creating a copy rather than altering the original. Lastly, the
new Date-Time API can be extended in many cases, allowing it to be useful in many contexts.

The Date-Time API is made up of a rich set of classes, providing solutions that were rather difficult to
achieve in previous APIs. Even though there are many different classes, most of them contain a similar set of
methods, so the same principles can be utilized throughout all of the date and time units. Table 4-1 lists the
common set of methods that you will find in most of the date-time classes.

Table 4-1. Date-Time API’s Common Methods

Method Description

at Combines one object with another.

format Applies the specified format to a temporal object, producing a String.

from Converts input parameters to an instance of the target class.

get Returns a part of the state of the target object.

is Queries the target object.

minus Returns a modified copy of the target object with the specified amount of time subtracted.

of Creates an instance, using specified input parameters for validation.

parse Parses an input String to produce an instance of the target class.

plus Returns a modified copy of the target object with the specified amount of time added.

to Converts an object to a different type.

with Returns a modified copy of the target object with the specified element changed (equivalent to a setter).

Chapter 4 ■ Numbers aNd dates

66

As mentioned previously, the Date-Time API is fluent; therefore, each of its classes is located in a clearly
marked package. Table 4-2 lists the packages that make up the Date-Time API, along with brief descriptions
of the classes that can be found in each.

Table 4-2. Date-Time API Packages

Package Description

java.time The core classes of the API. These classes are used for working with date-time data
based on the ISO-8601 standard. These classes are immutable and thread-safe.

java.time.chrono The API for using calendar systems other than ISO-8601.

java.time.format Classes for formatting date-time data.

java.time.temporal Extended API that allows interpolations between date-time classes.

java.time.zone Classes supporting time zone data.

This chapter presents a brief overview of some commonly used date-time features. If you will be
performing significant work with dates and times, you should read the Date-Time API documentation that is
available online in addition to this chapter.

4-1. Rounding Float and Double Values to Integers
Problem
You need to be able to round floating-point numbers or doubles in your application to Integer values.

Solution
Use one of the java.lang.Math round() methods to round the number into the format you require.
The Math class has two methods that can be used for rounding floating-point numbers or Double values. The
following code demonstrates how to use each of these methods:

public static int roundFloatToInt(float myFloat){
 return Math.round(myFloat);
}

public static long roundDoubleToLong(double myDouble){
 return Math.round(myDouble);
}

The first method, roundFloatToInt(), accepts a floating-point number and uses the java.lang.Math
class to round that number to an Integer. The second method, roundDoubleToLong(), accepts a Double
value and uses the java.lang.Math class to round that Double to a Long.

How It Works
The java.lang.Math class contains plenty of helper methods to make our lives easier when working with
numbers. The round() methods are no exception as they can be used to easily round floating-point or

Chapter 4 ■ Numbers aNd dates

67

double values. One version of the java.lang.Math round() method accepts a float as an argument. It will
round the float to the closest int value, with ties rounding up. If the argument is Not a Number (NaN), then a
zero will be returned. When arguments that are positive or negative infinity are passed into round(), a result
equal to the value of Integer.MAX_VALUE or Integer.MIN_VALUE, respectively, will be returned. The second
version of the java.lang.Math round() method accepts a double value. The double value is rounded to the
closest long value, with ties rounding up. Just like the other round(), if the argument is NaN, a zero will be
returned. Similarly, when arguments that are positive or negative infinity are passed into round(), a result
equal to the value of Long.MAX_VALUE or Long.MIN_VALUE, respectively, will be returned.

 ■ Note NaN, POSITIVE_INFINITY, and NEGATIVE_INFINITY are constant values defined within the Float and
Double classes. NaN (Not a Number) is an undefined or unrepresentable value. For example, a NaN value can be
produced by dividing 0.0f by 0.0f. the values represented by POSITIVE_INFINITY and NEGATIVE_INFINITY
refer to values that are produced by operations that generate such extremely large or negative values of a
particular type (floating-point or double) that they cannot be represented normally. For instance, 1.0/0.0 or
–1.0/0.0 would produce such values.

4-2. Formatting Double and Long Decimal Values
Problem
You need to be able to format double and long numbers in your application.

Solution
Use the DecimalFormat class to format and round the value to the precision your application requires. In the
following method, a double value is accepted and a formatted String value is printed:

public static void formatDouble(double myDouble){
 NumberFormat numberFormatter = new DecimalFormat("##.000");
 String result = numberFormatter.format(myDouble);
 System.out.println(result);
}

For instance, if the double value passed into the formatDouble() method is 345.9372, the following will
be the result:

345.937

Similarly, if the value .7697 is passed to the method, the following will be the result:

.770

Each of the results is formatted using the specified pattern and then rounded accordingly.

Chapter 4 ■ Numbers aNd dates

68

How It Works
The DecimalFormat class can be used along with the NumberFormat class to round and/or format double
or long values. NumberFormat is an abstract class that provides the interface for formatting and parsing
numbers. This class provides the ability to format and parse numbers for each locale, and obtain formats
for currency, percentage, integers, and numbers. By itself, the NumberFormat class can be very useful as it
contains factory methods that can be used to obtain formatted numbers. In fact, little work needs to be done
in order to obtain a formatted String. For example, the following code demonstrates calling some factory
methods on the NumberFormat class:

// Obtains an instance of NumberFormat class
NumberFormat format = NumberFormat.getInstance();

// Format a double value for the current locale
String result = format.format(83.404);
System.out.println(result);

// Format a double value for an Italian locale
result = format.getInstance(Locale.ITALIAN).format(83.404);
System.out.println(result);

// Parse a String into a Number
try {
 Number num = format.parse("75.736");
 System.out.println(num);
} catch (java.text.ParseException ex){
 System.out.println(ex);
}

To format using a pattern, the DecimalFormat class can be used along with NumberFormat. In the
solution to this recipe, you saw that creating a new DecimalFormat instance by passing a pattern to its
constructor would return a NumberFormat type. This is because DecimalFormat extends the NumberFormat
class. Because the NumberFormat class is abstract, DecimalFormat contains all the functionality of
NumberFormat, plus added functionality for working with patterns. Therefore, it can be used to work with
different formats from the locales just as you have seen in the previous demonstration. This provides the
ultimate flexibility when working with double or long formatting.

As mentioned previously, the DecimalFormat class can take a String-based pattern in its constructor.
You can also use the applyPattern() method to apply a pattern to the Format object after the fact. Each
pattern contains a prefix, numeric part, and suffix, which allow you to format a particular decimal value
to the required precision and include leading digits and commas as needed. The symbols used to build
patterns are displayed in Table 4-3. Each of the patterns also contains a positive and negative subpattern.
These two subpatterns are separated by a semicolon (;) and the negative subpattern is optional. If there is
no negative subpattern present, the localized minus sign is used. For instance, a complete pattern example
would be ###,##0.00;(###,##0.00).

Chapter 4 ■ Numbers aNd dates

69

The DecimalFormat class provides enough flexibility to format double and long values for just about
every situation.

4-3. Comparing int Values
Problem
You need to compare two or more int values.

Solution 1
Use the comparison operators to compare integer values against one another. In the following example,
three int values are compared against each other, demonstrating various comparison operators:

int int1 = 1;
int int2 = 10;
int int3 = -5;

System.out.println(int1 == int2); // Result: false
System.out.println(int3 == int1); // Result: false
System.out.println(int1 == int1); // Result: true
System.out.println(int1 > int3); // Result: true
System.out.println(int2 < int3); // Result: false

As you can see, comparison operators will generate a boolean result.

Solution 2
Use the Integer.compare(int,int) method to compare two int values numerically. The following lines
could compare the same int values that were declared in the first solution:

System.out.println("Compare method -> int3 and int1: " + Integer.compare(int3, int1));
// Result -1
System.out.println("Compare method -> int2 and int1: " + Integer.compare(int2, int1));
// Result 1

Table 4-3. DecimalFormat Pattern Characters

Character Description

Digit; blank if no digit is present

0 Digit; zero if no digit is present

. Decimal

- Minus or negative sign

, Comma or grouping separator

E Scientific notation separator

; Positive and negative subpattern separator

Chapter 4 ■ Numbers aNd dates

70

How It Works
Perhaps the most commonly used numeric comparisons are against two or more int values. The Java
language makes it very easy to compare an int using the comparison operators (see Table 4-4).

Table 4-4. Comparison Operators

Operator Function

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The second solution to this recipe demonstrates the integer compare() method that was added to the
language in Java 7. This static method accepts two int values and compares them, returning a 1 if the first
int is greater than the second, a 0 if the two int values are equal, and a -1 if the first int value is less than the
second. To use the Integer.compare() method, pass two int values as demonstrated in the following code:

Integer.compare(int3, int1));
Integer.compare(int2, int1));

Just like in your math lessons at school, these comparison operators will determine whether the first
integer is equal to, greater than, or less than the second integer. Straightforward and easy to use, these
comparison operators are most often seen within the context of an if-statement.

4-4. Comparing Floating-Point Numbers
Problem
You need to compare two or more floating-point values in an application.

Solution 1
Use the Float object’s compareTo() method to perform a comparison of one float against another. The
following example shows the compareTo() method in action:

Float float1 = new Float("9.675");
Float float2 = new Float("7.3826");
Float float3 = new Float("23467.373");

System.out.println(float1.compareTo(float3)); // Result: -1
System.out.println(float2.compareTo(float3)); // Result: -1
System.out.println(float1.compareTo(float1)); // Result: 0
System.out.println(float3.compareTo(float2)); // Result: 1

Chapter 4 ■ Numbers aNd dates

71

The result of calling the compareTo() method is an integer value. A negative result indicates that the
first float is less than the float that it is being compared against. A zero indicates that the two float values are
equal. Lastly, a positive result indicates that the first float is greater than the float that it is being compared
against.

Solution 2
Use the Float class compare() method to perform the comparison. The following example demonstrates
the use of the Float.compare(float, float) method.

System.out.println(Float.compare(float1, float3)); // Result: -1
System.out.println(Float.compare(float2, float3)); // Result: -1
System.out.println(Float.compare(float1, float1)); // Result: 0
System.out.println(Float.compare(float3, float2)); // Result: 1

How It Works
The most useful way to compare two float objects is to use the compareTo() method. This method will
perform a numeric comparison against the given float objects. The result will be an integer value indicating
whether the first float is numerically greater than, equal to, or less than the float that it is compared against. If
a float value is NaN, it is considered to be equal to other NaN values or greater than all other float values. Also,
a float value of 0.0f is greater than a float value of -0.0f.

An alternative to using compareTo() is the compare() method, which is also native to the Float class.
The compare() method was introduced in Java 1.4, and it is a static method that compares two float values in
the same manner as compareTo(). It only makes the code read a bit differently. The format for the compare()
method is as follows:

Float.compare(primitiveFloat1, primitiveFloat2)

The compare() method shown will actually make the following call using compareTo():

new Float(float1).compareTo(new Float(float2));

In the end, the same results will be returned using either compareTo() or compare().

4-5. Calculating Monetary Values
Problem
You are developing an application that requires the use of monetary values and you are not sure which data
type to use for storing and calculating currency values.

Solution 1
Use the BigDecimal data type to perform calculation on monetary values. Format the resulting calculations
using the NumberFormat.getCurrencyInstance() helper method. In the following code, three monetary
values are calculated using a handful of the methods that are part of the BigDecimal class. The resulting

Chapter 4 ■ Numbers aNd dates

72

calculations are then converted into double values and formatted using the NumberFormat class. First, take a
look at how these values are calculated:

BigDecimal currencyOne = new BigDecimal("25.65");
BigDecimal currencyTwo = new BigDecimal("187.32");
BigDecimal currencyThree = new BigDecimal("4.86");
BigDecimal result = null;
String printFormat = null;

// Add all three values
result = currencyOne.add(currencyTwo).add(currencyThree);
// Convert to double and send to formatDollars(), returning a String
printFormat = formatDollars(result.doubleValue());
System.out.println(printFormat);

// Subtract the first currency value from the second
result = currencyTwo.subtract(currencyOne);
printFormat = formatDollars(result.doubleValue());
System.out.println(printFormat);

Next, let’s take a look at the formatDollars() method that is used in the code. This method accepts a
double value and performs formatting on it using the NumberFormat class based on the U.S. locale. It then
returns a String value representing currency:

public static String formatDollars(double value){
 NumberFormat dollarFormat = NumberFormat.getCurrencyInstance(Locale.US);
 return dollarFormat.format(value);
}

As you can see, the NumberFormat class allows for currency to be formatted per the specified locale.
This can be very handy if you are working with an application that deals with currency and has an
international scope.

$217.83
$161.67

Solution 2
Utilize the Java Money API, which was the focus of JSR 354, to perform monetary calculations.

 ■ Note the Java money apI was developed under Jsr 354 https://jcp.org/en/jsr/detail?id=354.
It was originally intended for completion and inclusion with Java 9. however, the Jsr was completed quite a bit
early, and contains no dependencies on the Java 9 codebase. therefore, the Java money apI can be used with
older versions of Java as well, such as Java 8, and it is available on Github at http://javamoney.github.io/.

The following example demonstrates how to perform currency calculations and formatting using the
.Java Money API.

https://jcp.org/en/jsr/detail?id=354
http://javamoney.github.io/

Chapter 4 ■ Numbers aNd dates

73

MonetaryAmount amount1 = Money.of(25.65, Monetary.getCurrency("USD"));
MonetaryAmount amount2 = Money.of(187.32, Monetary.getCurrency("USD"));
MonetaryAmount amount3 = Money.of(4.86,Monetary.getCurrency("USD"));

MonetaryAmount result = null;
result = amount1.add(amount2).add(amount3);

MonetaryAmountFormat printFormat = MonetaryFormats.getAmountFormat(
 AmountFormatQuery.of(Locale.US));
System.out.println("Sum of all: " + printFormat.format(result));

result = amount2.subtract(amount1);
System.out.println("Subtract amount1 from amount 2: " + printFormat.format(result));

How It Works
Many people attempt to use different number formats when working with currency. While it might be
possible to use any type of numeric object to work with currency, the BigDecimal class was added to the
language in Java 5 to help satisfy the requirements of working with currency values, among other things. We
will begin by explaining how to utilize BigDecimal for currency calculations, as it is the classic procedure,
and then we’ll take a look at the Java Money API.

Perhaps the most useful feature of the BigDecimal class is that it provides control over rounding. This is
essentially why such a class is so useful for working with currency values. The BigDecimal class provides an
easy API for rounding values, and also makes it easy to convert to double values, as the solution to this recipe
demonstrates.

 ■ Note the use of BigDecimal for working with monetary values is a good practice. however, it can come
at some performance expense. depending on the application and performance requirements, it might be worth
using Math.round() to achieve basic rounding if performance becomes an issue.

To provide specific rounding with the BigDecimal class, you should use a MathContext object or the
RoundingMode enumeration values. In either case, such precision can be omitted by using a currency-
formatting solution such as the one demonstrated in the solution example. BigDecimal objects have
mathematical implementations built into them, so performing such operations is an easy task. The
arithmetic operations that you can use are described in Table 4-5.

Table 4-5. BigDecimal Arithmetic Methods

Method Description

add() Adds one BigDecimal object value to another.

subtract() Subtracts one BigDecimal object value from another.

multiply() Multiplies the value of one BigDecimal object by another.

abs() Returns the absolute value of the given BigDecimal object value.

pow(n) Returns the BigDecimal to the power of n; the power is computed to unlimited precision.

Chapter 4 ■ Numbers aNd dates

74

After performing the calculations you require, call the doubleValue() method on the BigInteger
object to convert and obtain a double. You can then format the double using the NumberFormat class for
currency results.

The Java Money API began as JSR 354, in an effort to make it easier to work with currency in the
Java language. The API provides a truly significant change to the language, as it finally allows one to treat
currency in a standard manner, rather than utilizing the BigDecimal in various ways. The payoff of using the
Java Money API can be huge, since it can make code easier to read and understand, and provide a monetary
result rather than a result that must be coerced into a currency value.

In solution 2, the same currency values are used to demonstrate a handful of calculation exercises. The
standard types for currency in the API is a MonetaryAmount. In the solution, you can see that there are three
MonetaryAmount objects, and each of them represent different values in dollars and cents using the USD
currency. To obtain the values that are stored into the MonetaryAmount objects, the Money implementation
class is used to parse the value that is given to it, and then return a MonetaryAmount type of the specified
currency type. The Money class stores number values using BigDecimal.

The MonetaryAmount interface provides a number of methods that can be utilized for performing
operations against the stored value, comparing against other amounts, precision, and so forth. Specifically,
in the solution you can see that the add() method accepts another MonetaryAmount, and it is used to add the
value passed in to the original MonetaryAmount. Another such method is subtract(), which subtracts the
value passed from the original.

The solution also provides information about formatting monetary values. The MonetaryFormats
factory can be used to obtain formats specific to a desired locale. The resulting MonetaryAmountFormat
pattern can then be applied to a MonetaryAmount to change the presentation of the value accordingly.

4-6. Randomly Generating Values
Problem
An application that you are developing requires the use of randomly generated numbers.

Solution 1
Use the java.util.Random class to help generate the random numbers. The Random class was developed
for the purpose of generating random numbers for a handful of the Java numeric data types. This code
demonstrates the use of Random to generate such numbers:

// Create a new instance of the Random class
Random random = new Random();

// Generates a random Integer
int myInt = random.nextInt();

// Generates a random Double value
double myDouble = random.nextDouble();

Chapter 4 ■ Numbers aNd dates

75

// Generates a random float
float myFloat = random.nextFloat();

// Generates a random Gaussian double
// mean 0.0 and standard deviation 1.0
// from this random number generator's sequence.
double gausDouble = random.nextGaussian();

// Generates a random Long
long myLong = random.nextLong();

// Generates a random boolean
boolean myBoolean = random.nextBoolean();

Solution 2
Make use of the Math.random() method. This will produce a double value that is greater than 0.0, but less
than 1.0. The following code demonstrates the use of this method:

double rand = Math.random();

How It Works
The java.util.Random class uses a 48-bit seed to generate a series of pseudorandom values. As you can
see from the example in the solution to this recipe, the Random class can generate many different types of
random number values based on the given seed. By default, the seed is generated based on a calculation
derived from the number of milliseconds that the machine has been active. However, the seed can be set
manually using the Random setSeed() method. If two Random objects have the same seed, they will produce
the same results.

It should be noted that there are cases in which the Random class might not be the best choice
for generating random values. For instance, if you are attempting to use a thread-safe instance of
java.util.Random, you might run into performance issues if you’re working with many threads. In such a
case, you might consider using the ThreadLocalRandom class instead. To see more information regarding
ThreadLocalRandom, see the documentation at http://docs.oracle.com/javase/9/docs/api/java/util/
concurrent/ThreadLocalRandom.html.

Similarly, if you require the use of a cryptographically secure Random object, consider the use of
SecureRandom. Documentation regarding this class can be found at http://docs.oracle.com/javase/9/
docs/api/java/security/SecureRandom.html.

The java.util.Random class comes in very handy when you need to generate a type-specified
random value. Not only is it easy to use but it also provides a wide range of options for return type.
Another easy technique is to use the Math.random() method, which produces a double value that is within
the range of 0.0 to 1.0, as demonstrated in solution 2. Both techniques provide a good means of generating
random values. However, if you need to generate random numbers of a specific type, java.util.Random is
the best choice.

http://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ThreadLocalRandom.html
http://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ThreadLocalRandom.html
http://docs.oracle.com/javase/9/docs/api/java/security/SecureRandom.html
http://docs.oracle.com/javase/9/docs/api/java/security/SecureRandom.html

Chapter 4 ■ Numbers aNd dates

76

4-7. Obtaining the Current Date Without Time
Problem
You are developing an application for which you would like to obtain the current date, not including the
time, to display on a form.

Solution
Make use of the Date-Time API to obtain the current date. The LocalDate class represents an ISO calendar in
the year-month-day format. The following lines of code capture the current date and display it:

LocalDate date = LocalDate.now();
System.out.println("Current Date:" + date);

How It Works
The Date-Time API makes it easy to obtain the current date, without including other information such as
time. To do so, import the java.time.LocalTime class and call on its now() method. The LocalTime class
cannot be instantiated, as it is immutable and thread-safe. A call to the now() method returns another
LocalDate object, containing the current date in the year-month-day format.

Another version of the now() method accepts a java.time.Clock object as a parameter and returns the
date based on that clock. For instance, the following lines of code demonstrate how to obtain a Clock that
represents the system time:

Clock clock = Clock.systemUTC();
LocalDate date = LocalDate.now(clock);

In previous releases, there were other ways to obtain the current date, but usually the time came with
the date and then formatting had to be done to remove the unneeded time digits. The new java.time.
LocalDate class makes it possible to work with dates separate from times.

4-8. Obtaining a Date Object Given Date Criteria
Problem
You want to obtain a date object, given a year-month-day specification.

Solution
Invoke the LocalDate.of() method for the year, month, and day for which you want to obtain the object. For
example, suppose that you want to obtain a date object for a specified date in November of 2000. You could
pass that date criteria to the LocalDate.of() method, as demonstrated in the following lines of code:

LocalDate date = LocalDate.of(2000, Month.NOVEMBER, 11);
System.out.println("Date from specified date: " + date);

Chapter 4 ■ Numbers aNd dates

77

Here’s the result:

Date from specified date: 2000-11-11

How It Works
The LocalDate.of() method accepts three values as parameters. Those parameters represent the year,
month, and day. The year parameter is always treated as an int value. The month parameter can be
presented as an int value, which corresponds to an enum that represents the month. The Month enum will
return an int value for each month, with JANUARY returning a 1 and DECEMBER returning a 12. Therefore,
Month.NOVEMBER returns an 11. A Month object could also be passed as the second parameter instead of as an
int value. Lastly, the day of the month is specified by passing an int value as the third parameter to the of()
method.

 ■ Note For more information regarding the Month enum, see the online documentation at
http://download.java.net/jdk9/docs/api/java/time/Month.html.

4-9. Obtaining a Year-Month-Day Date Combination
Problem
You would like to obtain the year, year-month, or month of a specified date.

Solution 1
To obtain the year-month of a specified date, use the java.time.YearMonth class. This class is used to
represent the month of a specific year. In the following lines of code, the YearMonth object is used to obtain
the year and month of the current date and another specified date.

YearMonth yearMo = YearMonth.now();
System.out.println("Current Year and month:" + yearMo);
YearMonth specifiedDate = YearMonth.of(2000, Month.NOVEMBER);
System.out.println("Specified Year-Month: " + specifiedDate);

Here’s the result:

Current Year and month:2014-12
Specified Year-Month: 2000-11

Solution 2
To obtain the month-day for the current date or a specified date, simply make use of the java.time.MonthDay
class. The following lines of code demonstrate how to obtain a month-day combination.

MonthDay monthDay = MonthDay.now();
System.out.println("Current month and day: " + monthDay);

http://download.java.net/jdk9/docs/api/java/time/Month.html
http://download.java.net/jdk9/docs/api/java/time/Month.html

Chapter 4 ■ Numbers aNd dates

78

MonthDay specifiedDate = MonthDay.of(Month.NOVEMBER, 11);
System.out.println("Specified Month-Day: " + specifiedDate);

Here’s the result:

Current month and day: --12-14
Specified Month-Day: --11-11

Note that by default, MonthDay does not return a very useful format. For more help with formatting, see
Recipe 4-17.

How It Works
The Date-Time API includes classes that make it easy to obtain the information that your application
requires for a date. Two of those are the YearMonth and MonthDay classes. The YearMonth class is used to
obtain the date in year-month format. It contains a few methods that can be used to obtain the year-month
combination. As demonstrated in the solution, you can call the now() method to obtain the current year-
month combination. Similar to the LocalDate class, YearMonth also contains an of() method that accepts
a year in int format, and a number that represents the month of the year. In the solution, the Month enum is
used to obtain the month value.

Similar to the YearMonth class, MonthDay obtains the date in a month-day format. It also contains a few
different methods for obtaining the month-day combination. Solution 2 demonstrates two such techniques:
Obtaining the current month-day combination by calling the now() method and using the of() method to
obtain a month-day combination for a specified date. The of() method accepts an int value for the month
of the year as its first parameter, and for the second parameter it accepts an int value indicating the day of
the month.

4-10. Obtaining and Calculating Times Based on the
Current Time
Problem
You would like to obtain the current time so that it can be used to stamp a given record. You would also like
to perform calculations based on that time.

Solution
Use the LocalTime class, which is part of the new Date-Time API, to obtain and display the current time. In
the following lines of code, the LocalTime class is demonstrated.

LocalTime time = LocalTime.now();
System.out.println("Current Time: " + time);

Once the time has been obtained, methods can be called against the LocalTime instance to achieve the
desired result. In the following lines of code, there are some examples of using the LocalTime methods:

// atDate(LocalDate): obtain the local date and time
LocalDateTime ldt = time.atDate(LocalDate.of(2011,Month.NOVEMBER,11));
System.out.println("Local Date Time object: " + ldt);

Chapter 4 ■ Numbers aNd dates

79

// of(int hours, int min): obtain a specific time
LocalTime pastTime = LocalTime.of(1, 10);

// compareTo(LocalTime): compare two times. Positive
// return value returned if greater
System.out.println("Comparing times: " + time.compareTo(pastTime));

// getHour(): return hour in int value (24-hour format)
int hour = time.getHour();
System.out.println("Hour: " + hour);

// isAfter(LocalTime): return Boolean comparison
System.out.println("Is local time after pastTime? " + time.isAfter(pastTime));

// minusHours(int): Subtract Hours from LocalTime
LocalTime minusHrs = time.minusHours(5);
System.out.println("Time minus 5 hours: " + minusHrs);

// plusMinutes(int): Add minutes to LocalTime
LocalTime plusMins = time.plusMinutes(30);
System.out.println("Time plus 30 mins: " + plusMins);

Here are the results:

Current Time: 22:21:08.419
Local Date Time object: 2011-11-11T22:21:08.419
Comparing times: 1
Hour: 22
Is local time after pastTime? true
Time minus 5 hours: 17:21:08.419
Time plus 30 mins: 22:51:08.419

How It Works
Sometimes it is necessary to obtain the current system time. The LocalTime class can be used to obtain the
current time by calling its now() method. Similarly to the LocalDate class, the LocalTime.now() method can
be called to return a LocalTime object that is equal to the current time. The LocalTime class also contains
several methods that can be utilized to manipulate the time. The examples contained in the solution provide
a brief overview of the available methods.

Let’s take a look at a handful of examples to provide some context for how the LocalTime methods are
invoked. To obtain a LocalTime object set to a specific time, invoke the LocalTime.of(int, int) method,
passing int parameters representing the hour and minute.

// of(int hours, int min): obtain a specific time
LocalTime pastTime = LocalTime.of(1, 10);

The atDate(LocalDate) instance method is used to apply a LocalDate object to a LocalTime instance,
returning a LocalDateTime object (for more information, see Recipe 4-11).

LocalDateTime ldt = time.atDate(LocalDate.of(2011,Month.NOVEMBER,11));

Chapter 4 ■ Numbers aNd dates

80

There are several methods that can be used for obtaining portions of the time. For instance, the
getHour(), getMinute(), getNano(), and getSecond() methods can be used to return those specified
portions of the LocalTime object.

int hour = time.getHour();
int min = time.getMinute();
int nano = time.getNano();
int sec = time.getSecond();

Several comparison methods are also available for use. For example, the compareTo(LocalTime)
method can be used to compare one LocalTime object to another. isAfter(LocalTime) can be used to
determine if the time is after another, and isBefore(LocalTime) is used to specify the opposite.
If calculations are needed, several methods are available, including:

•	 minus(long amountToSubtract, TemporalUnit unit)

•	 minus(TemporalAmount amount)

•	 minusHours(long)

•	 minusMinutes(long)

•	 minusNanos(long)

•	 minusSeconds(long)

•	 plus(long amountToAdd, TemporalUnit unit)

•	 plus(TemporalAmount amount)

•	 plusHours(long)

•	 plusMinutes(long)

•	 plusNanos(long)

•	 plusSeconds(long)

To see all of the methods contained in the LocalTime class, see the online documentation at
http://docs.oracle.com/javase/9/docs/api/java/time/LocalTime.html.

4-11. Obtaining and Using the Date and Time Together
Problem
In your application, you want to display not only the current date, but also the current time.

Solution 1
Make use of the LocalDateTime class, which is part of the new Date-Time API, to capture and display the
current date and time. The LocalDateTime class contains a method named now(), which can be used to
obtain the current date and time together. The following lines of code demonstrate how to do so:

LocalDateTime ldt = LocalDateTime.now();
System.out.println("Local Date and Time: " + ldt);

http://docs.oracle.com/javase/9/docs/api/java/time/LocalTime.html

Chapter 4 ■ Numbers aNd dates

81

The resulting LocalDateTime object contains both the date and time, but no time zone information. The
LocalDateTime class also contains additional methods that provide options for working with date-time data.
For instance, to return a LocalDateTime object with a specified date and time, pass parameters of int type to
the LocalDateTime.of() method, as follows:

// Obtain the LocalDateTime object of the date 11/11/2000 at 12:00
LocalDateTime ldt2 = LocalDateTime.of(2000, Month.NOVEMBER, 11, 12, 00);

The following examples demonstrate a handful of the methods that are available in a LocalDateTime object:

// Obtain the month from LocalDateTime object
Month month = ldt.getMonth();
int monthValue = ldt.getMonthValue();
System.out.println("Month: " + month);
System.out.println("Month Value: " + monthValue);

// Obtain day of Month, Week, and Year
int day = ldt.getDayOfMonth();
DayOfWeek dayWeek = ldt.getDayOfWeek();
int dayOfYr = ldt.getDayOfYear();
System.out.println("Day: " + day);
System.out.println("Day Of Week: " + dayWeek);
System.out.println("Day of Year: " + dayOfYr);

// Obtain year
int year = ldt.getYear();
System.out.println("Date: " + monthValue + "/" + day + "/" + year);

int hour = ldt.getHour();
int minute = ldt.getMinute();
int second = ldt.getSecond();
System.out.println("Current Time: " + hour + ":" + minute + ":" + second);

// Calculation of Months, etc.
LocalDateTime currMinusMonths = ldt.minusMonths(12);
LocalDateTime currMinusHours = ldt.minusHours(10);
LocalDateTime currPlusDays = ldt.plusDays(30);
System.out.println("Current Date and Time Minus 12 Months: " + currMinusMonths);
System.out.println("Current Date and Time MInus 10 Hours: " + currMinusHours);
System.out.println("Current Date and Time Plus 30 Days:" + currPlusDays);

Here’s the result:

Day: 28
Day Of Week: SATURDAY
Day of Year: 332
Date: 11/28/2015
Current Time: 10:23:8
Current Date and Time Minus 12 Months: 2014-11-28T10:23:08.399
Current Date and Time MInus 10 Hours: 2015-11-28T00:23:08.399
Current Date and Time Plus 30 Days:2015-12-28T10:23:08.399

Chapter 4 ■ Numbers aNd dates

82

Solution 2
If you only need to obtain the current date without going into calendar details, use the java.util.Date class
to generate a new Date object. Doing so will generate a new Date object that is equal to the current system
date. In the following code, you can see how easy it is to create a new Date object and obtain the current date:

Date date = new Date();

System.out.println("Using java.util.Date(): " + date);
System.out.println("Getting time from java.util.Date(): " + date.getTime());

The result will be a Date object that contains the current date and time taken from the system that the
code is run on, including the time zone information, as shown following listing. The time is the number of
milliseconds since January 1, 1970, 00:00:00 GMT.

Using java.util.Date(): Sat Nov 28 10:23:08 CST 2015
Getting time from java.util.Date(): 1448727788454

Solution 3
If you need to be more precise regarding the calendar, use the java.util.Calendar class. Although working
with the Calendar class will make your code longer, the results are more granular than using a java.util.Date.
The following code demonstrates just a handful of the capabilities of using this class to obtain the current date:

Calendar gCal = Calendar.getInstance();

// Month is based upon a zero index, January is equal to 0,
// so we need to add one to the month for it to be in
// a standard format
int month = gCal.get(Calendar.MONTH) + 1;int day = gCal.get(Calendar.DATE);
int yr = gCal.get(Calendar.YEAR);

String dateStr = month + "/" + day + "/" + yr;
System.out.println(dateStr);

int dayOfWeek = gCal.get(Calendar.DAY_OF_WEEK);

// Print out the integer value for the day of the week
System.out.println(dayOfWeek);

int hour = gCal.get(Calendar.HOUR);
int min = gCal.get(Calendar.MINUTE);
int sec = gCal.get(Calendar.SECOND);

// Print out the time
System.out.println(hour + ":" + min + ":" + sec);

// Create new DateFormatSymbols instance to obtain the String
// value for dates
DateFormatSymbols symbols = new DateFormatSymbols();

Chapter 4 ■ Numbers aNd dates

83

String[] days = symbols.getWeekdays();
System.out.println(days[dayOfWeek]);

// Get crazy with the date!
int dayOfYear = gCal.get(Calendar.DAY_OF_YEAR);
System.out.println(dayOfYear);

// Print the number of days left in the year
System.out.println("Days left in " + yr + ": " + (365-dayOfYear));

int week = gCal.get(Calendar.WEEK_OF_YEAR);
// Print the week of the year
System.out.println(week);

As demonstrated by this code, it is possible to obtain more detailed information regarding the current
date when using the Calendar class. The results of running the code will look like the following:

11/28/2015
7
10:28:26
Saturday
332
Days left in 2015: 33
48

 ■ Note although the java.util.Calendar provides a robust technique for obtaining precise date/time
information, the preferred solution as of Java 8 is to make use of the Java date-time apI.

How It Works
Many applications require the use of the current calendar date. It is often also necessary to obtain the
current time. There are different ways to do that, and the solution to this recipe demonstrates three of them.
The Date-Time API includes a LocalDateTime class that enables you to capture the current date and time
by invoking its now() method. A specified date and time can be obtained by specifying the corresponding
int and Month type parameters when calling LocalDateTime.of(). There are also a multitude of methods
available for use via a LocalDateTime instance, such as getHours(), getMinutes(), getNanos(), and
getSeconds(), which allow for finer-grained control of the date and time. An instance of LocalDateTime
also contains methods for performing calculations, conversions, comparisons, and more. For brevity,
all of the methods are not listed here, but for further information; refer to the online documentation at
http://docs.oracle.com/javase/9/docs/api/java/time/LocalDateTime.html. Solution 1 to this recipe
demonstrates the use of the LocalDateTime, showcasing how to perform calculations and obtain portions of
the date and time for further use.

By default, the java.util.Date class can be instantiated with no arguments to return the current date
and time. The Date class can also be used to return the current time of day via the getTime() method. As
mentioned in the solution, the getTime() method returns the number of milliseconds since January 1, 1970,
00:00:00 GMT, represented by the Date object that is in use. There are several other methods that can be called
against a Date object with regard to breaking down the current date and time into more granular intervals.
For instance, the Date class has the methods getHours(), getMinutes(), getSeconds(), getMonth(),

http://docs.oracle.com/javase/9/docs/api/java/time/LocalDateTime.html

Chapter 4 ■ Numbers aNd dates

84

getDay(), getTimezoneOffset(), and getYear(). However, it is not advisable to use any of these
methods, with the exception of getTime(), because each has been deprecated by the use of the java.time.
LocalDateTime and the java.util.Calendar get() method. When a method or class is deprecated, that
means it should no longer be used because it might be removed in some future release of the Java language.
However, a few of the methods contained within the Date class have not been tagged as deprecated, so the
Date class will most likely be included in future releases of Java. The methods that were left intact include
the comparison methods after(), before(), compareTo(), setTime(), and equals(). Solution 2 to this
recipe demonstrates how to instantiate a Date object and print out the current date and time.

As mentioned previously, the Date class has many methods that have become deprecated and
should no longer be used. In solution 3 of this recipe, the java.util.Calendar class is demonstrated as
one successor for obtaining much of this information. The Calendar class was introduced in JDK 1.1, at
which time many of the Date methods were deprecated. As you can see from solution 3, the Calendar class
contains all the same functionality that is included in the Date class, except the Calendar class is much more
flexible. The Calendar class is actually a class that contains methods that are used for converting between
a specific time and date, and manipulating the calendar in various ways. The Calendar, as demonstrated in
solution 3, is one such class that extends the Calendar class and therefore provides this functionality. The
Calendar class has gained a few new methods in Java 8. The new methods in java.util.Calendar are listed
in Table 4-6.

Table 4-6. New Methods for java.util.Calendar in Java 8

Method Name Description

getAvailableCalendarTypes() Returns unmodifiable set containing all supported calendar types.

getCalendarType() Returns the calendar type of this calendar.

toInstant() Converts to an instant.

For some applications, the Date class will work fine. For instance, the Date class can be useful when
working with timestamps. However, if the application requires detailed manipulation of dates and times
then it is advisable to use a LocalDateTime or the Calendar class, which both include all the functionality of
the Date class and more features as well. All solutions to this recipe are technically sound; choose the one
that best suits the needs of your application.

4-12. Obtaining a Machine Timestamp
Problem
You need to obtain a machine-based timestamp from the system.

Solution
Utilize an Instant class, which represents the start of a nanosecond on the timeline based on machine time.
In the following example, an Instant is used to obtain the system timestamp. The Instant is also utilized in
other scenarios, such as when calculating different dates based on the Instant.

public static void instants(){
 Instant timestamp = Instant.now();
 System.out.println("The current timestamp: " + timestamp);

Chapter 4 ■ Numbers aNd dates

85

 //Now minus three days
 Instant minusThree = timestamp.minus(3, ChronoUnit.DAYS);
 System.out.println("Now minus three days:" + minusThree);

 ZonedDateTime atZone = timestamp.atZone(ZoneId.of("GMT"));
 System.out.println(atZone);

 Instant yesterday = Instant.now().minus(24, ChronoUnit.HOURS);
 System.out.println("Yesterday: " + yesterday);
 }

Here is the result:

The current timestamp: 2015-11-28T16:21:42.197Z
Now minus three days:2015-11-25T16:21:42.197Z
2015-11-28T16:21:42.197Z[GMT]
Yesterday: 2015-11-27T16:21:42.273Z

How It Works
The Date-Time API introduces a new class named Instant, which represents the start of a nanosecond on
the timeline in machine-based time. Being based on machine time, the value for an Instant counts from the
EPOCH (January 1, 1970 00:00:00Z). Any values prior to the EPOCH are negative, and after the EPOCH the values
are positive. The Instant class is perfect for obtaining a machine timestamp, as it includes all pertinent date
and time information to the nanosecond.

An Instant class is static and immutable, so to obtain the current timestamp, the now() method
can be called. Doing so returns a copy of the current Instant. The Instant also includes conversion and
calculation methods, each returning copies of the Instant or other types. In the solution, the now() method
returns the current timestamp, and then a couple of examples follow, showing how to perform calculations
and obtain information on the Instant.

The Instant is an important new feature in Java 8, as it makes it easy to work with current time and date
data. The other date and time classes, such as LocalDateTime, are useful as well. However, the Instant is the
most accurate timestamp as it’s based on nanosecond accuracy.

4-13. Converting Dates and Times Based on the Time Zone
Problem
The application you are developing has the potential to be utilized throughout the world. In some areas
of the application, static dates and times need to be displayed, rather than the system date and time. In
such cases, those static dates and times need to be converted to suit the particular time zone in which the
application user is currently residing.

Solution
The Date-Time API provides the proper utilities for working with time zone data via the Time Zone and
Offset classes. In the following scenario, suppose that the application is working with reservations for rental
vehicles. You could rent a vehicle in one time zone and return it in another. The following lines of code
demonstrate how to print out an individual’s reservation in such a scenario. The following method, named

Chapter 4 ■ Numbers aNd dates

86

scheduleReport, accepts LocalDateTime objects representing check-in and check-out date/time, along
with ZoneIds for each. This method could be used by an airline to print time-zone information for a
particular flight.

public static void scheduleReport(LocalDateTime checkOut, ZoneId checkOutZone,
 LocalDateTime checkIn, ZoneId checkInZone){

 ZonedDateTime beginTrip = ZonedDateTime.of(checkOut, checkOutZone);
 System.out.println("Trip Begins: " + beginTrip);

 // Get the rules of the check out time zone
 ZoneRules checkOutZoneRules = checkOutZone.getRules();
 System.out.println("Checkout Time Zone Rules: " + checkOutZoneRules);

 //If the trip took 4 days
 ZonedDateTime beginPlus = beginTrip.plusDays(4);
 System.out.println("Four Days Later: " + beginPlus);

 // End of trip in starting time zone
 ZonedDateTime endTripOriginalZone = ZonedDateTime.of(checkIn, checkOutZone);
 ZonedDateTime endTrip = ZonedDateTime.of(checkIn, checkInZone);
 int diff = endTripOriginalZone.compareTo(endTrip);
 String diffStr = (diff >= 0) ? "NO":"YES";
 System.out.println("End trip date/time in original zone: " + endTripOriginalZone);
 System.out.println("End trip date/time in check-in zone: " + endTrip);
 System.out.println("Original Zone Time is less than new zone time? " +
 diffStr);
 ZoneId checkOutZoneId = beginTrip.getZone();
 ZoneOffset checkOutOffset = beginTrip.getOffset();
 ZoneId checkInZoneId = endTrip.getZone();
 ZoneOffset checkInOffset = endTrip.getOffset();

 System.out.println("Check out zone and offset: " + checkOutZoneId + checkOutOffset);
 System.out.println("Check in zone and offset: " + checkInZoneId + checkInOffset);

}

Here is the result:

Trip Begins: 2015-12-13T13:00-05:00[US/Eastern]
Checkout Time Zone Rules: ZoneRules[currentStandardOffset=-05:00]
Four Days Later: 2015-12-17T13:00-05:00[US/Eastern]
End trip date/time in original zone: 2015-12-18T10:00-05:00[US/Eastern]
End trip date/time in check-in zone: 2015-12-18T10:00-07:00[US/Mountain]
Original Zone Time is less than new zone time? YES
Check out zone and offset: US/Eastern-05:00
Check in zone and offset: US/Mountain-07:00

Chapter 4 ■ Numbers aNd dates

87

How It Works
Time zones add yet another challenge for developers, and the Java Date-Time API provides an easy facet
for working with them. The Date-Time API includes a java.time.zone package, which contains a number
of classes that can assist in working with time zone data. These classes provide support for time zone rules,
data, and resulting gaps and overlaps in the local timeline that are typically the result of daylight savings
conversions. The classes that make up the zone package are outlined in Table 4-7.

Table 4-7. Time Zone Classes

Class Name Description

ZoneId Specifies zone identifier and is used for conversions.

ZoneOffset Specifies a time zone offset from Greenwich/UTC time.

ZonedDateTime A date-time object that also handles the time zone data with time zone
offset from Greenwich/UTC time.

ZoneRules Rules defining how a zone offset varies for a specified time zone.

ZoneRulesProvider Provider of time zone rules to a particular system.

ZoneOffsetTransition Transition between two offsets by a discontinuity in the local timeline.

ZoneOffsetTransitionRule Rules expressing how to create a transition.

Starting with the most fundamental time zone class, ZoneId, each time zone contains a particular
time zone identifier. This identifier can be useful for assigning a particular time zone to a date-time. In the
solution, the ZoneId is used to calculate any differences between two time zones. ZoneId identifies the rules
that should be used for converting, based on a particular offset, either fixed or geographical region-based.
For more details on ZoneId, see the documentation at http://docs.oracle.com/javase/9/docs/api/java/
time/ZonedDateTime.html.

ZonedDateTime is an immutable class that is utilized for working with date-time and time zone data
together. This class represents an object, much like LocalDateTime, that includes the ZoneId. It can be used to
express all facets of a date, including year, month, day, hours, minutes, seconds, nanos, and time zone. The class
contains a bevy of methods that are useful for performing calculations, conversions, and so on. For brevity, the
methods that are contained in ZonedDateTime are not listed here, but you can read about each of them in the
documentation at http://docs.oracle.com/javase/9/docs/api/java/time/ZonedDateTime.html.

ZoneOffset specifies a time zone offset from Greenwich/UTC time. You can find the offset for
a particular time zone by invoking the ZonedDateTime.getOffset() method. The ZoneOffset class
includes methods that make it easy to break down an offset into different time units. For instance, the
getTotalSeconds() method returns the total of hours, minutes, and seconds fields as a single offset that can
be added to a time. Refer to the online documentation for more information at http://docs.oracle.com/
javase/9/docs/api/java/time/ZoneOffset.html.

There are many rules that can be defined for determining how zone offset varies for a single time
zone. The ZoneRules class is used to define these rules for a zone. For instance, ZoneRules can be called
on to specify or determine if daylight savings time is a factor. An Instant or LocalDateTime can also
be passed to ZoneRules methods such as getOffset() and getTransition() to return ZoneOffset or
ZoneOffsetTransition. For more information on ZoneRules, refer to the online documentation at
http://docs.oracle.com/javase/9/docs/api/java/time/zone/ZoneRules.html.

Another time zone class that is used often is ZoneOffsetTransition. This class models the transition
between the spring and autumn offsets as a result of daylight savings time changes. It is used to determine if
there is a gap between transitions, obtaining the duration of a transition, and so on. For more information on

http://docs.oracle.com/javase/9/docs/api/java/time/ZonedDateTime.html
http://docs.oracle.com/javase/9/docs/api/java/time/ZonedDateTime.html
http://docs.oracle.com/javase/9/docs/api/java/time/ZonedDateTime.html
http://docs.oracle.com/javase/9/docs/api/java/time/ZoneOffset.html
http://docs.oracle.com/javase/9/docs/api/java/time/ZoneOffset.html

http://docs.oracle.com/javase/9/docs/api/java/time/zone/ZoneRules.html

http://docs.oracle.com/javase/9/docs/api/java/time/zone/ZoneRules.html

Chapter 4 ■ Numbers aNd dates

88

ZoneOffsetTransition, see the online documentation at http://docs.oracle.com/javase/9/docs/api/
java/time/zone/ZoneOffsetTransition.html.

ZoneRulesProvider, ZoneOffsetTransitionRule, and other classes are typically not utilized as often
as others for working with dates and time zones. These classes are useful for managing configuration of time
zone rules and transitions.

 ■ Note the classes within the java.time.zone package are significant, in that there are a multitude of
methods that can be invoked on each class. this recipe provides a primer for getting started, with only the
basics of time zone usage. For more detailed information, see the online documentation.

4-14. Comparing Two Dates
Problem
You want to determine if one date is greater than another.

Solution
Utilize one of the compareTo() methods that are part of the Date-Time API classes. In the following solution,
two LocalDate objects are compared and an appropriate message is displayed.

public static void compareDates(LocalDate ldt1,
 LocalDate ldt2) {
 int comparison = ldt1.compareTo(ldt2);
 if (comparison > 0) {
 System.out.println(ldt1 + " is larger than " + ldt2);
 } else if (comparison < 0) {
 System.out.println(ldt1 + " is smaller than " + ldt2);
 } else {
 System.out.println(ldt1 + " is equal to " + ldt2);
 }

 }

Similarly, there are convenience methods for use when performing date comparison. Specifically,
the methods isAfter(), isBefore(), and isEqual() can be used to compare in the same manner as
compareTo(), as seen in the following listing.

public static void compareDates2(LocalDate ldt1, LocalDate ldt2){
 if(ldt1.isAfter(ldt2)){
 System.out.println(ldt1 + " is after " + ldt2);
 } else if (ldt1.isBefore(ldt2)){
 System.out.println(ldt1 + " is before " + ldt2);
 } else if (ldt1.isEqual(ldt2)){
 System.out.println(ldt1 + " is equal to " + ldt2);
 }
}

http://docs.oracle.com/javase/9/docs/api/java/time/zone/ZoneOffsetTransition.html
http://docs.oracle.com/javase/9/docs/api/java/time/zone/ZoneOffsetTransition.html

Chapter 4 ■ Numbers aNd dates

89

How It Works
Many of the Date-Time API classes contain a method that is used to compare two different date-time objects.
In the solution to this example, the LocalDate.compareTo() method is used to determine if one LocalDate
object is greater than another. The compareTo() method returns a negative int value if the first LocalDate
is greater than the second, a zero if they are equal, and a positive number if the second LocalDate is greater
than the first.

Each of the date-time classes that contain a compareTo() has the same outcome. That is, an int value is
returned indicating if the first object is greater than, less than, or equal to the second. Each of the classes that
contains the compareTo() method is listed here:

•	 Duration

•	 LocalDate

•	 LocalDateTime

•	 LocalTime

•	 Instant

•	 MonthDay

•	 OffsetDateTime

•	 OffsetTime

•	 Year

•	 YearMonth

•	 ZoneOffset

As seen in the second listing, the isAfter(), isBefore(), and isEqual() methods can also be used
for comparison purposes. These methods return a boolean to indicate the comparison results. While the
outcome of these methods can be used to perform date comparison in much the same way as compareTo(),
they can make code a bit easier to read.

4-15. Finding the Interval Between Dates and Times
Problem
You need to determine how many hours, days, weeks, months, or years have elapsed between two dates or times.

Solution 1
Utilize the Date-Time API to determine the difference between two dates. Specifically, make use of
the Period class to determine the period of time, in days, between two dates. The following example
demonstrates how to obtain the interval of days, months, and years between two dates.

 ■ Note this example shows the difference in days, months, and years, but not the cumulative days or
months between two dates. to determine the total cumulative days, months, and years between two dates, read
on for solutions #2 and #3.

Chapter 4 ■ Numbers aNd dates

90

LocalDate anniversary = LocalDate.of(2000, Month.NOVEMBER, 11);
LocalDate today = LocalDate.now();
Period period = Period.between(anniversary, today);
System.out.println("Number of Days Difference: " + period.getDays());
System.out.println("Number of Months Difference: " + period.getMonths());
System.out.println("Number of Years Difference: " + period.getYears());

Here is the result:

Number of Days Difference: 16
Number of Months Difference: 1
Number of Years Difference: 13

Solution 2
Use the java.util.concurrent.TimeUnit enum to perform calculations between given dates. Using this
enum, you can obtain the integer values for days, hours, microseconds, milliseconds, minutes, nanoseconds,
and seconds. Doing so will allow you to perform the necessary calculations.

// Obtain two instances of the Calendar class
Calendar cal1 = Calendar.getInstance();
Calendar cal2 = Calendar.getInstance();

// Set the date to 01/01/2010:12:00
cal2.set(2010,0,1,12,0);
Date date1 = cal2.getTime();
System.out.println(date1);

long mill = Math.abs(cal1.getTimeInMillis() - date1.getTime());
// Convert to hours
long hours = TimeUnit.MILLISECONDS.toHours(mill);
// Convert to days
Long days = TimeUnit.HOURS.toDays(hours);
String diff = String.format("%d hour(s) %d min(s)", hours,
TimeUnit.MILLISECONDS.toMinutes(mill) - TimeUnit.HOURS.toMinutes(hours));
System.out.println(diff);

diff = String.format("%d days", days);
System.out.println(diff);

// Divide the number of days by seven for the weeks
int weeks = days.intValue()/7;
diff = String.format("%d weeks", weeks);
System.out.println(diff);

The output of this code will be formatted to display Strings of text that indicate the differences between
the current date and the Date object that is created.

Chapter 4 ■ Numbers aNd dates

91

Solution 3
To determine the total cumulative difference in days, months, years, or other time unit, use the ChronoUnit
class. The following code demonstrates how to utilize the ChronoUnit class to determine the number of days
and years between two dates.

LocalDate anniversary = LocalDate.of(2000, Month.NOVEMBER, 11);
LocalDate today = LocalDate.now();
long yearsBetween = ChronoUnit.YEARS.between(anniversary, today);
System.out.println("Years between dates: " + yearsBetween);

long daysBetween = ChronoUnit.DAYS.between(anniversary, today);
System.out.println("Days between dates:" + daysBetween);

Here are the results:

Years between dates: 13
Days between dates:4794

How It Works
As with most programmatic techniques, there is more than one way to perform date calculations with Java.
The Date-Time API introduced in Java 8 includes a few new techniques for determining time intervals. The
Period class is used to determine the period of difference between two units for specified objects. To obtain
a Period between two date-time objects, call the Period.between() method, passing the two date-time
objects for which you’d like to obtain the Period. The Period has a number of methods that can be used
to break down the intervals into different units. For instance, the number of days in the Period of the two
date-time objects can be obtained using the getDays() method. Similarly, the getMonths() and getYears()
methods can be called to return the number of months or years in the Period.

The Date-Time API also includes a ChronoUnit Enum that can be used to work with calendar systems
other than ISO, providing unit-based access to manipulate date and time. Each of the unit values within
the Enum contains a number of methods for performing manipulations. One such method is between(),
which returns a single unit of time only in the specified unit between the two given date-time objects. In the
solution, it is used to return years and days using ChronoUnit.YEARS.between() and
ChronoUnit.DAYS.between(), respectively.

One of the most useful techniques is to perform calculations based on the given date’s time in
milliseconds. This provides the most accurate calculation because it works on the time at a very small
interval: milliseconds. The current time in milliseconds can be obtained from a Calendar object by calling
the getTimeInMillis() method against it. Likewise, a Date object will return its value represented in
milliseconds by calling the getTime() method. As you can see from the solution to this recipe, the first math
that is performed is the difference between the given dates in milliseconds. Obtaining that value and then
taking its absolute value will provide the base that is needed to perform the date calculations. In order to
obtain the absolute value of a number, use the abs() method that is contained in the java.lang.Math class,
shown in the following line of code:

long mill = Math.abs(cal1. getTimeInMillis() - date1.getTime());

The absolute value will be returned in long format. The TimeUnit enum can be used in order to obtain
different conversions of the date. It contains a number of static enum constant values that represent
different time intervals, similar to those of a Calendar object. Those values are displayed here.

Chapter 4 ■ Numbers aNd dates

92

 ■ Note an enum type is a type whose fields consist of a fixed set of constant values. enum types were
welcomed to the Java language in release 1.5.

•	 DAYS

•	 HOURS

•	 MICROSECONDS

•	 MILLISECONDS

•	 MINUTES

•	 NANOSECONDS

•	 SECONDS

The values speak for themselves with regard to the conversion interval they represent. By calling
conversion methods against these enums, long values representing the duration between two dates can be
converted. As you can see in the solution to this recipe, first the time unit is established using the enum and
then a conversion call is made against that time unit. Take, for instance, the following conversion. First, the
time unit of TimeUnit.MILLISECONDS is established. Second, the toHours() method is called against it and a
long value that is represented by the mill field is passed as an argument:

TimeUnit.MILLISECONDS.toHours(mill)

This code can be translated in English as follows: “The contents of the field mill are represented in
milliseconds; convert those contents into hours.” The result of this call will be the conversion of the value
within the mill field into hours. By stacking the calls to TimeUnit, more precise conversions can be made.
For instance, the following code converts the contents of the mill field into hours and then into days:

TimeUnit.HOURS.toDays(TimeUnit.MILLISECONDS.toHours(mill))

Again, the English translation can be read as, “The contents of the field mill are represented in
milliseconds. Convert those contents into hours. Next, convert those hours into days.”

TimeUnit can make time interval conversion very precise. Combining the precision of the TimeUnit
conversions along with mathematics will allow you to convert the difference of two dates into just about any
time interval.

4-16. Obtaining Date-Time from a Specified String
Problem
You want to parse a String into a date-time object.

Solution
Utilize the parse() method of a temporal date-time class to parse a String using a predefined or custom
format. The following lines of code demonstrate how to parse a String into a date or date-time object using
variations of the parse() method.

Chapter 4 ■ Numbers aNd dates

93

// Parse a String to form a Date-Time object
LocalDate ld = LocalDate.parse("2014-12-28");
LocalDateTime ldt = LocalDateTime.parse("2014-12-28T08:44:00");
System.out.println("Parsed Date: " + ld);
System.out.println("Parsed Date-Time: " + ldt);

// Using a different Parser
LocalDate ld2 = LocalDate.parse("2014-12-28", DateTimeFormatter.ISO_DATE);
System.out.println("Different Parser: " + ld2);

// Custom Parser
String input = "12/28/2013";
try {
 DateTimeFormatter formatter = DateTimeFormatter.ofPattern("MM/dd/yyyy");
 LocalDate ld3 = LocalDate.parse(input, formatter);
 System.out.println("Custom Parsed Date: " + ld3);
} catch (DateTimeParseException ex){
 System.out.println("Not parsable: " + ex);
}

Here is the result:

Parsed Date: 2014-12-28
Parsed Date-Time: 2014-12-28T08:44
Different Parser: 2014-12-28
Custom Parsed Date: 2014-12-28

How It Works
The temporal classes of the Date-Time API include a parse() method, which can be used to parse a given
input String using a specified format. By default, the parse() method will format based on the target object’s
default DateTimeFormatter. For example, to parse the String "2014-01-01", the default LocalDate.parse()
method can be called.

LocalDate date = LocalDate.parse("2014-01-01");

However, another DateTimeFormatter can be specified as a second argument to the parse() method.
DateTimeFormatter is a final class used for formatting and printing dates and times. It contains a number of
built-in formatters that can be specified to coerce Strings into date-time objects. For example, to parse based
on the standard ISO_DATE format without offset, call DateTimeFormatter.ISO_DATE, as demonstrated in the
solution to this recipe. For more information regarding DateTimeFormatter, see the online documentation
at http://docs.oracle.com/javase/9/docs/api/java/time/format/DateTimeFormatter.html.

Oftentimes, it is necessary to parse Strings of text into date-time objects. Such tasks are made easy with
the parse() method being built into many of the core date-time classes.

http://docs.oracle.com/javase/9/docs/api/java/time/format/DateTimeFormatter.html

Chapter 4 ■ Numbers aNd dates

94

4-17. Formatting Dates for Display
Problem
Dates need to be displayed by your application using a specific format. You want to define that format once
and apply it to all dates that need to be displayed.

Solution 1
Utilize the DateTimeFormatter class, part of the Date-Time API, to format dates and times according to the
pattern you want to use. The DateTimeFormatter class includes an ofPattern() method, which accepts a
String pattern argument to designate the desired pattern. Each of the temporal date-time classes includes
a format() method, which accepts a DateTimeFormatter and returns the String-based format of the target
date-time object. In the following lines of code, the DateTimeFormatter is demonstrated:

DateTimeFormatter dateFormatter = DateTimeFormatter.ofPattern("MMMM dd yyyy");

LocalDateTime now = LocalDateTime.now();
String output = now.format(dateFormatter);
System.out.println(output);

DateTimeFormatter dateFormatter2 = DateTimeFormatter.ofPattern("MM/dd/YY HH:mm:ss");
String output2 = now.format(dateFormatter2);
System.out.println(output2);

DateTimeFormatter dateFormatter3 = DateTimeFormatter.ofPattern("hh 'o''clock' a, zzzz");
ZonedDateTime zdt = ZonedDateTime.now();
String output3 = zdt.format(dateFormatter3);
System.out.println(output3);

Here is the result:

December 28 2013
12/28/13 10:44:06
10 o'clock AM, Central Standard Time

Solution 2
Use the java.util.Calendar class to obtain the date that you require and then format that date using the
java.text.SimpleDateFormat class. The following example demonstrates the use of the SimpleDateFormat
class:

// Create new calendar
Calendar cal = Calendar.getInstance();

// Create instance of SimpleDateFormat class using pattern
SimpleDateFormat dateFormatter1 = new SimpleDateFormat("MMMMM dd yyyy");
String result = null;

Chapter 4 ■ Numbers aNd dates

95

result = dateFormatter1.format(cal.getTime());
System.out.println(result);

dateFormatter1.applyPattern("MM/dd/YY hh:mm:ss");
result = dateFormatter1.format(cal.getTime());
System.out.println(result);

dateFormatter1.applyPattern("hh 'o''clock' a, zzzz");
result = dateFormatter1.format(cal.getTime());
System.out.println(result);

Running this example would yield the following result:

June 22 2011
06/22/11 06:24:41
06 o'clock AM, Central Daylight Time

As you can see from the results, the DateTimeFormatter and SimpleDateFormat classes make it easy to
convert a date into just about any format.

How It Works
Date formatting is a common concern when it comes to any program. People like to see their dates in a
certain format for different situations. The Java language contains a couple of handy utilities for proper
formatting of date-time data. Specifically, the newer API includes the DateTimeFormatter class, and
previous editions of Java SE include the SimpleDateFormat class, each of which can come in handy for
performing formatting processes.

The DateTimeFormatter class is a final class that has the primary purpose of printing and
formatting date-time objects. To obtain a DateTimeFormatter that can be applied to objects, call the
DateTimeFormatter.ofPattern() method, passing the String-based pattern that represents the desired
output. Table 4-8 lists the different pattern characters that can be used within a String-based pattern. The
resulting DateTimeFormatter can then be applied to any temporal date-time object by calling the object’s
format() method and passing the DateTimeFormatter as an argument. The result will be the date-time
object formatted according to the specified template pattern.

Table 4-8. Pattern Characters

Character Description

G Era

y Year

Y Week year

M Month in year

w Week in year

W Week in month

D Day in year

d Day in month

(continued)

Chapter 4 ■ Numbers aNd dates

96

The SimpleDateFormat class was created in previous editions of Java, so you don’t have to perform
manual translations for a given date.

 ■ Note different date formats are used within different locales, and the SimpleDateFormat class facilitates
locale-specific formatting.

To use the class, an instance must be instantiated either by passing a String-based pattern as an
argument to the constructor or by passing no argument to the constructor at all. The String-based pattern
provides a template that should be applied to the given date and then a String representing the date in
the given pattern style is returned. A pattern consists of a number of different characters strung together.
Table 4-8 shows the different characters that can be used within a pattern.

Any of the pattern characters can be placed together in a String and then passed to the
SimpleDateFormat class. If the class is instantiated without passing a pattern, the pattern can be applied
later using the class’s applyPattern() method. The applyPattern() method also comes in handy when you
want to change the pattern of an instantiated SimpleDateFormat object, as seen in the solution to this recipe.
The following excerpts of code demonstrate the application of a pattern:

SimpleDateFormat dateFormatter1 = new SimpleDateFormat("MMMMM dd yyyy");
dateFormatter1.applyPattern("MM/dd/YY hh:mm:ss");

Once a pattern has been applied to a SimpleDateFormat object, a long value representing time can
be passed to the SimpleDateFormat object’s format() method. The format() method will return the given
date\time formatted using the pattern that was applied. The String-based result can then be used however
your application requires.

Character Description

F Day of week in month

E Name of day in week

u Number of day in week

a AM/PM

H Hour in day (0–23)

k Hour in day (1–24)

K Hour in AM/PM (0–11)

h Hour in AM/PM (1–12)

m Minute in hour

s Second in minute

S Millisecond

z General time zone

Z RFC 822 time zone

X ISO 8601 time zone

Table 4-8. (continued)

Chapter 4 ■ Numbers aNd dates

97

4-18. Writing Readable Numeric Literals
Problem
Some of the numeric literals in your application are rather long and you want to make it easier to tell how
large a number is at a glance.

Solution
Use underscores in place of commas or decimals in larger numbers in order to make them more readable.
The following code shows some examples of making your numeric literals more readable by using
underscores in place of commas:

int million = 1_000_000;
int billion = 1_000_000_000;
float ten_pct = 1_0f;
double exp = 1_234_56.78_9e2;

 ■ Note decimal point values will automatically default to a double value, unless a trailing “f” is used to
indicate that the value is a float.

How It Works
Sometimes working with large numbers can become cumbersome and difficult to read. Since the release
of Java 7, underscores can now be used with numeric literals in order to make code a bit easier to read. The
underscores can appear anywhere between digits in a numeric literal. This allows for the use of underscores
in place of commas or spaces to separate the digits and make them easier to read.

 ■ Note underscores cannot be placed at the beginning or end of a number, adjacent to a decimal point or
floating-point literal, prior to an F or L suffix, or in positions where a string of digits is expected.

4-19. Declaring Binary Literals
Problem
You are working on an application that requires the declaration of binary numbers.

Chapter 4 ■ Numbers aNd dates

98

Solution
Make use of binary literals to make your code readable. The following code segment demonstrates the use of
binary literals:

int bin1 = 0b1100;
short bin2 = 0B010101;
short bin3 = (short) 0b1001100110011001;
System.out.println(bin1);
System.out.println(bin2);
System.out.println(bin3);

This will result in the following output:

12
21
-26215

How It Works
Binary literals became part of the Java language with the release of Java 7. The types byte, short, int, and
long can be expressed using the binary number system. This feature can help to make binary numbers
easier to recognize in code. In order to use the binary format, simply prefix the number with 0b or 0B.

Summary
Numbers and dates play an integral role in most applications. The Java language provides a bevy of classes
that can be used to work with different kinds of numbers, and format them to fit most situations. This chapter
reviewed some techniques that can be used for rounding and formatting numbers, as well as generating
random values. A Date and Time package was introduced with the release of Java 8, bringing a refreshing, easy
to use API for obtaining and working with dates. This chapter covered the basics of the new Date and Time
package, and much more is covered online: http://docs.oracle.com/javase/tutorial/datetime/.

http://docs.oracle.com/javase/tutorial/datetime/

99© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_5

CHAPTER 5

Object-Oriented Java

Programming languages have changed a great deal since the first days of application development. Back in
the day, procedural languages were state of the art; as a matter of fact, there are still thousands of COBOL
and other procedural applications in use today. As time went on, coding became more efficient, and
reuse, encapsulation, abstraction, and other object-oriented characteristics became fundamental keys to
application development. As languages evolved, they began to incorporate the idea of using objects within
programs. The Lisp language introduced some object-oriented techniques as early as the 1970s, but true
object-oriented programming did not take off in full blast until the 1990s.

Object-oriented programs consist of many different pieces of code that all work together in unison.
Rather than write a program that contains a long list of statements and commands, an object-oriented
philosophy is to break functionality into separate organized objects. Each of the objects contains
functionality that pertains to it, and as the objects are pieced together they can be used to develop
sophisticated solutions. Programming techniques such as using methods to encapsulate functionality
and reusing the functionality of another class began to catch on as people noticed that object orientation
equated to productivity.

In this chapter, we touch upon some of the key object-oriented features of the Java language. From the
basic recipes covering access modifiers, to the advanced recipes that deal with inner classes, this chapter
contains recipes that will help you understand Java’s object-oriented methodologies.

5-1. Controlling Access to Members of a Class
Problem
You want to create members of a class that are not accessible from any other class.

Solution
Create private instance members rather than making them available to other classes (public or
protected). For instance, suppose you are creating an application that will be used to manage a team of
players for a sport. You create a class named Player that will be used to represent a player on the team. You
do not want the fields for that class to be accessible from any other class. The following code demonstrates
the declaration of some instance members, making them accessible only from within the class in which they
were defined.

private String firstName = null;
private String lastName = null;
private String position = null;
private int status = -1;

Chapter 5 ■ ObjeCt-Oriented java

100

How It Works
To designate a class member as private, prefix its declaration or signature using the private keyword. The
private access modifier is used to hide members of a class so that outside classes cannot access them. Any
members of a class that are marked as private will be available only to other members of the same class.
Any outside class will not be able to access fields or methods designated as private, and an Integrated
Development Envionment (IDE) that uses code completion will not be able to see them.

As mentioned in the solution to this recipe, there are three different access modifiers that can be used
when declaring members of a class. Those modifiers are public, protected, and private. Members that are
declared as public are available for any other class. Those that are declared as protected are available for
any other class within the same package. It is best to declare public or protected only those class members
that need to be directly accessed from another class. Hiding members of a class using the private access
modifier helps to enforce better object orientation.

5-2. Making Private Fields Accessible to Other Classes
Problem
You would like to create private instance members so that outside classes cannot access them directly.
However, you would also like to make those private members accessible in a controlled manner.

Solution
Encapsulate the private fields by making getters and setters to access them. The following code
demonstrates the declaration of a private field, followed by accessor (getter) and mutator (setter) methods
that can be used to obtain or set the value of that field from an outside class:

private String firstName = null;
/**
 * @return the firstName
 */
public String getFirstName() {
 return firstName;
}

/**
 * @param firstName the firstName to set
 */
public void setFirstName(String firstName) {
 this.firstName = firstName;
}

The getFirstName() method can be used by an outside class to obtain the value of the firstName field.
Likewise, the setFirstName(String firstName) method can be used by an outside class to set the value of
the firstName field.

How It Works
Oftentimes when fields are marked as private within a class, they still need to be made accessible to outside
classes for the purpose of setting or retrieving their value. Why not just work with the fields directly and
make them public then? It is not good programming practice to work directly with fields of other classes

Chapter 5 ■ ObjeCt-Oriented java

101

because by using accessors (getters) and mutators (setters), access can be granted in a controlled fashion.
By not coding directly against members of another class, you also help to decouple the code, which helps
to ensure that if an object changes, others that depend upon it are not adversely affected. As you can see
from the example in the solution to this recipe, hiding fields and working with public methods to access
those fields is fairly easy. Simply create two methods; one is used to obtain the value of the private field,
the “getter” or accessor method. And the other is used to set the value of the private field, the “setter”
or mutator method. In the solution to this recipe, the getter is used to return the unaltered value that is
contained within the private field. Similarly, the setter is used to set the value of the private field by
accepting an argument that is of the same data type as the private field and then setting the value of the
private field to the value of the argument.

The class that is using the getters or setters for access to the fields does not know any details behind the
methods. For instance, a getter or setter method could contain more functionality, if required. Furthermore,
the details of these methods can be changed without altering any code that accesses them.

 ■ Note Using getters and setters does not completely decouple code. in fact, many people argue that using
getters and setters is not a good programming practice. Objects that use the accessor methods still need to
know the type of the instance field they are working against. that being said, getters and setters are a standard
technique for providing external access to private instance fields of an object. to make the use of accessor
methods in a more object-oriented manner, declare them within interfaces and code against the interface rather
than the object itself. For more information regarding interfaces, refer to recipe 5-6.

5-3. Creating a Class with a Single Instance
Problem
You would like to create a class for which only one instance can exist in the entire application, so that all
application users interact with the same instance of that class.

Solution 1
Create the class using the Singleton pattern. A class implementing the Singleton pattern allows for only
one instance of the class and provides a single point of access to the instance. Suppose that you wanted to
create a Statistics class that would be used for calculating the statistics for each team and player within
an organized sport. It does not make sense to have multiple instances of this class within the application,
so you want to create the Statistics class as a Singleton in order to prevent multiple instances from being
generated. The following class represents the Singleton pattern:

package org.java9recipes.chapter5.recipe5_03;

import java.util.ArrayList;
import java.util.List;
import java.io.Serializable;

public class Statistics implements Serializable {

// Definition for the class instance
private static volatile Statistics instance = new Statistics();

Chapter 5 ■ ObjeCt-Oriented java

102

private List teams = new ArrayList();

/**
 * Constructor has been made private so that outside classes do not have
 * access to instantiate more instances of Statistics.
 */
private Statistics(){
}

/**
 * Accessor for the statistics class. Only allows for one instance of the
 * class to be created.
 * @return
 */
public static Statistics getInstance(){

 return instance;
}

/**
 * @return the teams
 */
public List getTeams() {
 return teams;
}

/**
 * @param teams the teams to set
 */
public void setTeams(List teams) {
 this.teams = teams;
}
protected Object readResolve(){
 return instance;
 }
}

If another class attempts to create an instance of this class, it will use the getInstance() accessor
method to obtain the Singleton instance. It is important to note that the solution code demonstrates
eager instantiation, which means that the instance will be instantiated when the Singleton is loaded. For
lazy instantiation, which will be instantiated upon the first request, you must take care to synchronize
the getInstance() method to make it thread-safe. The following code demonstrates an example of lazy
instantiation:

public static Statistics getInstance(){
 synchronized(Statistics.class){
 if (instance == null){
 instance = new Statistics();
 }
 }
 return instance;
}

Chapter 5 ■ ObjeCt-Oriented java

103

Solution 2
First, create an enum and declare a single element named INSTANCE within it. Next, declare other fields within
the enum that you can use to store the values that are required for use by your application. The following enum
represents a Singleton that will provide the same abilities as solution 1:

import java.util.ArrayList;
import java.util.List;

public enum StatisticsSingleton {
 INSTANCE;

 private List teams = new ArrayList();

 /**
 * @return the teams
 */
 public List getTeams() {
 return teams;
 }

 /**
 * @param teams the teams to set
 */
 public void setTeams(List teams) {
 this.teams = teams;
 }
}

 ■ Note there is a test class within the recipe5_03 package that you can use to work with the enum
Singleton solution.

How It Works
The Singleton pattern is used to create classes that cannot be instantiated by any other class. This can be
useful when you only want one instance of a class to be used for the entire application. The Singleton pattern
can be applied to a class by following three steps. First, make the constructor of the class private so that no
outside class can instantiate it. Next, define a private static volatile field that will represent an instance
of the class. The volatile keyword guarantees each thread uses the same instance. Create an instance of
the class and assign it to the field. In the solution to this recipe, the class name is Statistics, and the field
definition is as follows:

private static volatile Statistics instance = new Statistics();

Lastly, implement an accessor method called getInstance() that simply returns the instance field. The
following code demonstrates such an accessor method:

public static Statistics getInstance(){
 return instance;
}

Chapter 5 ■ ObjeCt-Oriented java

104

To use the Singleton from another class, call the Singleton’s getInstance() method. This will return
an instance of the class. The following code shows an example of another class obtaining an instance to the
Statistics Singleton that was defined in solution 1 to this recipe.

Statistics statistics = Statistics.getInstance();
List teams = statistics.getTeams();

Any class that calls the getInstance() method of the class will obtain the same instance. Therefore, the
fields contained within the Singleton have the same value for every call to getInstance() within the entire
application.

What happens if the Singleton is serialized and then deserialized? This situation may cause another
instance of the object to be returned upon deserialization. To prevent this issue from occurring, be sure to
implement the readResolve() method, as demonstrated in solution 1. This method is called when the object
is deserialized, and simply returning the instance ensures that another instance is not generated.

Solution 2 demonstrates a different way to create a Singleton, which is to use a Java enum rather than
a class. Using this approach can be beneficial because an enum provides serialization, prohibits multiple
instantiation, and allows you to work with code more concisely. In order to implement the enum Singleton,
create an enum and declare an INSTANCE element. This is a static constant that will return an instance of the
enum to classes that reference it. You can then add elements to the enum that can be used by other classes
within the application to store values.

As with any programming solution, there is more than one way to do things. Some believe that the
standard Singleton pattern demonstrated in solution 1 is not the most desirable solution. Others do not like
the enum solution for different reasons. Both of them will work, although you may find that one works better
than the other in certain circumstances.

5-4. Generating Instances of a Class
Problem
In one of your applications, you would like to provide the ability to generate instances of an object on the fly.
Each instance of the object should be ready to use, and the object creator should not need to know about the
details of the object creation.

Solution
Make use of the factory method pattern to instantiate instances of the class while abstracting the creation
process from the object creator. Creating a factory will enable new instances of a class to be returned upon
invocation. The following class represents a simple factory that returns a new instance of a Player subclass
each time its createPlayer(String) method is called. The subclass of Player that is returned depends
upon what String value is passed to the createPlayer method.

public class PlayerFactory {

 public static Player createPlayer(String playerType){
 Player returnType;
 switch(playerType){
 case "GOALIE":
 returnType = new Goalie();
 break;
 case "LEFT":
 returnType = new LeftWing();

Chapter 5 ■ ObjeCt-Oriented java

105

 break;
 case "RIGHT":
 returnType = new RightWing();
 break;
 case "CENTER":
 returnType = new Center();
 break;
 case "DEFENSE":
 returnType = new Defense();
 break;
 default:
 returnType = new AllPlayer();
 }
 return returnType;
 }
}

If a class wants to use the factory, it simply calls the static createPlayer method, passing a String value
representing a new instance of Player. The following code represents one of the Player subclasses; the
others could be very similar:

public class Goalie extends Player implements PlayerType {

 private int totalSaves;

 public Goalie(){
 this.setPosition("GOALIE");
 }

 /**
 * @return the totalSaves
 */
 public int getTotalSaves() {
 return totalSaves;
 }

 /**
 * @param totalSaves the totalSaves to set
 */
 public void setTotalSaves(int totalSaves) {
 this.totalSaves = totalSaves;
 }
}

Each of the other Player subclasses is very similar to the Goalie class. The most important code to note
is the factory method, createPlayer, which can be used to create new instances of the Player class.

 ■ Note to take this example one step further, you can limit the methods that can be accessed. You do this by
returning objects of type PlayerType, and only declaring the accessible methods within that interface.

Chapter 5 ■ ObjeCt-Oriented java

106

How It Works
Factories are used to generate objects. They are generally used to abstract the actual creation of an object
from its creators. This can come in very handy when the creator does not need to know about the actual
implementation details of generating the new object. The factory pattern can also be useful when controlled
access to the creation of an object is required. In order to implement a factory, create a class that contains at
least one method that is used for returning a newly created object.

In the solution to this recipe, the PlayerFactory class contains a method named
createPlayer(String) that returns a newly created Player object. This method doesn’t do anything special
behind the scenes; it simply instantiates a new Player instance depending upon the String value that is
passed to the method. Another object that has access to the PlayerFactory class can use createPlayer
to return new Player objects without knowing how the object is created. While this does not hide much
in the case of the createPlayer method, the PlayerFactory abstracts the details of which class is being
instantiated so that the developer only has to worry about obtaining a new Player object.

The factory pattern is an effective way to control how objects are created and makes it easier to create
objects of a certain type. Imagine if a constructor for an object took more than just a handful of arguments;
creating new objects that require more than just a couple of arguments can become a hassle. Generating a
factory to create those objects so that you do not have to hard-code all the arguments with each instantiation
can make you much more productive!

5-5. Creating Reusable Objects
Problem
You would like to generate an object that could be used to represent something within your application.
Furthermore, you would like to be able to reuse the object to represent multiple instances. For instance,
suppose that you are creating an application that will be used for generating statistics and league information
for different sports teams. In this case, you would like to create an object that could be used to represent a team.

Solution
Create a JavaBean that can be used to represent the object that you want to create. JavaBean objects provide the
capability for object fields to be declared as private, and they also allow the attributes to be read and updated
so that an object can be passed around and used within an application. This recipe demonstrates the creation
of a JavaBean named Team. The Team object contains a few different fields that can contain information:

public class Team implements TeamType {

 private List<Player> players;
 private String name = null;
 private String city = null;

 /**
 * @return the players
 */
 public List<Player> getPlayers() {
 return players;
 }

Chapter 5 ■ ObjeCt-Oriented java

107

 /**
 * @param players the players to set
 */
 public void setPlayers(List<Player> players) {
 this.players = players;
 }

 /**
 * @return the name
 */
 public String getName() {
 return name;
 }

 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }

 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }

 /**
 * @param city the city to set
 */
 public void setCity(String city) {
 this.city = city;
 }

}

As you can see, the object in this solution contains three fields, and each of those fields is declared
as private. However, each field has two accessor methods―getters and setters―that allow the fields to be
indirectly accessible.

How It Works
The JavaBean is an object that is used to hold information so that it can be passed around and used within
an application. One of the most important aspects of a JavaBean is that its fields are declared as private.
This prohibits other classes from accessing the fields directly. Instead, each field should be encapsulated
by methods defined to make them accessible to other classes. These methods must adhere to the following
naming conventions:

•	 Methods used for accessing the field data should be named using a prefix of get,
followed by the field name.

•	 Methods used for setting the field data should be named using a prefix of set,
followed by the field name.

Chapter 5 ■ ObjeCt-Oriented java

108

For instance, in the solution to this recipe, the Team object contains a field with the names of players.
In order to access that field, a method should be declared that is named getPlayers. That method should
return the data that is contained within the players field. Likewise, to populate the players field, a method
should be declared that is named setPlayers. That method should accept an argument that is of the same
type as the players field, and it should set the value of the players field equal to the argument. This can be
seen in the following code:

public List<Player> getPlayers() {
 return players;
}

void setPlayers(List<Player> players) {
 this.players = players;
}

JavaBeans can be used to populate lists of data, written to a database record, or for a myriad of other
functions. Using JavaBeans makes code easier to read and maintain. It also helps to increase the likelihood
of future code enhancements because very little code implementation is required. Another benefit of using
JavaBeans is that most major IDEs will autocomplete the encapsulation of the fields for you.

5-6. Defining an Interface for a Class
Problem
You would like to create a set of method signatures and fields that can be used as a common template to
expose the methods and fields that a class implements.

Solution
Generate a Java interface to declare each of the fields and methods that a class must implement. Such an
interface can then be implemented by a class, and used to represent an object type. The following code is an
interface that is used to declare the methods that must be implemented by the Team object:

public interface TeamType {

 void setPlayers(List<Player> players);
 void setName(String name);
 void setCity(String city);
 String getFullName();
}

All the methods in the interface are implicitly abstract. That is, only a method signature is provided. It is
also possible to include static final field declarations in an interface.

How It Works
A Java interface is a construct that is used to define the structures, be it fields or methods that a class must
implement. In most cases, interfaces do not include any method implementations; rather, they only include
method signatures. Interfaces can include variables that are implicitly static and final.

Chapter 5 ■ ObjeCt-Oriented java

109

 ■ Note as of java Se 8, it is possible for interfaces to contain method implementations. Such methods are
known as default methods. See recipe 5-7 for more details.

In the solution to this recipe, the interface does not include any constant field declarations. However,
it includes four method signatures. All the method signatures have no access modifier specified because all
declarations within an interface are implicitly public. Interfaces are used to expose a set of functionality;
therefore, all methods exposed within an interface must be implicitly public. Any class that implements an
interface must provide the implementation for any method signatures declared in the interface, with the
exception of default methods and abstract classes (see Recipes 5-7 and 5-13 for more details), in which case
an interface may leave the implementation for one of its subclasses.

While the Java language does not allow multiple inheritance, a Java class can implement multiple
interfaces, allowing for a controlled form of multiple inheritance. Abstract classes can also implement
interfaces. The following code demonstrates a class implementing an interface: the Team object declaration
implements the TeamType interface.

public class Team implements TeamType {

 private List<Player> players;
 private String name;
 private String city;

 /**
 * @return the players
 */
 public List<Player> getPlayers() {
 return players;
 }

 /**
 * @param players the players to set
 */
 public void setPlayers(List<Player> players) {
 this.players = players;
 }

 /**
 * @return the name
 */
 public String getName() {
 return name;
 }

 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }

Chapter 5 ■ ObjeCt-Oriented java

110

 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }

 /**
 * @param city the city to set
 */
 public void setCity(String city) {
 this.city = city;
 }

public String getFullName() {
 return this.name + " - " + this.city;
 }

}

Interfaces can be used to declare a type for an object. Any object that is declared to have an interface
type must adhere to all the implementations declared in the interface, unless a default implementation
exists. For instance, the following field declaration defines an object that contains all the properties that are
declared within the TeamType interface:

TeamType team;

Interfaces can also extend other interfaces (thus the same type of theory that is provided by multiple
inheritance). However, because no method implementation is present in an interface, it is much safer to
implement multiple interfaces in a Java class than it is to extend multiple classes in C++.

Interfaces are some of the single most important constructs of the Java language. They provide
the interfaces between the user and the class implementations. Although it is possible to create entire
applications without using interfaces, they help to promote object orientation and hide method
implementations from other classes.

5-7. Modifying Interfaces Without Breaking Existing Code
Problem
You’ve got a utility class that implements an interface, and many different classes within the utility library
implement that interface. Suppose that you want to add a new method to the utility class and make it
available for use for other classes via its interface. However, if you change the interface, it will likely break
some existing classes that already implement that interface.

Solution
Add the new method, along with its implementation, to the utility class interface as a default method. By
doing so, each class that implements the interface will automatically gain use of the new method, and will
not be forced to implement it since a default implementation exists. The following class interface contains a
default method, which can be used by any class that implements the interface.

Chapter 5 ■ ObjeCt-Oriented java

111

public interface TeamType {

 List<Player> getPlayers();

 void setPlayers(List<Player> players);

 void setName(String name);

 void setCity(String city);

 String getFullName();

 default void listPlayers() {
 getPlayers().stream().forEach((player) -> {
 System.out.println(player.getFirstName() + " " + player.getLastName());
 });
 }

}

The interface TeamType contains a default method named listPlayers(). This method does not
need to be implemented by any classes that implement TeamType since there is a default implementation
contained within the interface.

How It Works
In previous releases of Java, interfaces could only contain method signatures and constant variables. It
was not possible to define a method implementation within an interface. This works well in most cases, as
interfaces are a construct that is meant to enforce type safety and abstract implementation details. However,
in some circumstances, it is beneficial to allow interfaces to contain a default method implementation. For
instance, if there are many classes that implement an existing interface, then lots of code can be broken if
that interface were to be changed. This would create a situation where backward compatibility would not be
possible. In such a case, it would make sense to place a default method implementation into an interface,
rather than forcing all classes to implement a new method that is placed within the interface. This is the
reason why default methods became a necessity, and were included in the Java 8 release.

To create a default method (a.k.a. “defender method”) within an interface, use the keyword default
within the method signature, and include a method implementation. An interface can contain zero or
more default methods. In the solution to this recipe, the listPlayers() method is a default method
within the TeamType interface, and any class implementing TeamType will automatically inherit the default
implementation. Theoretically, any classes that implement TeamType would be completely unaffected by
the addition of the listPlayers() default method. This enables one to alter an interface without breaking
backward compatibility, which can be of great value.

 ■ Note as of java 9, it is possible to create a private method within an interface. the private method
can only be used by default methods within the same interface. therefore, if you have some code that repeats
throughout two or more default methods, then that repeatable code can be encapsulated within the private
method.

Chapter 5 ■ ObjeCt-Oriented java

112

5-8. Constructing Instances of the Same Class with
Different Values
Problem
Your application requires the ability to construct instances of the same object, but each object instance
needs to contain different values, thereby creating different types of the same object.

Solution
Make use of the builder pattern in order to build different types of the same object using a step-by-step
procedure. For instance, suppose that you are interested in creating the different teams for a sports league.
Each of the teams must contain the same attributes, but the values for those attributes vary by team. So you
create many objects of the same type, but each of the objects is unique. The following code demonstrates the
builder pattern, which can be used to create the required teams.

First, you need to define a set of attributes that each team needs to contain. To do this, a Java interface
should be created, containing the different attributes that need to be applied to each team object. The
following is an example of such an interface:

public interface TeamType {

 public void setPlayers(List<Player> players);
 public void setName(String name);
 public void setCity(String city);
 public String getFullName();

}

Next, define a class to represent a team. This class needs to implement the TeamType interface that was
just created so that it will adhere to the format that is required to build a team:

public class Team implements TeamType {

 private List<Player> players;
 private String name = null;
 private String city = null;
 private int wins = 0;
 private int losses = 0;
 private int ties = 0;

 /**
 * @return the players
 */
 public List<Player> getPlayers() {
 return players;
 }

 /**
 * @param players the players to set
 */

Chapter 5 ■ ObjeCt-Oriented java

113

 public void setPlayers(List<Player> players) {
 this.players = players;
 }

 /**
 * @return the name
 */
 public String getName() {
 return name;
 }

 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }

 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }

 /**
 * @param city the city to set
 */
 public void setCity(String city) {
 this.city = city;
 }

 public String getFullName(){
 return this.name + " – " + this.city;
 }

}

Now that the Team class has been defined, a builder needs to be created. The purpose of the builder
object is to allow for a step-by-step creation of a team object. To abstract the details of building an object,
a builder class interface should be created. The interface should define any of the methods that would be
used to build the object as well as a method that will return a fully built object. In this case, the interface will
define each of the methods needed to build a new Team object, and then the builder implementation will
implement this interface.

public interface TeamBuilder {
 public void buildPlayerList();
 public void buildNewTeam(String teamName);
 public void designateTeamCity(String city);
 public Team getTeam();

}

Chapter 5 ■ ObjeCt-Oriented java

114

The following code demonstrates a builder class implementation. Although the following code would
not create a custom player list, it contains all the features required to implement the builder pattern.
The details of creating a more customized player list can be worked out later, probably by allowing the
user to create players via a keyboard entry. Furthermore, the TeamBuilder interface could be used to
implement teams for different sports. The following class is named HockeyTeamBuilder, but a similar class
implementing TeamBuilder could be named FootballTeamBuilder, and so forth.

public class HockeyTeamBuilder implements TeamBuilder {

 private Team team;

 public HockeyTeamBuilder(){
 this.team = new Team();
 }

 @Override
 public void buildPlayerList() {
 List players = new ArrayList();
 for(int x = 0; x <= 10; x++){
 players.add(PlayerFactory.getPlayer());
 }
 team.setPlayers(players);
 }

 @Override
 public void buildNewTeam(String teamName) {
 team.setName(teamName);
 }

 @Override
 public void designateTeamCity(String city){
 team.setCity(city);
 }

 public Team getTeam(){
 return this.team;
 }

}

Last, use the builder by calling upon the methods defined in its interface to create teams. The following
code demonstrates how this builder could be used to create one team. You can use the Roster class within
the sources for this recipe to test this code:

public Team createTeam(String teamName, String city){
 TeamBuilder builder = new HockeyTeamBuilder();
 builder.buildNewTeam(teamName);
 builder.designateTeamCity(city);
 builder.buildPlayerList();
 return builder.getTeam();
}

Chapter 5 ■ ObjeCt-Oriented java

115

Although this demonstration of the builder pattern is relatively short, it demonstrates how to hide
implementation details of an object, thereby making objects easier to build. You do not need to know what
the methods within the builder actually do; you only need to call upon them.

How It Works
The builder pattern provides a way to generate new instances of an object in a procedural fashion. It
abstracts away the details of object creation, so the creator does not need to do any specific work in order to
generate new instances. By breaking the work down into a series of steps, the builder pattern allows objects
to implement its builder methods in different ways. Because the object creator only has access to the builder
methods, it makes creation of different object types much easier.

There are a few classes and interfaces that are necessary for using the builder pattern. First, you need
to define a class and its different attributes. As the solution to this recipe demonstrates, the class may follow
the JavaBean pattern (see Recipe 5-5 for more details). By creating a JavaBean, you will be able to populate
the object by using its setters and getters. Next, you should create an interface that can be used for accessing
the setters of the object that you created. Each of the setter methods should be defined in the interface, and
then the object itself should implement that interface. As seen in the solution, the Team object contains the
following setters, and each of them is defined in the TeamType interface:

public void setPlayers(List<Player> players);
public void setName(String name);
public void setCity(String city);

In real life, a team will probably contain more attributes. For instance, you’d probably want to set up a
mascot and a home stadium name and address. The code in this example can be thought of as abbreviated
because it demonstrates the creation of a generic “team object” rather than show you all the code for
creating a team that is true to life. Because the Team class implements these setters that are defined within
the TeamType interface, the interface methods can be called upon to interact with the actual methods of the
Team class.

After the object and its interface have been coded, the actual builder needs to be created. The builder
consists of an interface and its implementation class. To start, you must define the methods that you want
to have other classes call upon when building your object. For instance, in the solution to this recipe,
the methods buildNewTeam(), designateTeamCity(), and buildPlayerList() are defined within the
builder interface named TeamBuilder. When a class wants to build one of these objects later, it will only
need to call upon these defined methods in order to do it. Next, define a builder class implementation.
The implementation class will implement the methods defined within the builder interface, hiding all the
details of those implementations from the object creator. In the solution to this recipe, the builder class,
HockeyTeamBuilder, implements the TeamBuilder interface. When a class wants to create a new Team object
then it simply instantiates a new builder class.

TeamBuilder builder = new HockeyTeamBuilder();

To populate the newly created class object, the builder methods are called upon it.

builder.buildNewTeam(teamName);
builder.designateTeamCity(city);
builder.buildPlayerList();

Using this technique provides a step-by-step creation for an object. The implementation details for
building that object are hidden from the object creator. It would be easy enough for a different builder
implementation to use the same TeamBuilder interface for building team objects for different types.

Chapter 5 ■ ObjeCt-Oriented java

116

For instance, a builder implementation could be written for generating team objects for soccer, and another
one could be defined for generating team objects for baseball. Each of the team object implementations
would be different. However, both of them could implement the same interface—TeamBuilder—and the
creator could simply call on the builder methods without caring about the details.

5-9. Interacting with a Class via Interfaces
Problem
You have created a class that implements an interface or class type. You would like to interact with the
methods of that class by calling upon methods declared within the interface rather than working directly
with the class.

Solution
Declare a field of the same type as an interface. You can then assign classes that implement the interface
to the field you had declared and call upon the methods declared in the interface to perform work. In the
following example, a field is declared to be of type TeamType. Using the same classes from Recipe 5-8, you
can see that the class Team implements the TeamType interface. The field that is created in the following
example holds a reference to a new Team object.

Because the Team class implements the TeamType interface, the methods that are exposed in the
interface can be used:

TeamType team = new Team();
team.setName("Juneau Royals");
team.setCity("Chicago");
System.out.println(team.getFullName());

The resulting output:

Juneau Royals – Chicago

How It Works
Interfaces are useful for many reasons. Two of the most important use cases for interfaces are conformity
and abstraction. Interfaces define a model, and any class that implements the interface must conform to that
model. Therefore, if there is a constant defined within the interface, it will automatically be available for use
in the class. If there is a method defined within the interface, then the class must implement that method,
unless a default implementation has been defined (see Recipe 5-7). Interfaces provide a nice way to allow
classes to conform to a standard.

Interfaces hide unnecessary information from any class that does not need to see it. Any method
that is defined within the interface is made public and accessible to any class. As demonstrated in the
solution to this recipe, an object was created and declared to be the type of an interface. The interface in
the example, TeamType, only includes a small subset of methods that are available within the Team object.
Therefore, the only methods that are accessible to any class working against an object that have been
declared to be of TeamType are the ones that are defined within the interface. The class using this interface
type does not have access to any of the other methods or constants, nor does it need to. Interfaces are a
great way for hiding logic that does not need to be used by other classes. Another great side effect: A class
that implements an interface can be changed and recompiled without affecting code that works against

Chapter 5 ■ ObjeCt-Oriented java

117

the interface. However, if an interface is changed, there could be an effect on any classes that implement
it. Therefore, if the getFullName() method implementation changes, any class that is coded against the
TeamType interface will not be affected because the interface is unchanged. The implementation will
change behind the scenes, and any class working against the interface will just begin to use the new
implementation without needing to know.

 ■ Note in some cases, alterations of existing classes can cause code to break. this is more often the
case when working with libraries. For instance, suppose a class implements an interface that is updated
with a new method signature. all classes that implement that interface must now be updated to include
an implementation of the new method, which is sometimes impossible within library classes in order to
maintain backward compatibility. this is the main reason for the inclusion of default methods in java 8; see
recipe 5-7 for more details.

Lastly, interfaces help to promote security. They hide implementation details of methods that are
declared in an interface from any class that may call upon that method using the interface. As mentioned in
the previous paragraph, if a class is calling the getFullName() method against the TeamType interface, it does
not need to know the implementation details of that method as long as the result is returned as expected.

The older Enterprise JavaBean (EJB) model used interfaces for interacting with methods that performed
database work. This model worked very well for hiding the details and logic that were not essential for use
from other classes. Other frameworks use similar models, exposing functionality through Java interfaces.
Interface use has proven to be a smart way to code software because it promotes reusability, flexibility, and
security.

5-10. Making a Class Cloneable
Problem
You would like to enable a class to be cloned or copied by another class.

Solution
Implement the Cloneable interface within the class that you want to clone; then call that object’s clone
method to make a copy of it. The following code demonstrates how to make the Team class cloneable:

public class Team implements TeamType, Cloneable, Serializable {

 private String name;
 private String city;

 /**
 * @return the name
 */
 public String getName() {
 return name;
 }

Chapter 5 ■ ObjeCt-Oriented java

118

 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }

 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }

 /**
 * @param city the city to set
 */
 public void setCity(String city) {
 this.city = city;
 }

 public String getFullName() {
 return this.name + " - " + this.city;
 }

 /**
 * Overrides Object's clone method to create a deep copy
 *
 * @return
 */
 @Override
 public Team clone() {

 Team obj = null;
 try {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(baos);
 oos.writeObject(this);
 oos.close();

 ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray());
 ObjectInputStream ois = new ObjectInputStream(bais);
 obj = (Team) ois.readObject();
 ois.close();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (ClassNotFoundException cnfe) {
 cnfe.printStackTrace();
 }
 return obj;
 }

Chapter 5 ■ ObjeCt-Oriented java

119

 /**
 * Overrides Object's clone method to create a shallow copy
 *
 * @return
 */
 public Team shallowCopyClone() {

 try {
 return (Team) super.clone();
 } catch (CloneNotSupportedException ex) {
 return null;
 }
 }

 @Override
 public boolean equals(Object obj) {

 if (this == obj) {
 return true;
 }
 if (obj instanceof Team) {
 Team other = (Team) obj;
 return other.getName().equals(this.getName())
 && other.getCity().equals(this.getCity());
 } else {
 return false;
 }

 }
}

To make a deep copy of a Team object, the clone() method needs to be called against that object. To
make a shallow copy of the object, the shallowCopyClone() method must be called. The following code
demonstrates these techniques:

Team team1 = new Team();
Team team2 = new Team();

team1.setCity("Boston");
team1.setName("Bandits");

team2.setCity("Chicago");
team2.setName("Wildcats");

Team team3 = team1;
Team team4 = team2.clone();

Team team5 = team1.shallowCopyClone();

System.out.println("Team 3:");
System.out.println(team3.getCity());
System.out.println(team3.getName());

Chapter 5 ■ ObjeCt-Oriented java

120

System.out.println("Team 4:");
System.out.println(team4.getCity());
System.out.println(team4.getName());

// Teams move to different cities
team1.setCity("St. Louis");
team2.setCity("Orlando");

System.out.println("Team 3:");
System.out.println(team3.getCity());
System.out.println(team3.getName());

System.out.println("Team 4:");
System.out.println(team4.getCity());
System.out.println(team4.getName());

System.out.println("Team 5:");
System.out.println(team5.getCity());
System.out.println(team5.getName());

if (team1 == team3){
 System.out.println("team1 and team3 are equal");
} else {
 System.out.println("team1 and team3 are NOT equal");
}

if (team1 == team5){
 System.out.println("team1 and team5 are equal");
} else {
 System.out.println("team1 and team5 are NOT equal");
}

This code demonstrates how to make a clone of an object. The resulting output would be as follows.

Team 3:
Boston
Bandits
Team 4:
Chicago
Wildcats
Team 3:
St. Louis
Bandits
Team 4:
Chicago
Wildcats
Team 5:
Boston
Bandits
team1 and team3 are equal
team1 and team5 are NOT equal

Chapter 5 ■ ObjeCt-Oriented java

121

How It Works
There are two different strategies that can be used to copy an object: shallow and deep copies. A shallow
copy can be made that would copy the object without any of its contents or data. Rather, all the variables
are passed by reference into the copied object. After a shallow copy of an object has been created, the
objects within both the original object and its copy refer to the same data and memory. Thus, modifying the
original object’s contents will also modify the copied object. By default, calling the super.clone() method
against an object performs a shallow copy. The shallowCopyClone() method in the solution to this recipe
demonstrates this technique.

The second type of copy that can be made is known as a deep copy, which copies the object
including all the contents. Therefore, each object refers to a different space in memory, and modifying
one object will not affect the other. In the solution to this recipe, the difference between a deep and a
shallow copy is demonstrated. First, team1 and team2 are created. Next, they are populated with some
values. The team3 object is then set equal to the team1 object, and the team4 object is made a clone of the
team2 object. When the values are changed within the team1 object, they are also changed in the team3
object because both object’s contents refer to the same space in memory. This is an example of a shallow
copy of an object. When the values are changed within the team2 object, they remain unchanged in the
team4 object because each object has its own variables that refer to different spaces in memory. This is
an example of a deep copy.

In order to make an exact copy of an object (deep copy), you must serialize the object so that it can
be written to disk. The base Object class implements the clone() method. By default, the Object class’s
clone() method is protected. In order to make an object cloneable, it must implement the Cloneable
interface and override the default clone() method. You can make a deep copy of an object by serializing
it through a series of steps, such as writing the object to an output stream and then reading it back via an
input stream. The steps shown in the clone() method of the solution to this recipe do just that. The object is
written to a ByteArrayOutputStream and then read using a ByteArrayInputStream. Once that has occurred,
the object has been serialized, which creates the deep copy. The clone() method in the solution to this
recipe has been overridden so that it creates a deep copy.

Once these steps have been followed and an object implements Cloneable as well as overrides the
default object clone() method, it is possible to clone the object. In order to make a deep copy of an object,
simply call that object’s overridden clone() method as seen in the solution. If one were to simply return
Object from the clone() method, then there would need to be a typecast, as follows:

Team team4 = (Team) team2.clone();

Cloning objects is not very difficult, but a good understanding of the differences that can vary with
object copies is important.

5-11. Comparing Objects
Problem
Your application requires the capability to compare two or more objects to see whether they are the same.

Solution 1
To determine whether the two object references point to the same object, make use of the == and !=
operators. The following solution demonstrates the comparison of two object references to determine
whether they refer to the same object.

Chapter 5 ■ ObjeCt-Oriented java

122

// Compare if two objects contain the same values
Team team1 = new Team();
Team team2 = new Team();

team1.setName("Jokers");
team1.setCity("Crazyville");

team2.setName("Jokers");
team2.setCity("Crazyville");

if (team1 == team2){
 System.out.println("These object references refer to the same object.");
} else {
 System.out.println("These object references do NOT refer to the same object.");
}

// Compare two objects to see if they refer to the same object
Team team3 = team1;
Team team4 = team1;

if (team3 == team4){
 System.out.println("These object references refer to the same object.");
} else {
 System.out.println("These object references do NOT refer to the same object.");
}

The results of running the code:

These object references do NOT refer to the same object.
These object references refer to the same object.

Solution 2
To determine whether the two objects contain the same values, use the equals() method. The object being
compared must implement equals() and hashCode() in order for this solution to work properly. Following
is the code for the Team class that overrides these two methods:

public class Team implements TeamType, Cloneable {

 private List<Player> players;
 private String name;
 private String city;
 // Used by the hashCode method for performance reasons
 private volatile int cachedHashCode = 0;

 /**
 * @return the players
 */
 public List<Player> getPlayers() {
 return players;
 }

Chapter 5 ■ ObjeCt-Oriented java

123

 /**
 * @param players the players to set
 */
 public void setPlayers(List<Player> players) {
 this.players = players;
 }

 /**
 * @return the name
 */
 public String getName() {
 return name;
 }

 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }

 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }

 /**
 * @param city the city to set
 */
 public void setCity(String city) {
 this.city = city;
 }

 public String getFullName() {
 return this.name + " - " + this.city;
 }

 /**
 * Overrides Object's clone method
 *
 * @return
 */
 public Object clone() {

 try {
 return super.clone();
 } catch (CloneNotSupportedException ex) {
 return null;
 }
 }

Chapter 5 ■ ObjeCt-Oriented java

124

 @Override
 public boolean equals(Object obj) {

 if (this == obj) {
 return true;
 }
 if (obj instanceof Team) {
 Team other = (Team) obj;
 return other.getName().equals(this.getName())
&& other.getCity().equals(this.getCity())
&& other.getPlayers().equals(this.getPlayers());
 } else {
 return false;
 }

 }

@Override
 public int hashCode() {
 int hashCode = cachedHashCode;
 if (hashCode == 0) {
 String concatStrings = name + city;
 if (players.size() > 0) {
 for (Player player : players) {
 concatStrings = concatStrings
 + player.getFirstName()
 + player.getLastName()
 + player.getPosition()
 + String.valueOf(player.getStatus());

 }
 }
 hashCode = concatStrings.hashCode();
 }
 return hashCode;
 }
}

The following solution demonstrates the comparison of two objects that contain the same values.

// Compare if two objects contain the same values
Team team1 = new Team();
Team team2 = new Team();

// Build Player List
Player newPlayer = new Player("Josh", "Juneau");
playerList.add(0, newPlayer);
newPlayer = new Player("Jonathan", "Gennick");
playerList.add(1, newPlayer);
newPlayer = new Player("Joe", "Blow");
playerList.add(1, newPlayer);

Chapter 5 ■ ObjeCt-Oriented java

125

newPlayer = new Player("John", "Smith");
playerList.add(1, newPlayer);
 newPlayer = new Player("Paul", "Bunyan");
playerList.add(1, newPlayer);

team1.setName("Jokers");
team1.setCity("Crazyville");
team1.setPlayers(playerList);

team2.setName("Jokers");
team2.setCity("Crazyville");
team2.setPlayers(playerList);

if (team1.equals(team2)){
 System.out.println("These object references contain the same values.");
} else {
 System.out.println("These object references do NOT contain the same values.");
}

The results of running this code:

These object references do NOT refer to the same object.
These object references contain the same values.
These object references refer to the same object.

How It Works
The comparison operator (==) can be used to determine the equality of two objects. This equality does not
pertain to the object values, but rather to the object references. Often an application is more concerned with
the values of objects; in such cases, the equals() method is the preferred choice because it compares the
values contained within the objects rather than the object references.

The comparison operator takes a look at the object reference and determines whether it points to
the same object as the object reference that it is being compared against. If the two objects are equal, a
Boolean true result will be returned; otherwise, a Boolean false result will be returned. In solution 1, the
first comparison between the team1 object reference and the team2 object reference returns a false value
because those two objects are separate in memory, even though they contain the same values. The second
comparison in solution 1 between the team3 object reference and the team4 object reference returns a true
value because both of those references refer to the team1 object.

The equals() method can be used to test whether two objects contain the same values. In order to
use the equals() method for comparison, the object that is being compared should override the Object
class equals()and hashCode() methods. The equals() method should implement a comparison against
the values contained within the object that would yield a true comparison result. The following code is an
example of an overridden equals() method that has been placed into the Team object:

@Override
public boolean equals(Object obj) {

 if (this == obj) {
 return true;
 }
 if (obj instanceof Team) {

Chapter 5 ■ ObjeCt-Oriented java

126

 Team other = (Team) obj;
 return other.getName().equals(this.getName())
&& other.getCity().equals(this.getCity())
&& other.getPlayers().equals(this.getPlayers());
 } else {
 return false;
 }

}

As you can see, the overridden equals() method first checks to see whether the object that is passed as
an argument is referencing the same object as the one that it is being compared against. If so, a true result is
returned. If both objects are not referencing the same object in memory, the equals() method checks to see
whether the fields are equal. In this case, any two Team objects that contain the same values within the name
and city fields would be considered equal. Once the equals() method has been overridden, the comparison
of the two objects can be performed, as demonstrated in solution 2 to this recipe.

The hashCode() method returns an int value that must consistently return the same integer. There are
many ways in which to calculate the hashCode of an object. Perform a web search on the topic and you will
find various techniques. One of the most basic ways to implement the hashCode() method is to concatenate
all the object’s variables into String format and then return the resulting String’s hashCode(). It is a good
idea to cache the value of the hashCode for later use because the initial calculation may take some time. The
hashCode() method in solution 2 demonstrates this tactic.

Comparing Java objects can become confusing, considering that there are multiple ways to do it. If
the comparison that you want to perform is against the object identity, use the comparison (==) operator.
However, if you want to compare the values within the objects, or the state of the objects, then the equals()
method is the way to go.

5-12. Extending the Functionality of a Class
Problem
One of your applications contains a class that you would like to use as a base for another class. You want
your new class to contain the same functionality of this base class, but also include additional functionality.

Solution
Extend the functionality of the base class by using the extends keyword followed by the name of the class
that you would like to extend. The following example shows two classes. The first class, named HockeyStick,
represents a hockey stick object. It will be extended by the second class named WoodenStick. By doing so,
the WoodenStick class will inherit all the properties and functionality contained within HockeyStick, with
the exception of private variables and those that have the default access level. The WoodenStick class
becomes a subclass of HockeyStick. First, let’s take a look at the HockeyStick class, which contains the basic
properties of a standard hockey stick:

public class HockeyStick {

 private int length;
 private boolean curved;
 private String material;

Chapter 5 ■ ObjeCt-Oriented java

127

 public HockeyStick(int length, boolean curved, String material){
 this.length = length;
 this.curved = curved;
 this.material = material;
 }

 /**
 * @return the length
 */
 public int getLength() {
 return length;
 }

 /**
 * @param length the length to set
 */
 public void setLength(int length) {
 this.length = length;
 }

 /**
 * @return the curved
 */
 public boolean isCurved() {
 return curved;
 }

 /**
 * @param curved the curved to set
 */
 public void setCurved(boolean curved) {
 this.curved = curved;
 }

 /**
 * @return the material
 */
 public String getMaterial() {
 return material;
 }

 /**
 * @param material the material to set
 */
 public void setMaterial(String material) {
 this.material = material;
 }

}

Chapter 5 ■ ObjeCt-Oriented java

128

Next, look at the subclass of HockeyStick: a class named WoodenStick.

public class WoodenStick extends HockeyStick {

 private static final String material = "WOOD";
 private int lie;
 private int flex;

 public WoodenStick(int length, boolean isCurved){
 super(length, isCurved, material);
 }

 public WoodenStick(int length, boolean isCurved, int lie, int flex){
 super(length, isCurved, material);
 this.lie = lie;
 this.flex = flex;
 }

 /**
 * @return the lie
 */
 public int getLie() {
 return lie;
 }

 /**
 * @param lie the lie to set
 */
 public void setLie(int lie) {
 this.lie = lie;
 }

 /**
 * @return the flex
 */
 public int getFlex() {
 return flex;
 }

 /**
 * @param flex the flex to set
 */
 public void setFlex(int flex) {
 this.flex = flex;
 }
}

Chapter 5 ■ ObjeCt-Oriented java

129

 ■ Note in this example, we assume that there may be more than one type of hockeyStick. in this case, we
extend hockeyStick to create a WoodenStick, but we may also extend hockeyStick to create other types of
hockeyStick, such as aluminumStick or GraphiteStick.

How It Works
Object inheritance is a fundamental technique in any object-oriented language. Inheriting from a base
class adds value because it allows code to become reusable in multiple places. This helps to make code
management much easier. If a change is made in the base class, it will automatically be inherited in the
child. On the other hand, if you had duplicate functionality scattered throughout your application, one
minor change could mean that you would have to change code in many places. Object inheritance also
makes it easy to designate a base class to one or more subclasses so that each class can contain similar fields
and functionality.

The Java language allows a class to extend only one other class. This differs in concept from other
languages such as C++, which contain multiple inheritance. Although some look at single class inheritance
as a hindrance to the language, it was designed that way to add safety and ease of use to the language. When
a subclass contains multiple superclasses, confusion can ensue.

5-13. Defining a Template for Classes to Extend
Problem
You would like to define a template that can be used to generate objects containing similar functionality.

Solution
Define an abstract class that contains fields and functionality that can be used in other classes. The
abstract class can also include unimplemented methods, known as abstract methods, which will need to
be implemented by a subclass of the abstract class. The following example demonstrates the concept of an
abstract class. The abstract class in the example represents a team schedule, and it includes some basic
field declarations and functionality that every team’s schedule will need to use. The Schedule class is then
extended by the TeamSchedule class, which will be used to implement specific functionality for each team.
First, let’s take a look at the abstract Schedule class:

public abstract class Schedule {

 public String scheduleYear;
 public String teamName;

 public List<Team> teams;

 public Map<Team, LocalDate> gameMap;

 public Schedule(){}

Chapter 5 ■ ObjeCt-Oriented java

130

 public Schedule(String teamName){
 this.teamName = teamName;
 }

 abstract void calculateDaysPlayed(int month);

}

Next, the TeamSchedule extends the functionality of the abstract class.

public class TeamSchedule extends Schedule {

 public TeamSchedule(String teamName) {
 super(teamName);
 }

 @Override
 void calculateDaysPlayed(int month) {
 int totalGamesPlayedInMonth = 0;
 for (Map.Entry<Team, LocalDate> entry : gameMap.entrySet()) {
 if (entry.getKey().equals(teamName)
 && entry.getValue().getMonth().equals(month)) {
 totalGamesPlayedInMonth++;
 }
 }
 System.out.println("Games played in specified month: " + totalGamesPlayedInMonth);
 }

}

As you can see, the TeamSchedule class can use all the fields and methods that are contained within the
abstract Schedule class. It also implements the abstract method that is contained within the Schedule
class.

How It Works
Abstract classes are labeled as such, and they contain field declarations and methods that can be used within
subclasses. What makes them different from a regular class is that they can contain abstract methods,
which are method declarations with no implementation. The solution to this recipe contains an abstract
method named calculateDaysPlayed(). Abstract classes may or may not contain abstract methods. They
can contain fields and fully implemented methods as well. Abstract classes cannot be instantiated; other
classes can only extend them. When a class extends an abstract class, it gains all the fields and functionality
of the abstract class. However, any abstract methods that are declared within the abstract class must be
implemented by the subclass.

You may wonder why the abstract class wouldn’t just contain the implementation of the method so
that it was available for all its subclasses to use. If you think about the concept, it makes perfect sense. One
type of object may perform a task differently from another. Using an abstract method forces the class that is
extending the abstract class to implement it, but it allows the ability to customize how it is implemented.

Chapter 5 ■ ObjeCt-Oriented java

131

5-14. Increasing Class Encapsulation
Problem
One of your classes requires the use of another class’s functionality. However, no other class requires the use
of that same functionality. Rather than creating a separate class that includes this additional functionality,
you’d like to generate an implementation that can only be used by the class that needs it, while placing the
code in a logical location.

Solution
Create an inner class within the class that requires its functionality.

import java.util.ArrayList;
import java.util.List;

/**
 * Inner class example. This example demonstrates how a team object could be
 * built using an inner class object.
 *
 * @author juneau
 */
public class TeamInner {

 private Player player;
 private List<Player> playerList;
 private int size = 4;

 /**
 * Inner class representing a Player object
 */
 class Player {

 private String firstName = null;
 private String lastName = null;
 private String position = null;
 private int status = -1;

 public Player() {
 }

 public Player(String position, int status) {
 this.position = position;
 this.status = status;
 }

 protected String playerStatus() {
 String returnValue = null;

Chapter 5 ■ ObjeCt-Oriented java

132

 switch (getStatus()) {
 case 0:
 returnValue = "ACTIVE";
 break;
 case 1:
 returnValue = "INACTIVE";
 break;
 case 2:
 returnValue = "INJURY";
 break;
 default:
 returnValue = "ON_BENCH";
 break;
 }

 return returnValue;
 }

 public String playerString() {
 return getFirstName() + " " + getLastName() + " - " + getPosition();
 }

 /**
 * @return the firstName
 */
 public String getFirstName() {
 return firstName;
 }

 /**
 * @param firstName the firstName to set
 */
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 /**
 * @return the lastName
 */
 public String getLastName() {
 return lastName;
 }

 /**
 * @param lastName the lastName to set
 */
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

Chapter 5 ■ ObjeCt-Oriented java

133

 /**
 * @return the position
 */
 public String getPosition() {
 return position;
 }

 /**
 * @param position the position to set
 */
 public void setPosition(String position) {
 this.position = position;
 }

 /**
 * @return the status
 */
 public int getStatus() {
 return status;
 }

 /**
 * @param status the status to set
 */
 public void setStatus(int status) {
 this.status = status;
 }

 @Override
 public String toString(){
 return this.firstName + " " + this.lastName + " - "+
 this.position + ": " + this.playerStatus();
 }
 }

 /**
 * Inner class that constructs the Player objects and adds them to an array
 * that was declared in the outer class;
 */
 public TeamInner() {

 final int ACTIVE = 0;

 // In reality, this would probably read records from a database using
 // a loop...but for this example we will manually enter the player data.
 playerList = new ArrayList();
 playerList.add(constructPlayer("Josh", "Juneau", "Right Wing", ACTIVE));
 playerList.add(constructPlayer("Joe", "Blow", "Left Wing", ACTIVE));
 playerList.add(constructPlayer("John", "Smith", "Center", ACTIVE));
 playerList.add(constructPlayer("Bob","Coder", "Defense", ACTIVE));
 playerList.add(constructPlayer("Jonathan", "Gennick", "Goalie", ACTIVE));
 }

Chapter 5 ■ ObjeCt-Oriented java

134

 public Player constructPlayer(String first, String last, String position, int status){
 Player player = new Player();
 player.firstName = first;
 player.lastName = last;
 player.position = position;
 player.status = status;
 return player;
 }

 public List<Player> getPlayerList() {
 return this.playerList;
 }

 public static void main(String[] args) {
TeamInner inner = new TeamInner();
 System.out.println("Team Roster");
 System.out.println("===========");
for(Player player:inner.getPlayerList()){
 System.out.println(player.playerString());
 }
 }
}

The result of running this code is a listing of the players on the team.

Team Roster
===========
Josh Juneau - Right Wing
Joe Blow - Left Wing
John Smith - Center
Bob Coder - Defense
Jonathan Gennick - Goalie

How It Works
Sometimes it is important to encapsulate functionality within a single class. Other times it does not make
sense to include a separate class for functionality that is only used within one other class. Imagine that
you are developing a GUI and you need to use a class to support functionality for one button. If there is no
reusable code within that button class, it does not make sense to create a separate class and expose that
functionality for other classes to use. Instead, it makes sense to encapsulate that class inside of the class that
requires the functionality. This philosophy is one use case for inner classes (also known as nested classes).

An inner class is a class that is contained within another class. The inner class can be made public,
private, or protected just like any other class. It can contain the same functionality as a normal class; the
only difference is that the inner class is contained within an enclosing class, otherwise referred to as an outer
class. The solution to this recipe demonstrates this technique. The class TeamInner contains one inner class
named Player. The Player class is a JavaBean class that represents a Player object. As you can see, the

Chapter 5 ■ ObjeCt-Oriented java

135

Player object has the capability to inherit functionality from its containing class, including its private fields.
This is because inner classes contain an implicit reference to the outer class. It can also be accessed by the
containing TeamInner class, as demonstrated within the constructPlayer() method:

public Player constructPlayer(String first, String last, String position, int status){
 Player player = new Player();
 player.firstName = first;
 player.lastName = last;
 player.position = position;
 player.status = status;
 return player;
 }

Outer classes can instantiate an inner class as many times as needed. In the example, the
constructPlayer() method could be called any number of times, instantiating a new instance of the
inner class. However, when the outer class is instantiated, no instances of the inner class are instantiated.
Similarly, when the outer class is no longer in use, all of the inner class instances are destroyed as well.

Inner classes can reference outer class methods by referring to the outer class and to the method(s) that
it wants to call. The following line of code demonstrates such a reference using the same objects that are
represented in the solution to this recipe. Suppose that the Player class needed to obtain the player list from
the outer class; you would write something similar to the following:

TeamInner.this.getPlayerList();

Although not very often used, classes other than the outside class can obtain access to a public inner
class by using the following syntax:

TeamInner outerClass = new TeamInner();
outerClass.player = outerClass.new Player();

Static inner classes are a bit different, in that they cannot directly reference any instance variables or
methods of its enclosing class. The following is an example of a static inner class.

public class StaticInnerExample {

 static String hello = "Hello";

 public static void sayHello(){
 System.out.println(hello);
 }

 static class InnerExample {
 String goodBye = "Good Bye";

 public void sayGoodBye(){
 System.out.println(this.goodBye);
 }
 }

Chapter 5 ■ ObjeCt-Oriented java

136

 public static void main (String[] args){
 StaticInnerExample.sayHello();
 StaticInnerExample.InnerExample inner =
 new StaticInnerExample.InnerExample();
 inner.sayGoodBye();
 }
}

Inner classes help to provide encapsulation of logic. Furthermore, they allow inheritance of private
fields, which is not possible using a standard class.

Summary
Java is an object-oriented language. To harness the capabilities of the language, one must learn how to
become proficient with object orientation. This chapter covered basics such as class creation and access
modifiers. It also covered encapsulation, interfaces, and recipes to help developers take advantage of the
power of object orientation.

137© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_6

CHAPTER 6

Lambda Expressions

There are very few means by which a new feature in an existing language can have a significant impact
on the ecosystem. Lambda expressions for the Java language are one such significant new feature that
has had an effect on many facets of the ecosystem. Simply defined, lambda expressions are a convenient
way to create anonymous functions. They provide an easy way to create a single method interface using
an expression or series of statements. Lambda expressions are built upon functional interfaces, which are
interfaces that contain a single abstract method. They can be applied in many different contexts, ranging
from simple anonymous functions to sorting and filtering Collections. Moreover, lambda expressions can
be assigned to variables and then passed into other objects.

In this chapter, you will learn how to create lambda expressions, and you’ll see many examples of how
they can be applied in common scenarios. You’ll also learn how to generate the building blocks for lambda
expressions, so that you can construct applications to facilitate the use of them. The chapter will delve into
the java.util.function package, which contains a bevy of useful functional interfaces that lambdas can
implement. Lastly, you will see how to simplify certain types of lambda expressions into method references
for a more concise approach.

After reading this chapter, you too will be able to see the impact that lambda expressions have had on
the Java language. They modernize the language by allowing developers to be more productive, and opening
new possibilities in many areas. Lambda expressions turned the page on Java, bringing the language into a
new light, with the likes of other languages that have had similar constructs for some time. Those languages
helped to pave the way for lambda expressions in the Java language, and there is no doubt that lambda
expressions will continue to pave the way for many elegant solutions.

6-1. Writing a Simple Lambda Expression
Problem
You want to encapsulate a piece of functionality that prints out a simple message.

Solution
Write a lambda expression that accepts a single parameter that contains the message you want to print, and
implement the printing functionality within the lambda. In the following example, a functional interface,
HelloType, is implemented via a lambda expression and assigned to the variable helloLambda. Lastly, the
lambda is invoked, printing the message.

Chapter 6 ■ Lambda expressions

138

public class HelloLambda {

 /**
 * Functional Interface
 */
 public interface HelloType {
 /**
 * Function that will be implemented within the lambda
 * @param text
 */
 void hello(String text);
 }

 public static void main(String[] args){
 // Create the lambda, passing a parameter named "text" to the
 // hello() method, returning the String. The lambda is assigned
 // to the helloLambda variable.
 HelloType helloLambda =
 (String text) -> {System.out.println("Hello " + text);};

 // Invoke the method call
 helloLambda.hello("Lambda");
 }
}

Results:

Hello Lambda

How It Works
A lambda expression is an anonymous block of code that encapsulates an expression or a series of
statements and returns a result. Lambda expressions are also known as closures in some other languages.
They can accept zero or more parameters, any of which can be passed with or without type specification
since the type can be automatically derived from the context.

The syntax of a lambda expression includes an argument list, a new character to the language known as
the “arrow token” (->), and a body. The following model represents the structure of a lambda expression:

(argument list) -> { body }

The argument list for a lambda expression can include zero or more arguments. If there are no
arguments, then an empty set of parentheses can be used. If there is only one argument, then no
parentheses are required. Each argument on the list can include an optional type specification. If the type of
the argument is left off, then the type is derived from the current context.

In the solution for this recipe, curly braces surround the body of a block, which contains more than a
single expression. The curly braces are not necessary if the body consists of a single expression. The curly
braces in the solution could have been left off, but they’ve been included for ease of readability. The body
is simply evaluated and then returned. If the body of the lambda is an expression and not a statement,
a return is implicit. On the contrary, if the body includes more than one statement, a return must be
specified, and it marks return of control back to the caller.

Chapter 6 ■ Lambda expressions

139

The following code demonstrates a lambda expression that does not contain any arguments:

StringReturn msg = () -> "This is a test";

The StringReturn interface, which is in use by the lambda, is also known as a functional interface.

/**
 * Functional interface returning a String
 */
 interface StringReturn {
 String returnMessage();
}

Let’s take a look at how this lambda expression works. In the previous listing, an object of type
StringReturn is returned from the lambda expression. The empty set of parentheses denotes that there
are no arguments being passed to the expression. The return is implicit, and the String "This is a test"
is returned from the lambda expression to the invoker. The expression in the example is assigned to a
variable identified by msg. Assume that the functional interface, StringReturn, contains an abstract method
identified as returnMessage(), as seen in the code. In this case, the msg.returnMessage() method can be
invoked to return the String.

The body of a lambda expression can contain any Java construct that an ordinary method may contain.
For instance, suppose a String were passed as an argument to a lambda expression, and you wanted to return
some value that is dependent upon the String argument. The following lambda expression body contains a
block of code, which returns an int, based upon the String value of the argument passed into the expression.

ActionCode code = (codestr) -> {
 switch(codestr){
 case "ACTIVE": return 0;
 case "INACTIVE": return 1;
 default:
 return -1;
 }
};

In this example, the ActionCode functional interface is used to infer the return type of the lambda
expression. For clarification, let’s see what the interface looks like.

interface ActionCode{
 int returnCode(String codestr);
}

The code implies that the lambda expression implements the returnCode method, which is defined
within the ActionCode interface. This method accepts a String argument (codestr), which is passed to
the lambda expression, returning an int. Therefore, from this example you can see that a lambda can
encapsulate the functionality of a method body.

While it is possible for code written in the Java language to move forward without the use of lambda
expressions, they are an important addition that greatly improves overall maintainability, readability, and
developer productivity. Lambda expressions are an evolutionary change to the Java language, as they are
another step toward modernization of the language, and help keep it in sync with other languages.

Chapter 6 ■ Lambda expressions

140

 ■ Note a lambda expression can contain any statement that an ordinary Java method contains. however, the
continue and break keywords are not legal within the body of a lambda expression.

6-2. Enabling the Use of Lambda Expressions
Problem
You are interested in authoring code that enables the use of lambda expressions.

Solution 1
Write custom functional interfaces that can be implemented via lambda expressions. All lambda expressions
implement a functional interface, a.k.a. an interface with a single abstract method declaration. The following
lines of code demonstrate a functional interface that contains a single method declaration.

@FunctionalInterface
interface ReverseType {
 String reverse(String text);
}

The functional interface contains a single abstract method declaration, identified as String
reverse(String text). The following code, which contains a lambda expression, demonstrates how to
implement ReverseType.

ReverseType newText = (testText) -> {
 String tempStr = "";
 for (String part : testText.split(" ")) {
 tempStr += new StringBuilder(part).reverse().toString() + " ";
 }
 return tempStr;
};

The following code could be used to invoke the lambda expression:

System.out.println(newText.reverse("HELLO WORLD"));

Result:

OLLEH DLROW

Solution 2
Use a functional interface that is contained within the java.util.function package to implement a lambda
expression to suit the needs of the application. The following example uses the Function<T,R> interface to
perform the same task as the one demonstrated in solution 1. This example accepts a String argument and
returns a String result.

Chapter 6 ■ Lambda expressions

141

Function<String,String> newText2 = (testText) -> {
 String tempStr = "";
 for (String part : testText.split(" ")) {
 tempStr += new StringBuilder(part).reverse().toString() + " ";
 }
 return tempStr;
};

This lambda expression is assigned to the variable newText2, which is of type
Function<String,String>. Therefore, a String is passed as an argument, and a String is to be returned from
the lambda expression. The functional interface of Function<T,R> contains an abstract method declaration
of apply(). To invoke this lambda expression, use the following syntax:

System.out.println(newText2.apply("WORLD"));

Result:

DLROW

How It Works
A basic building block of a lambda expression is the functional interface. A functional interface is a standard
Java interface that contains a single abstract method declaration and provides a target type for lambda
expressions and method references. A functional interface may contain default method implementations
as well, but only one abstract declaration. The abstract method is then implicitly implemented by the
lambda expression. As a result, the lambda expression can be assigned to a variable of the same type as the
functional interface. The method can be called upon from the assigned variable at a later time, thus invoking
the lambda expression. Following this pattern, lambda expressions are method implementations that can be
invoked by name. They can also be passed as arguments to other methods (see Recipe 6-9).

 ■ Note the functional interface in solution 1 contains the @FunctionalInterface annotation. this can be
placed on a functional interface to catch compiler-level errors, but it has no effect on the interface itself.

At this point you may be wondering if you will be required to develop a functional interface
for each situation that may be suitable for use with a lambda expression. This is not the case, as there
are many functional interfaces already available for use. Some examples include java.lang.Runnable,
javafx.event.EventHandler, and java.util.Comparator. See some of the other recipes in this chapter for
examples using lambda expressions that implement these interfaces. However, there are also many more
functional interfaces that are less specific, enabling them to be tailored to suit the needs of a particular
requirement. The java.util.function package contains a number of functional interfaces that can be
useful when implementing lambda expressions. The functional interfaces contained within the package
are utilized throughout the JDK, and they can also be utilized in developer applications. Table 6-1 lists the
functional interfaces that are contained within the java.util.function package, along with a description of
each. Note that a Predicate test that returns a Boolean value.

Chapter 6 ■ Lambda expressions

142

Table 6-1. Functional Interfaces Contained in java.util.function

Interface Implementation Description

BiConsumer<T,U> Function operation that accepts two input arguments and returns no result.

BiFunction<T,U,R> Function that accepts two arguments and produces a result.

BinaryOperator<T> Function operation upon two operands of the same type, producing a result
of the same type as the operands.

BiPredicate<T,U> Predicate of two arguments. Returns a Boolean value.

BooleanSupplier Supplier of Boolean-valued results.

Consumer<T> Function operation that accepts a single input argument and returns no result.

DoubleBinaryOperator Function operation upon two double-valued operands and producing a
double-valued result.

DoubleConsumer Function operation that accepts a single double-valued argument and
returns no result.

DoubleFunction<R> Function that accepts a double-valued argument and produces a result.

DoublePredicate Predicate of one double-valued argument.

DoubleSupplier Supplier of double-valued results.

DoubleToIntFunction Function that accepts a double-valued argument and produces an
int-valued result.

DoubleToLongFunction Function that accepts a double-valued argument and produces a
long-valued result.

DoubleUnaryOperator Function operation on a single double-valued operand that produces a
double-valued result.

Function<T,R> Function that accepts one argument and produces a result.

IntBinaryOperator Function operation upon two int-valued operands and producing an
int-valued result.

IntConsumer Function operation that accepts a single int-valued argument and returns
no result.

IntFunction<R> Function that accepts an int-valued argument and produces a result.

IntPredicate Predicate of one int-valued argument.

IntSupplier Supplier of int-valued results.

IntToDoubleFunction Function that accepts an int-valued argument and produces a
double-valued result.

IntToLongFunction Function that accepts an int-valued argument and produces a long-valued
result.

IntUnaryOperator Function operation on a single int-valued operand that produces an
int-valued result.

LongBinaryOperator Function operation upon two long-valued operands and producing a
long-valued result.

LongConsumer Function operation that accepts a single long-valued argument and returns
no result.

(continued)

Chapter 6 ■ Lambda expressions

143

Table 6-1. (continued)

Interface Implementation Description

LongFunction<R> Function that accepts a long-valued argument and produces a result.

LongPredicate Predicate of one long-valued argument.

LongSupplier Supplier of long-valued results.

LongToDoubleFunction Function that accepts a long-valued argument and produces a
double-valued result.

LongToIntFunction Function that accepts a long-valued argument and produces an int-valued
result.

LongUnaryOperator Function operation on a single long-valued operand that produces a
long-valued result.

ObjDoubleConsumer<T> Function operation that accepts an object-valued and a double-valued
argument and returns no result.

ObjIntConsumer<T> Function operation that accepts an object-valued and an int-valued
argument and returns no result.

ObjLongConsumer<T> Function operation that accepts an object-valued and a long-valued
argument and returns no result.

Predicate<T> Predicate of one argument.

Supplier<T> Supplier of results.

ToDoubleBiFunction<T,U> Function that accepts two arguments and produces a double-valued result.

ToDoubleFunction<T> Function that produces a double-valued result.

ToIntBiFunction<T,U> Function that accepts two arguments and produces an int-valued result.

ToIntFunction<T> Function that produces an int-valued result.

ToLongBiFunction<T,U> Function that accepts two arguments and produces a long-valued result.

ToLongFunction<T> Function that produces a long-valued result.

UnaryOperator<T> Function operation on a single operand that produces a result of the same
type as its operand.

Utilizing functional interfaces contained within the java.util.function package can greatly reduce
the amount of code you need to write. Not only are the functional interfaces geared toward tasks that are
performed a high percentage of the time, but they are also written using generics, allowing them to be applied
in many different contexts. Solution 2 demonstrates such an example, whereby the Function<T,R> interface
is used to implement a lambda expression that accepts a String argument and returns a String result.

6-3. Invoking Existing Methods by Name
Problem
You are developing a lambda expression that merely invokes a method that already exists in the object
being passed to the lambda. Rather than write out the entire ceremony to invoke the method, you’d like
to utilize a minimal amount of code.

Chapter 6 ■ Lambda expressions

144

Solution
Use a method reference, rather than writing a lambda expression, to call an existing method. In the following
scenario, the Player object contains a static method named compareByGoals(), which takes two Player
objects and compares the number of goals each contains. It then returns an integer representing the
outcome. For all intents and purposes, the compareByGoals() method is the same as a Comparator.

public class Player {

 private String firstName = null;
 private String lastName = null;
 private String position = null;
 private int status = -1;
 private int goals;

 public Player(){

 }

 public Player(String position, int status){
 this.position = position;
 this.status = status;
 }

 public String findPlayerStatus(int status){
 String returnValue = null;

 switch(status){
 case 0:
 returnValue = "ACTIVE";
 case 1:
 returnValue = "INACTIVE";
 case 2:
 returnValue = "INJURY";
 default:
 returnValue = "ON_BENCH";
 }

 return returnValue;
 }

 public String playerString(){
 return getFirstName() + " " + getLastName() + " - " + getPosition();
 }

 // ** getters and setters removed for brevity **

 /**
 * Returns a positive integer if Player A has more goals than Player B
 * Returns a negative integer if Player A has fewer goals than Player B
 * Returns a zero if both Player A and Player B have the same number of goals

Chapter 6 ■ Lambda expressions

145

 */
 public static int compareByGoal(Player a, Player b){
 int eval;
 if(a.getGoals() > b.getGoals()){
 eval = 1;
 } else if (a.getGoals() < b.getGoals()){
 eval = -1;
 } else {
 eval = 0;
 }
 return eval;
 }

}

The Player.compareByGoal() method could be used to sort an array of Player objects. To do so,
pass an array of Player objects (Player[]) to the Arrays.sort() method as the first argument, and pass
a method reference Player::compareByGoal as the second argument. The result will be a sorted list (in
ascending order) of Player objects by number of goals. The following line of code shows how to accomplish
this task.

Arrays.sort(teamArray, Player::compareByGoal);

How It Works
Consider that your lambda expression is going to invoke a single method by name, perhaps returning a
result. If a lambda expression fits this scenario, it is a prime candidate for use with a method reference. A
method reference is a simplified form of a lambda expression, which specifies the class name or instance
name, followed by the method to be called in the following format:

<class or instance name>::<methodName>

The double colon (::) operator specifies a method reference. Since a method reference is a simplified
lambda method, it must implement a functional interface, and the abstract method within the interface
must have the same argument list and return type as the method being referenced. Any arguments are
subsequently derived from the context of the method reference. For instance, consider the same scenario
as the solution, whereby you wanted to sort an array of Player objects by calling upon the Player.
compareByGoal() method to perform goal comparisons. The following code could be written to enable this
functionality via a lambda expression:

Arrays.sort(teamArray, (p1, p2) -> Player.compareByGoal(p1,p2));

In this code, the array is passed as the first argument to Arrays.sort(), and the second argument is a
lambda expression that passes two Player objects to the Player.compareByGoal() method. The lambda
expression uses the functional interface Comparator<Player>.compare, which utilizes the (Player,
Player) parameter list. The compareByGoal() method contains that same parameter list. Likewise, the
return type of compareByGoal() matches the return type within the functional interface. Therefore, the
parameter list does not need to be specified in the listing; it can be inferred from the context of the method
reference Player::compareByGoal instead.

Chapter 6 ■ Lambda expressions

146

Table 6-2. Method Reference Types

Type Description

Static Reference Uses a static method of an object.

Instance Reference Uses an instance method of an object.

Arbitrary Object Method Used on an arbitrary object of a particular type, rather than a particular object.

Constructor Reference Used to generate a new object by invoking a constructor with the new keyword.

There are four different types of method references, and Table 6-2 lists each of them.

In the solution, the static method reference type is demonstrated since compareByGoal() is a static
method within the Player class. It is possible to invoke a method of an object instance using an instance
reference. Consider the following class, which contains a nonstatic method for comparing goals within
Player objects.

public class PlayerUtility {

 public int compareByGoal(Player a, Player b){
 int eval;
 if(a.getGoals() > b.getGoals()){
 eval = 1;
 } else if (a.getGoals() < b.getGoals()){
 eval = -1;
 } else {
 eval = 0;
 }
 return eval;
 }
}

This class can be instantiated, and the new instance can be used to reference the compareByGoals()
method, similarly to the technique that was used in the solution to this recipe.

Player[] teamArray2 = team.toArray(new Player[team.size()]);
PlayerUtility utility = new PlayerUtility();
Arrays.sort(teamArray2, utility::compareByGoal);

Suppose that your application contained a list of an arbitrary type, and you wanted to apply a method
to each of the objects in that list. Method references can be used in this scenario, given the object contains
methods that are candidates for use via reference. In the following example, the Arrays.sort() method is
applied to a list of int values, and a method reference is used to apply the Integer compare() method to
the elements within the list. Thus, the resulting list will be sorted, and the method reference automatically
passes the int arguments and returns the int comparison.

Integer[] ints = {3,5,7,8,51,33,1};
Arrays.sort(ints, Integer::compare);

Chapter 6 ■ Lambda expressions

147

The last type of method reference can be utilized for referencing the constructor of an object. This type
of method reference can be especially useful when creating new objects via a factory. Let’s take a look at an
example. Suppose that the Player object contained the following constructor:

public Player(String position, int status, String first, String last){
 this.position = position;
 this.status = status;
 this.firstName = first;
 this.lastName = last;
}

You are interested in generating Player objects on the fly, using a factory pattern. The following
code demonstrates an example of a functional interface containing a single abstract method named
createPlayer(), which accepts the same argument list as the constructor for the Player object.

public interface PlayerFactory {
 Player createPlayer(String position,
 int status,
 String firstName,
 String lastName);
}

The factory can now be created from a lambda expression, and then called upon to create new objects.
The following lines of code demonstrate:

PlayerFactory player1 = Player::new;
Player newPlayer = player1.createPlayer("CENTER", 0, "Constructor", "Referenceson");

Method references were perhaps one of the most significant new features introduced in Java 8,
although lambda expressions have more use cases. They provide an easy-to-read, simplified technique for
generating lambda expressions, and they’ll work in most cases where a lambda is merely invoking a single
method by name.

6-4. Sorting with Fewer Lines of Code
Problem
Your application contains a list of Player objects for a hockey team. You would like to sort that list of Players
by those who scored the most goals, and you would like to do so using terse, yet easy-to-follow code.

 ■ Note the solutions in this recipe utilize Collections and sorting. to learn more about Collections, refer to
Chapter 7.

http://dx.doi.org/10.1007/978-1-4842-1976-8_7

Chapter 6 ■ Lambda expressions

148

Solution 1
Create a Comparator using an accessor method contained within the Player object for the field by which you
want to sort. In this case, you want to sort by number of goals, so the Comparator should be based upon the
value returned from getGoals(). The following line of code shows how to create such a Comparator using
the Comparator interface and a method reference.

Comparator<Player> byGoals = Comparator.comparing(Player::getGoals);

Next, utilize a mixture of lambda expressions and streams (See Chapter 7 for full details on streams),
along with the forEach() method, to apply the specified sort on the list of Player objects. In the following
line of code, a stream is obtained from the list, which allows you to apply functional-style operations on the
elements.

team.stream().sorted(byGoals)
 .map(p -> p.getFirstName() + " " + p.getLastName() + " - "
 + p.getGoals())
 .forEach(element -> System.out.println(element));

Assuming that the List referenced by team is loaded with Player objects, the previous line of code will
first sort that list by the Player goals, and then print out information on each object.

Results from the sort:

== Sort by Number of Goals ==
Jonathan Gennick - 1
Josh Juneau - 5
Steve Adams - 7
Duke Java - 15
Bob Smith - 18

Solution 2
Utilize the Collections.sort() method, passing the list to sort along with a lambda expression that
performs the comparisons on the list elements. The following code demonstrates how to accomplish this
task using the Collections.sort() technique.

Collections.sort(team, (p1, p2)
 -> p1.getLastName().compareTo(p2.getLastName()));
team.stream().forEach((p) -> {
 System.out.println(p.getLastName());
});

Result:

== Sort by Last Name ==
Adams
Gennick
Java
Juneau
Smith

http://dx.doi.org/10.1007/978-1-4842-1976-8_7

Chapter 6 ■ Lambda expressions

149

 ■ Note this solution could be further simplified if the Player class included a comparison method. if this
were the case, a method reference could be used, rather than implementing a lambda expression. For more
information regarding method references, see recipe 6-4.

How It Works
Java 8 introduced some new features that greatly increase developer productivity for sorting collections.
Three such features are demonstrated in the solution to this recipe: lambda expressions, method references,
and streams. We will look into streams in more detail within other recipes in this book, but we also briefly
describe them here to enable the understanding of this recipe. Streams can be applied to collections of data,
and they allow enhanced functional-style operations to be applied to the elements within the collections.
Streams do not store any data; rather, they enable more functionality on the collections from which they are
obtained.

In solution 1, a Comparator is generated, by which the Player objects will be evaluated for the number
of goals scored (getGoals). A stream is then generated from a List<Player> that is referenced as team.
The stream provides the sorted() function, which accepts a Comparator by which to perform a sort on a
stream of data. The Comparator that was initially generated is passed to the sorted() function, and then
the map() function is called upon the result. The map() function provides the ability to apply an expression
to each element within the stream. Therefore, within the map, this solution utilizes a lambda expression
to create a String that contains each Player object’s firstName, lastName, and goals fields. Lastly, since
the List<Player> is an iterable, it contains the forEach() method. The forEach() method enables an
expression or group of statements to be applied to each element within the list. In this case, each element
in the list is printed to the command line. As such, since the map() function was applied to the stream, each
element in the list is subsequently printed per the algorithm applied within the map(). Therefore, the result
is that the players’ first and last names along with the number of goals each has scored will be printed at the
command line.

Solution 2 uses a different technique to accomplish a similar task. In the second solution, the
Collections.sort() method is invoked on the list. The first argument to Collections.sort() is the list
itself, and the second argument is the comparison implementation in the form of a lambda expression. The
lambda expression in this case has two parameters passed to it, both Player objects, and it compares the
lastName of the first player to the lastName of the second player. Therefore, the sort will be performed on
the lastName field of the Player object, in ascending order. To finish off solution 2, the sorted list is printed
out. To do this a stream is generated from the sorted list, and the forEach() method is then invoked on the
stream of data, printing out each player’s lastName.

No doubt, the lambda expression greatly reduces the amount of code required to sort collections of
data. It also makes it easy to understand the logic behind the sort, as readability is much easier than trying to
follow looping implementations of the past. For more examples on using lambdas with collections of data,
see Chapter 7.

6-5. Filtering a Collection of Data
Problem
You have a list of data to which you’d like to apply some filtering so that you can extract objects meeting the
specified criteria.

http://dx.doi.org/10.1007/978-1-4842-1976-8_7

Chapter 6 ■ Lambda expressions

150

Solution
Create a stream from the list of data and apply a filter, passing the desired predicate, or otherwise known as
conditional expression. Finally, add each of the objects matching the specified filter criteria to a new list. In
the following example, a list of Player objects is being filtered to capture only those players who have scored
ten or more goals.

team.stream().filter(
 p -> p.getGoals() >= 10
 && p.getStatus() == 0)
 .forEach(element -> gteTenGoals.add(element));
System.out.println("Number of Players Matching Criteria: " + gteTenGoals.size());

How It Works
The solution to this recipe makes use of a data stream since it contains an easy-to-use filter function.
The collection of data, team, generates a stream, and then the filter function is called upon it, accepting a
predicate by which to filter the data within the collection. The predicate is written in the form of a lambda
expression that contains two such filtering criteria. The lambda expression passes a Player object as an
argument, and then filters the data based upon the number of goals being greater than or equal to ten and
an active status.

Once the data has been filtered, the forEach() method is used to add each of the elements that meet
the filtering criteria to a list. This is also done using a lambda expression. The element to be added to the list
is passed to the lambda expression as an argument, and it is subsequently added to the list within the body
of the expression.

Lambda expressions are very well suited for working within stream functions. Not only do they enable
easier development of business logic, but they also make collections filtering easier to read and maintain.

 ■ Note there are updated filtering options available in Java 9, including the takeWhile and dropWhile
constructs, which were covered in Chapter 2. please see recipe 2-5 for details.

6-6. Implementing Runnable
Problem
You would like to create a runnable piece of code in a terse manner.

Solution
Utilize a lambda expression to implement the java.util.Runnable interface. The java.util.Runnable
interface is a perfect match for lambda expressions since it contains only a single abstract method, run(). In
this solution, we will compare the legacy technique, creating a new Runnable, and the new technique using a
lambda expression.

The following lines of code demonstrate how to implement a new Runnable piece of code using the
legacy technique.

http://dx.doi.org/10.1007/978-1-4842-1976-8_2

Chapter 6 ■ Lambda expressions

151

Runnable oldRunnable = new Runnable() {
 @Override
 public void run() {
 int x = 5 * 3;
 System.out.println("The variable using the old way equals: " + x);
 }
};

Now take a look at how this can be written using a lambda expression instead.

Runnable lambdaRunnable = () -> {
 int x = 5 * 3;
 System.out.println("The variable using the lambda equals: " + x);
};

// Calling the runnables

oldRunnable.run();
lambdaRunnable.run();

As you can see, the legacy procedure for implementing a Runnable takes a few more lines of code
than implementing Runnable with a lambda expression. The lambda expression also makes the Runnable
implementation easier to read and maintain.

How It Works
Since java.util.Runnable is a functional interface, the boilerplate of implementing the run() method can
be abstracted away using a lambda expression. The general format for implementing a Runnable with a
lambda expression is as follows:

Runnable assignment = () -> {expression or statements};

A Runnable can be implemented by using a zero-argument lambda expression containing an expression
or a series of statements within the lambda body. The key is that the implementation takes zero arguments
and returns nothing.

6-7. Replacing Anonymous Inner Classes
Problem
Portions of your code contain anonymous inner classes, which are sometimes difficult to follow. You would
like to replace anonymous inner classes with code that is easier to read and maintain.

Solution
Replace the anonymous inner classes with lambda expressions. By doing so, development time will be much
faster as there will be fewer lines of boilerplate code required. A typical JavaFX or Java Swing application
utilizes anonymous inner classes to add functionality to application constructs. For instance, anonymous
classes are a great way to add an action to a button. The problem is that inner classes can be difficult to
follow, and they contain lots of boilerplate code.

Chapter 6 ■ Lambda expressions

152

The following lines of code demonstrate a typical anonymous inner class implementation for a button
action implementation. Let’s look at these lines of code before taking a look at how you can achieve the same
solution using a lambda expression.

Button btn = new Button();
btn.setText("Enter Player");
btn.setOnAction(new EventHandler<ActionEvent>() {
@Override public void handle(ActionEvent e) {
createPlayer(firstName.getText(),
 lastName.getText(),
 Integer.valueOf(goals.getText()),
 listView.getSelectionModel().getSelectedItem().toString(),
 0);
 message.setText("Player Successfully Added");
 System.out.println("Player added.");
 System.out.println("== Current Player List==");
 for (Player p : team) {
 System.out.println(p.getFirstName() + " " + p.getLastName());
 }
}
});

The same event handler can be implemented using a lambda expression, resulting in an easier-to-read
implementation that can be achieved in fewer lines of code.

Button btn = new Button();
btn.setText("Enter Player");
btn.setOnAction(e -> {
 createPlayer(firstName.getText(),
 lastName.getText(),
 Integer.valueOf(goals.getText()),
 listView.getSelectionModel().getSelectedItem().toString(),
 0);
 message.setText("Player Successfully Added");
 System.out.println("Player added.");
 System.out.println("== Current Player List==");
 for (Player p : team) {
 System.out.println(p.getFirstName() + " " + p.getLastName());
 }
});

How It Works
A great use case for lambda expressions is that they are very well suited for taking the place of many
anonymous class implementations. Most anonymous inner classes implement a functional interface, which
makes them perfect candidates for replacement via lambda expressions. In the solution, the anonymous
inner class for supporting a JavaFX button action has been redesigned to work within the context of a
lambda expression. Since the EventHandler must implement one abstract method, handle(), it becomes a
good fit for a lambda implementation.

Chapter 6 ■ Lambda expressions

153

In the solution, the EventHandler lambda expression accepts an argument, whose type is derived
from the context of the expression. In this case, since the expression is implementing an EventHandler, the
derived type for the argument is ActionEvent. The body of the lambda expression contains several lines of
code and returns nothing to the caller, as the handle() method contains a void return type.

Although the lambda expression solution does not save more than a couple lines of code, it does help
increase readability and maintainability. Although anonymous inner classes are an acceptable solution,
code that is riddled with such constructs can be cumbersome to work with. Replacing anonymous inner
classes with lambda expressions helps to maintain succinct code that is easy to follow.

6-8. Accessing Class Variables from a Lambda Expression
Problem
The class you are writing contains instance variables, and you would like to make them available for use
via a lambda expression within the class.

Solution
Make use of instance variables that are contained in enclosing classes, as needed, from within lambda
expressions. In the following class, the lambda expression contained within the VariableAccessInner.
InnerClass.lambdaInMethod() method can access all enclosing class instance variables. Thus, it is able to
print out the VariableAccessInner CLASSA variable, if needed.

public class VariableAccessInner {

 public String CLASSA = "Class-level A";

 class InnerClass {

 public String CLASSA = "Class-level B";

 void lambdaInMethod(String passedIn) {
 String METHODA = "Method-level A";

 Consumer<String> l1 = x -> {
 System.out.println(x);
 System.out.println("CLASSA Value: " + CLASSA);
 System.out.println("METHODA Value: " + METHODA);
 };

 l1.accept(CLASSA);
 l1.accept(passedIn);

 }
 }
}

Chapter 6 ■ Lambda expressions

154

Now, let’s execute lambdaInMethod using the following code:

VariableAccessInner vai = new VariableAccessInner();
VariableAccessInner.InnerClass inner = vai.new InnerClass();
inner.lambdaInMethod("Hello");

Result:

Class-level B
CLASSA Value: Class-level B
METHODA Value: Method-level A
Hello
CLASSA Value: Class-level B
METHODA Value: Method-level A

 ■ Note the CLASSA variable is overridden by a variable using the same identifier within the InnerClass
class. therefore, the CLASSA instance variable that belongs to VariableAccessInner is not printed from within
the lambda expression.

How It Works
Lambda expressions have access to the variables located within the enclosing class. Thus, a lambda
expression contained within a method of a class can access any instance variables of the enclosing
class. There is no additional scope added to a lambda expression, so it can access fields, methods, and
local variables of the enclosing scope. In the solution, the lambda expression contained within the
lambdaInMethod() method can access all of the fields that are declared within either class. This is because
both the inner class and its outer class enclose the lambda. One thing to note is that if an inner class contains
an instance variable of the same name as a variable that has been declared in the outer class, then the
lambda will use the variable of its enclosing class. Therefore, in the solution, the InnerClass CLASSA field is
accessed from within the lambda expression, rather than the outer class reference.

Local variables that are referenced from within a lambda expression must be either final or effectively
final. Therefore, if a lambda expression attempts to access a variable that has been changed within the
context of an enclosing method, an error will occur. For instance, suppose that the method in the solution
were changed to the following:

void lambdaInMethod(String passedIn) {
 String METHODA = "Method-level A";
 passedIn = "test";
 Consumer<String> l1 = x -> {
 System.out.println(x);
 System.out.println("CLASSA Value: " + CLASSA);
 System.out.println("METHODA Value: " + METHODA);
 System.out.println(passedIn);
 };

 l1.accept(CLASSA);
 l1.accept(passedIn);

}

Chapter 6 ■ Lambda expressions

155

Note that the String that is passed into lambdaInMethod() is assigned a new value just before the
lambda expression is invoked. Therefore, the passedIn variable is no longer effectively final, and lambda
expressions cannot introduce a new level of scope. Consequently, the lambda expression does not have
access to the passedIn variable from within the context of the expression.

6-9. Passing Lambda Expressions to Methods
Problem
A lambda expression has been created to encapsulate some functionality. You would like to take that
functionality and pass it into a method as an argument, so that the method implementation can take
advantage of the expression.

Solution
Create portable functions using lambda expressions by implementing a functional interface and then
assigning the lambda expression to a variable of the same type as the interface. The variable can be passed to
other objects as an argument.

The following class, PassingLambdaFunctions, contains a calculate() method, which will be used
to perform calculations of any type given an array of values. Note that the calculate() method accepts a
Function<List<Double>,Double> and an array of Double values as arguments.

public class PassingLambdaFunctions {
 /**
 * Calculates a value based upon the calculation function that is passed
 * in.
 * @param f1
 * @param args
 * @param x
 * @param y
 * @param z
 * @return
 */
 public Double calculate(Function<List<Double>, Double> f1,
 Double [] args){
 Double returnVal;
 List<Double> varList = new ArrayList();
 int idx = 0;
 while (idx < args.length){
 varList.add(args[idx]);
 idx++;
 }
 returnVal=f1.apply(varList);

 return returnVal;
 }
}

Chapter 6 ■ Lambda expressions

156

To make use of the calculate method, a lambda expression that implements
Function<List<Double>,Double> must be passed as the first argument to the calculate() method, along
with an array of Double arguments that contains the value to be used within the calculation. In the following
class, a function for calculating volume is generated using a lambda expression, and it is assigned to variable
identified as volumeCalc of type Function<List<Double>,Double>. Another lambda expression is used to
create a function for calculating area, and it is assigned to a variable of the same type, identified as areaCalc.
In separate calls, these variables are then passed to the PassingLambdaFunctions.calculate() method,
along with an array of values, resulting in the calculated answer.

public class MainClass {
 public static void main(String[] args){

 double x = 16.0;
 double y = 30.0;
 double z = 4.0;

 // Create volume calculation function using a lambda. The calculator
 // checks to ensure that the array contains the three necessary elements
 // for the calculation.
 Function<List<Double>, Double> volumeCalc = list -> {
 if(list.size() == 3){
 return list.get(0) * list.get(1) * list.get(2);
 } else {
 return Double.valueOf("-1");
 }
 };
 Double[] argList = new Double[3];
 argList[0] = x;
 argList[1] = y;
 argList[2] = z;

 // Create area calculation function using a lambda. This particular
 // calculator checks to ensure that the array only contains two elements.
 Function<List<Double>, Double> areaCalc = list -> {
 if(list.size() == 2){
 return list.get(0) * list.get(1);
 } else {
 return Double.valueOf("-1");
 }
 };
 Double[] argList2 = new Double[2];
 argList2[0] = x;
 argList2[1] = y;

 PassingLambdaFunctions p1 = new PassingLambdaFunctions();

 // Pass the lambda expressions to the calculate() method, along with the
 // argument lists.
 System.out.println("The volume is: " + p1.calculate(volumeCalc, argList));
 System.out.println("The area is: " + p1.calculate(areaCalc, argList2));
 }
}

Chapter 6 ■ Lambda expressions

157

Result:

The volume is: 1920.0
The area is: 480.0

How It Works
Lambda expressions can be assigned to variables of the same type as the functional interface being
implemented. Such expressions can contain a single-line expression or a multistatement body. Since the
lambda expression can accept arguments, there are use cases for assigning such expressions to variables
and then passing those variables into other objects to modify functionality. This pattern is useful for creating
solutions that may contain more than one implementation. The solution to this recipe demonstrates this
concept.

In the solution, a class named PassingLambdaFunctions contains a single method identified as
calculate(). The calculate() method is to be used for performing calculations on Double values
that are passed into it as arguments. However, the calculate() method contains no calculation
functionality at all. Rather, the calculation functionality is passed into it as an argument of type
Function<List<Double>,Double> via a lambda expression. This type is actually one of the standard
functional interfaces contained within the java.util.function package (see Recipe 6-2), and the interface
can be implemented by lambda expressions and then invoked at a later time by calling its solo apply()
method. Looking at the code in the calculate() method, the arguments contained within the Double[] are
first added to a list. Next, lambda expression’s apply() method is invoked, passing the new list of values, and
returning a result into returnVal. Finally, returnVal is returned to the method invoker.

returnVal=f1.apply(varList);
return returnVal;

To implement the calculation functionality within the solution, lambda expressions are created
in a separate class named MainClass. Each expression accepts a list of arguments and then performs
a calculation on the values in the list, returning a result. For instance, the first lambda generated in the
MainClass calculates volume by multiplying together all of the values contained in the argument list and
returns the result. This functionality is then assigned to a variable of type Function<List<Double>,Double>,
and then it is passed into the PassingLambdaFunctions.calculate() method later on.

Any type of functionality can be implemented within a lambda expression and then passed around to
different objects for use. This is an excellent way to promote code reuse and high maintainability.

Summary
It is not very often that a new construct added to a language can have as large of an impact as lambda
expressions to Java. For years, developers have been utilizing such constructs as anonymous inner classes to
add subtle functionality to applications. With the addition of lambda expressions, that subtle functionality
can be developed with easy-to-read code, rather than redundant and difficult-to-read boilerplate code.
Moreover, many languages today make it possible to pass functional pieces of code around, dynamically
altering the functionality of existing code. Such solutions are now available in the Java language, allowing
developers to make use of more modern programming techniques.

Lambda expressions brought new life to the Java language with their introduction in Java 8, providing
capabilities that were not available to Java developers in the past. Developers of desktop, mobile, and
enterprise applications alike are now able to take advantage of the lambda expression to create more robust
and sophisticated solutions. Lambda expressions are a revolutionary change to the language, and they have
a significant impact on development across the platform.

159© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_7

CHAPTER 7

Data Sources and Collections

Almost all applications perform tasks against user data. Sometimes data is obtained from a user, tasks are
performed against the data, and the result is returned immediately. More often, data is obtained, and then
it is stored within the application for later use, and eventually tasks are performed against it. Applications
make use of data structures to store data that can be utilized throughout the lifetime of an application
instance. The Java language contains a number of data structures that are known as Collection types, and
they can be utilized for this purpose. These data structures implement the java.util.Collection interface,
which provides a variety of methods that are useful for adding, removing, and performing tasks against the
data that is used with the collection.

Java 8 changed the game when it comes to data structures and Collection types. The concepts of
pipelines and streams were introduced, enabling easy iteration and operations against data contained
within Collection types. In prior releases of Java, the developer had to tell the compiler how to iterate
over data within a Collection. Oftentimes in the past, developers utilized a loop to perform iterative tasks
on data structures. Java 8 enabled developers to begin utilizing streams for iterative tasks on Collection
types. When using streams and pipeline of operations on collections, the developer specifies what type of
operation to perform, and the JDK decides how to do it. This reduces the burden on a developer by reducing
boilerplate code, and providing an easy-to-use algorithm for working with collections.

This chapter introduces some of the data structures that can be utilized within a Java application for the
storage of user data. It discusses some of the data structures in detail, and introduces operations that can be
performed on the data. The concepts of pipelines and streams are introduced in this chapter, and it provides
recipes that demonstrate their usage. Java 8 forces developers to think differently about the way that they
write collection code, enabling the development of smarter and more productive solutions.

7-1. Defining a Fixed Set of Related Constants
Problem
You need a type that can represent a fixed set of related constants.

Solution
Use an enum type. The following example defines an enum type, called FieldType, to represent various form
fields you might find on the GUI of an application:

// See BasicFieldType.java
public enum FieldType { PASSWORD, EMAIL_ADDRESS, PHONE_NUMBER, SOCIAL_SECURITY_NUMBER }

Chapter 7 ■ Data SourCeS anD ColleCtionS

160

This is the simplest form of an enum type, which will often suffice when all that is needed is a related set
of named constants. In the following code, a field variable of type FieldType is declared and initialized to
the FieldType.EMAIL_ADDRESS enum constant. Next, the code prints the results from calling various methods
that are defined for all enum types:

FieldType field = FieldType.EMAIL_ADDRESS;

System.out.println("field.name(): " + field.name());
System.out.println("field.ordinal(): " + field.ordinal());
System.out.println("field.toString(): " + field.toString());

System.out.println("field.isEqual(EMAIL_ADDRESS): " +
 field.equals(FieldType.EMAIL_ADDRESS));
System.out.println("field.isEqual(\"EMAIL_ADDRESS\"'): " + field.equals("EMAIL_ADDRESS"));

System.out.println("field == EMAIL_ADDRESS: " + (field == FieldType.EMAIL_ADDRESS));
// Won't compile – illustrates type safety of enum
// System.out.println("field == \”EMAIL_ADDRESS\": " + (field == "EMAIL_ADDRESS"));

System.out.println("field.compareTo(EMAIL_ADDRESS): " +
 field.compareTo(FieldType.EMAIL_ADDRESS));
System.out.println("field.compareTo(PASSWORD): " + field.compareTo(FieldType.PASSWORD));

System.out.println("field.valueOf(\"EMAIL_ADDRESS\"): " + field.valueOf("EMAIL_ADDRESS"));

try {
 System.out.print("field.valueOf(\"email_address\"): ");
 System.out.println(FieldType.valueOf("email_address"));
} catch (IllegalArgumentException e) {
 System.out.println(e.toString());
}

System.out.println("FieldType.values(): " + Arrays.toString(FieldType.values()));

Running this code will result in the following output:

field.name(): EMAIL_ADDRESS
field.ordinal(): 1
field.toString(): EMAIL_ADDRESS
field.isEqual(EMAIL_ADDRESS): true
field.isEqual("EMAIL_ADDRESS"'): false
field == EMAIL_ADDRESS: true
field.compareTo(EMAIL_ADDRESS): 0
field.compareTo(PASSWORD): 1
field.valueOf("EMAIL_ADDRESS"): EMAIL_ADDRESS
field.valueOf("email_address"): java.lang.IllegalArgumentException: No enum constant org.
java9recipes.chapter4.BasicEnumExample.FieldType.email_address
FieldType.values(): [PASSWORD, EMAIL_ADDRESS, PHONE_NUMBER, SSN]

Chapter 7 ■ Data SourCeS anD ColleCtionS

161

How It Works
A common pattern for representing a fixed set of related constants is to define each constant as an int,
String, or some other data type. Often, these constants are defined in a class or interface whose sole
purpose is to encapsulate constants. In any case, constants are sometimes defined with the static and
final modifiers, as follows:

// Input field constants
public static final int PASSWORD = 0;
public static final int EMAIL_ADDRESS = 1;
public static final int PHONE_NUMBER = 2;
public static final int SOCIAL_SECURITY_NUMBER = 3;

There are multiple problems with this pattern, the primary issue being the lack of type safety. By
defining these constants as ints, it is possible to assign an invalid value to a variable that is supposed to be
allowed to hold only one of the constant values:

int inputField = PHONE_NUMBER; // OK
inputField = 4; // Bad - no input field constant with value 4; compiles without error

As you can see, there will be no compiler error or warning produced to inform you of this invalid value
assignment. Chances are, you will discover this at runtime, when your application tries to use inputField,
and an incorrect value is assigned to it. In contrast, Java enum types provide compile-time type safety. That
is, if one attempts to assign a value of the wrong type to an enum variable, it will result in a compiler error. In
the solution this recipe, the FieldType.EMAIL_ADDRESS enum constant was assigned to the field variable.
Attempting to assign a value that isn’t of type FieldType naturally results in a compiler error:

FieldType field = FieldType.EMAIL_ADDRESS; // OK
field = "EMAIL_ADDRESS"; // Wrong type - compiler error

An enum is simply a special type of class. Under the covers, Java implements an enum type as a subclass of
the abstract and final java.lang.Enum class. Thus, an enum type cannot be instantiated directly (outside
of the enum type) or extended. The constants defined by an enum type are actually instances of the enum type.
The java.lang.Enum class defines a number of final methods that all enum types inherit. In addition, all
enum types have two implicitly declared static methods: values() and valueOf(String). The solution code
demonstrates these static methods and some of the more often used instance methods.

Most of these methods are fairly self-explanatory, but you should keep the following details in mind:

•	 Each enum constant has an ordinal value representing its relative position in the
enum declaration. The first constant in the declaration is assigned an ordinal value
of zero. The ordinal() method can be used to retrieve an enum constant’s ordinal
value; however, it is not recommended that applications be written to depend on this
value for maintainability reasons.

•	 The name() method and the default implementation of the toString() method
both return a String representation of the enum constant (toString() actually calls
name()). It is common for toString() to be overridden to provide a more user-friendly
String representation of the enum constant. For this reason, and for maintainability
reasons, it is recommended that toString() be used in preference to name().

Chapter 7 ■ Data SourCeS anD ColleCtionS

162

•	 When testing for equality, note that both the equals() method and == perform
reference comparison. They can be used interchangeably. However, it is
recommended that == be used to take advantage of compile-time type safety. This
is illustrated in the solution code. Performing equals() comparison with a String
parameter, for example, may allow the error to go unnoticed; it will compile, but it
will always return false. Conversely, attempting to compare an enum with a String
using the == comparison would result in an error at compile time. When you have
the choice of catching errors sooner (at compile time) rather than later (at runtime),
choose the former.

•	 The implicitly declared static methods values() and valueOf(String) do not appear
in the Java documentation or the source code for the java.lang.Enum class. However,
the Java Language Specification does detail their required implementations. To
summarize these methods, values() returns an array containing the constants of
the enum, in the order they are declared. The valueOf(String) method returns the
enum constant whose name exactly matches (including case) the value of the String
argument, or throws an IllegalArgumentException if there is no enum constant with
the specified name.

Refer to the online Java documentation for further details on java.lang.Enum and each of its methods
(https://docs.oracle.com/javase/9/docs/api/java/lang/Enum.html). As the next recipe demonstrates,
enum types, as full-fledged Java classes, can be used to build more intelligent constants.

7-2. Designing Intelligent Constants
Problem
You need a type that can represent a fixed set of related constants, and you would like to build some state
and behavior (logic) around your constants in an object-oriented fashion.

Solution
Use an enum type and take advantage of type safety and the fact that enum types are full-fledged Java classes.
An enum type can have state and behavior just like any other class, and the enum constants, themselves being
instances of the enum type, inherit this state and behavior. This is best illustrated by an example. Let’s expand
on the example from the previous recipe. Imagine that you need to process and validate all the fields from
an HTML form that has been submitted. Each form field has a unique set of rules for validating its content,
based on the field type. For each form field, you have the field’s “name” and the value that was entered into
that form field. The FieldType enum can be expanded to handle this very easily:

// See FieldType.java
public enum FieldType {

 PASSWORD(FieldType.passwordFieldName) {

 // A password must contain one or more digits, one or more lowercase letters, one or
 // more uppercase letters, and be a minimum of 6 characters in length.
 //

https://docs.oracle.com/javase/9/docs/api/java/lang/Enum.html

Chapter 7 ■ Data SourCeS anD ColleCtionS

163

 @Override
 public boolean validate(String fieldValue) {
 return Pattern.matches("((?=.*\\d)(?=.*[a-z])(?=.*[A-Z]).{6,})",
 fieldValue);
 }
 },

 EMAIL_ADDRESS(FieldType.emailFieldName) {

 // An email address begins with a combination of alphanumeric characters, periods,
 // and hyphens, followed by a mandatory ampersand ('@') character, followed by
 // a combination of alphanumeric characters (hyphens allowed), followed by a
 // one or more periods (to separate domains and subdomains), and ending in 2-4
 // alphabetic characters representing the domain.
 //
 @Override
 public boolean validate(String fieldValue) {
 return Pattern.matches("^[\\w\\.-]+@([\\w\\-]+\\.)+[A-Z|a-z]{2,4}$",
 fieldValue);
 }
 },

 PHONE_NUMBER(FieldType.phoneFieldName) {

 // A phone number must contain a minium of 7 digits. Three optional digits
 // representing the area code may appear in front of the main 7 digits. The area
 // code may, optionally, be surrounded by parenthesis. If an area code is included,
 // the number may optionally be prefixed by a '1' for long distance numbers.
 // Optional hypens my appear after the country code ('1'), the area code, and the
 // first 3 digits of the 7 digit number.
 //
 @Override
 public boolean validate(String fieldValue) {
 return Pattern.matches("^1?[-]?\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
 fieldValue);
 }
 },

 SOCIAL_SECURITY_NUMBER(FieldType.ssnFieldName) {

 // A social security number must contain 9 digits with optional hyphens after the
 // third and fifth digits.
 //
 @Override
 public boolean validate(String fieldValue) {
 return Pattern.matches("^\\d{3}[-]?\\d{2}[-]?\\d{4}$",
 fieldValue);
 }

 }; // End of enum constants definition

Chapter 7 ■ Data SourCeS anD ColleCtionS

164

 // Instance members
 //
 private String fieldName;

 // Define static constants to increase type safety
 static final String passwordFieldName = "password";
 static final String emailFieldName = "email";
 static final String phoneFieldName = "phone";
 static final String ssnFieldName = "ssn";

 private FieldType(String fieldName) {
 this.fieldName = fieldName;
 }

 public String getFieldName() {
 return this.fieldName;
 }

 abstract boolean validate(String fieldValue);

 // Static class members
 //
 private static final Map<String, FieldType> nameToFieldTypeMap = new HashMap<>();

 static {
 for (FieldType field : FieldType.values()) {
 nameToFieldTypeMap.put(field.getFieldName(), field);
 }
 }

 public static FieldType lookup(String fieldName) {
 return nameToFieldTypeMap.get(fieldName.toLowerCase());
 }

 private static void printValid(FieldType field, String fieldValue, boolean valid) {
 System.out.println(field.getFieldName() +
 "(\"" + fieldValue + "\") valid: " + valid);
 }

 public static void main(String... args) {

 String fieldName = FieldType.passwordFieldName;
 String fieldValue = "1Cxy9"; // invalid - must be at least 6 characters
 FieldType field = lookup(fieldName);
 printValid(field, fieldValue, field.validate(fieldValue));

 fieldName = FieldType.phoneFieldName;
 fieldValue = "1-800-555-1234"; // valid
 field = lookup(fieldName);
 printValid(field, fieldValue, field.validate(fieldValue));

Chapter 7 ■ Data SourCeS anD ColleCtionS

165

 fieldName = FieldType.emailFieldName;
 fieldValue = "john@doe"; // invalid - missing .<tld>
 field = lookup(fieldName);
 printValid(field, fieldValue, field.validate(fieldValue));

 fieldName = FieldType.ssnFieldName;
 fieldValue = "111-11-1111"; // valid
 field = lookup(fieldName);
 printValid(field, fieldValue, field.validate(fieldValue));
 }
}

Running the preceding code results in the following output:

password("1Cxy9") valid: false
phone("1-800-555-1234") valid: true
email("john@doe") valid: false
ssn("111-11-1111") valid: true

How It Works
Notice that the enhanced FieldType enum now defines a fieldName instance variable and a constructor
with a fieldName String argument for initializing the instance variable. Each enum constant (again, each
constant being an instance of FieldType) must be instantiated with a fieldName. FieldType also defines
an abstract validate(String) method that each enum constant must implement to perform the field
validation. Here, each FieldType’s validate() method applies a regular expression match against the field
value and returns the Boolean result of the match. Imagine the following form input fields corresponding to
our FieldType instances:

<input type="password" name="password" value=""/>
<input type="tel" name="phone" value=""/>
<input type="email" name="email" value=""/>
<input type="text" name="ssn" value=""/>

The value of the input field’s name attribute will be used to identify the FieldType; you used this
same name when you instantiated each FieldType enum constant. When a form is submitted, you have
access to each input field’s name and the value that was entered into the field. You need to be able to map
the field’s name to a FieldType and call the validate() method with the input value. The class variable,
nameToFieldTypeMap, is declared and initialized for this purpose. For each FieldType enum constant,
nameToFieldTypeMap stores an entry with the field name as the key, and the FieldType as the value. The
lookup(String) class method uses this map to look up the FieldType from the field name. The code to
validate an e-mail input field with an input value of john@doe.com is quite concise:

// <input type="email" name="email" value="john@doe.com"/>
String fieldName = FieldType.emailFieldName;
String fieldValue = "john@doe.com";
boolean valid = FieldType.lookup(fieldName).validate(fieldValue);

The main() method shows an example validation for each of the FieldTypes. The printValid()
method prints the field name, field value, and the field’s validation result.

This recipe has demonstrated that there is a lot more potential in the enum type than just the ability to
define a set of named constants. Enum types have all the power of a normal class, plus additional features that
allow you to create well-encapsulated and intelligent constants.

Chapter 7 ■ Data SourCeS anD ColleCtionS

166

7-3. Executing Code Based on a Specified Value
Problem
You want to execute different blocks of code based on the value of a singular expression.

Solution
Consider using a switch statement if your variable or expression result is one of the allowed switch types
and you want to test for equality against a type-compatible constant. These examples show various ways
to use the switch statement, including a new feature that became available in Java 7: the ability to switch
on Strings. First, let’s play some Rock-Paper-Scissors! The RockPaperScissors class shows two different
switch statements: one using an int as the switch expression type, and the other using an enum type.

// See RockPaperScissors.java
public class RockPaperScissors {

 enum Hand { ROCK, PAPER, SCISSORS, INVALID };

 private static void getHand(int handVal) {
 Hand hand;
 try {
 hand = Hand.values()[handVal - 1];
 }
 catch (ArrayIndexOutOfBoundsException ex) {
 hand = Hand.INVALID;
 }
 switch (hand) {
 case ROCK:
 System.out.println("Rock");
 break;
 case PAPER:
 System.out.println("Paper");
 break;
 case SCISSORS:
 System.out.println("Scissors");
 break;
 default:
 System.out.println("Invalid");
 }
 }

 private static void playHands(int yourHand, int myHand) {

 // Rock = 1
 // Paper = 2
 // Scissors = 3

Chapter 7 ■ Data SourCeS anD ColleCtionS

167

 // Hand combinations:
 // 1,1; 2,2; 3,3 => Draw
 // 1,2 => sum = 3 => Paper
 // 1,3 => sum = 4 => Rock
 // 2,3 => sum = 5 => Scissors
 //
 switch ((yourHand == myHand) ? 0 : (yourHand + myHand)) {
 case 0:
 System.out.println("Draw!");
 break;
 case 3:
 System.out.print("Paper beats Rock. ");
 printWinner(yourHand, 2);
 break;
 case 4:
 System.out.print("Rock beats Scissors. ");
 printWinner(yourHand, 1);
 break;
 case 5:
 System.out.print("Scissors beats Paper. ");
 printWinner(yourHand, 3);
 break;
 default:
 System.out.print("You cheated! ");
 printWinner(yourHand, myHand);
 }
 }

 private static void printWinner(int yourHand, int winningHand) {
 if (yourHand == winningHand) {
 System.out.println("You win!");
 }
 else {
 System.out.println("I win!");
 }
 }

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);
 System.out.println("Let's Play Rock, Paper, Scissors");
 System.out.println(" Enter 1 (Rock)");
 System.out.println(" Enter 2 (Paper)");
 System.out.println(" Enter 3 (Scissors)");
 System.out.print("> ");

 int playerHand = input.hasNextInt() ? input.nextInt() : -99;
 int computerHand = (int)(3*Math.random()) + 1;

Chapter 7 ■ Data SourCeS anD ColleCtionS

168

 System.out.print("Your hand: (" + playerHand + ") ");
 getHand(playerHand);
 System.out.print("My hand: (" + computerHand + ") ");
 getHand(computerHand);
 playHands(playerHand, computerHand);
 }
}

When the RockPaperScissors class is executed, an interactive game begins, allowing users to type
input at the keyboard. The users can type the number corresponding to the entry they’d like to choose, and
the computer utilizes random number calculations to try to beat the users’ choices.

Java 7 added the capability to switch on Strings. The SwitchTypeChecker class demonstrates the use
of a String as the switch expression type. The isValidSwitchType() method takes a Class object and
determines whether the corresponding type is a valid type that can be used in a switch expression. So,
SwitchTypeChecker is using a switch statement to simultaneously demonstrate switching on Strings and to
show the valid types for use in a switch expression:

// See SwitchTypeChecker.java
public class SwitchTypeChecker {

 public static Class varTypeClass(Object o) { return o.getClass(); };
 public static Class varTypeClass(Enum e) { return e.getClass().getSuperclass(); };
 public static Class varTypeClass(char c) { return char.class; };
 public static Class varTypeClass(byte b) { return byte.class; };
 public static Class varTypeClass(short s) { return short.class; };
 public static Class varTypeClass(int i) { return int.class; };
 public static Class varTypeClass(long l) { return long.class; };
 public static Class varTypeClass(float f) { return float.class; };
 public static Class varTypeClass(double d) { return double.class; };
 public static Class varTypeClass(boolean d) { return boolean.class; };

 public void isValidSwitchType(Class typeClass) {
 String switchType = typeClass.getSimpleName();
 boolean valid = true;
 switch (switchType) {
 case "char":
 case "byte":
 case "short":
 case "int":
 System.out.print("Primitive type " + switchType);
 break;
 case "Character":
 case "Byte":
 case "Short":
 case "Integer":
 System.out.print("Boxed primitive type " + switchType);
 break;
 case "String":
 case "Enum":
 System.out.print(switchType);
 break;

Chapter 7 ■ Data SourCeS anD ColleCtionS

169

 default: // invalid switch type
 System.out.print(switchType);
 valid = false;
 }
 System.out.println(" is " + (valid ? "" : "not ") + "a valid switch type.");
 }

 public static void main(String[] args) {
 SwitchTypeChecker check = new SwitchTypeChecker();
 check.isValidSwitchType(varTypeClass('7'));
 check.isValidSwitchType(varTypeClass(7));
 check.isValidSwitchType(varTypeClass(777.7d));
 check.isValidSwitchType(varTypeClass((short)7));
 check.isValidSwitchType(varTypeClass(new Integer(7)));
 check.isValidSwitchType(varTypeClass("Java 8 Rocks!"));
 check.isValidSwitchType(varTypeClass(new Long(7)));
 check.isValidSwitchType(varTypeClass(true));
 check.isValidSwitchType(varTypeClass(java.nio.file.AccessMode.READ));
 }
}

Here is the result of executing SwitchTypeChecker:

Primitive type char is a valid switch type.
Primitive type int is a valid switch type.
double is not a valid switch type.
Primitive type short is a valid switch type.
Boxed primitive type Integer is a valid switch type.
String is a valid switch type.
Long is not a valid switch type.
boolean is not a valid switch type.
Enum is a valid switch type.

How It Works
The switch statement is a control-flow statement that allows you to execute different blocks of code based
on the value of a switch expression. It is similar to the if-then-else statement, except that the switch
statement can have only a single test expression, and the expression type is restricted to one of several
different types. When a switch statement executes, it evaluates the expression against constants contained
in the switch statement’s case labels. These case labels are branch points in the code. If the value of
the expression equals the value of a case label constant, control is transferred to the section of code that
corresponds to the matching case label. All code statements from that point on are then executed until
either the end of the switch statement is reached or a break statement is reached. The break statement
causes the switch statement to terminate, with control being transferred to the statement following the
switch statement. Optionally, the switch statement can contain a default label, which provides a branch
point for the case when there is no case label constant that equates to the switch expression value.

The SwitchTypeChecker isValidSwitchType() method demonstrates the use of a String as the
switch test expression. If you study closely the isValidSwitchType() method, you will see that it is testing
whether a Class object represents a type that corresponds to one of the valid switch expression types. The
method also demonstrates how case labels can be grouped to implement a logical OR conditional test. If a

Chapter 7 ■ Data SourCeS anD ColleCtionS

170

case label does not have any associated code to execute, and no break statement, the flow of execution falls
through to the next closest case label containing executable statements, thus allowing common code to be
executed if the result of the switch expression matches any one of the grouped case constants.

The RockPaperScissors class implements a command-line Rock-Paper-Scissors game, where you are
playing against the computer. There are two methods in this class that demonstrate the switch statement.
The getHand() method shows the use of an enum variable in the switch expression. The playHands()
method simply intends to show that the switch expression, although often just a variable, can be any
expression whose result is of one of the allowed switch types. In this case, the expression is using a ternary
operator that returns an int value.

7-4. Working with Fix-Sized Arrays
Problem
You need a simple data structure that can store a fixed (and possibly large) amount of same-typed data and
provide for fast sequential access.

Solution
Consider using an array. While Java provides more sophisticated and flexible Collection types, the array
type can be useful data structure for many applications. The following example demonstrates the simplicity
of working with arrays. The GradeAnalyzer class provides a means for calculating various grade-related
statistics, such as the mean (average) grade, minimum grade, and maximum grade.

// See GradeAnalyzer.java
public class GradeAnalyzer {

 // The internal grades array
 private int[] _grades;

 public void setGrades(int[] grades) {
 this._grades = grades;
 }

 // Return cloned grades so the caller cannot modify our internal grades
 public int[] getGrades() {
 return _grades != null ? _grades.clone() : null;
 }

 public int meanGrade() {
 int mean = 0;
 if (_grades != null&& _grades.length > 0) {
 int sum = 0;
 for (int i = 0; i < _grades.length; i++) {
 sum += _grades[i];
 }
 mean = sum / _grades.length;
 }
 return mean;
 }

Chapter 7 ■ Data SourCeS anD ColleCtionS

171

 public int minGrade() {
 int min = 0;
 for (int index = 0; index < _grades.length; index++) {
 if (_grades[index] < min) {
 min = _grades[index];
 }
 }
 return min;
 }

 public int maxGrade() {
 int max = 0;
 for (int index = 0; index < _grades.length; index++) {
 if (_grades[index] > max) {
 max = _grades[index];
 }
 }
 return max;
 }

 static int[] initGrades1() {
 int[] grades = new int[5];
 grades[0] = 77;
 grades[1] = 48;
 grades[2] = 69;
 grades[3] = 92;
 grades[4] = 87;
 return grades;
}

 static int[] initGrades2() {
 int[] grades = { 57, 88, 67, 95, 99, 74, 81 };
 return grades;
}

 static int[] initGrades3() {
 return new int[]{ 100, 70, 55, 89, 97, 98, 82 };
 }

 public static void main(String... args) {

 GradeAnalyzer ga = new GradeAnalyzer();
 ga.setGrades(initGrades1());
 System.out.println("Grades 1:");
 System.out.println("Mean of all grades is " + ga.meanGrade());
 System.out.println("Min grade is " + ga.minGrade());
 System.out.println("Max grade is " + ga.maxGrade());
 ga.setGrades(initGrades2());
 System.out.println("Grades 2:");
 System.out.println("Mean of all grades is " + ga.meanGrade());
 System.out.println("Min grade is " + ga.minGrade());

Chapter 7 ■ Data SourCeS anD ColleCtionS

172

 System.out.println("Max grade is " + ga.maxGrade());
 ga.setGrades(initGrades3());
 System.out.println("Grades 3:");
 System.out.println("Mean of all grades is " + ga.meanGrade());
 System.out.println("Min grade is " + ga.minGrade());
 System.out.println("Max grade is " + ga.maxGrade());

 Object testArray = ga.getGrades();
 Class testClass = testArray.getClass();
 System.out.println("isArray: " + testClass.isArray());
 System.out.println("getClass: " + testClass.getName());
 System.out.println("getSuperclass: " + testClass.getSuperclass().getName());
 System.out.println("getComponentType: " + testClass.getComponentType());
 System.out.println("Arrays.toString: " + Arrays.toString((int[])testArray));

 }
}

Running this code will result in the following output:

Grades 1:
Mean of all grades is 74
Min grade is 48
Max grade is 92
Grades 2:
Mean of all grades is 80
Min grade is 57
Max grade is 99
Grades 3:
Mean of all grades is 84
Min grade is 55
Max grade is 100
isArray: true
getClass: [I
getSuperclass: class java.lang.Object
getComponentType: int
Arrays.toString: [55, 70, 82, 89, 97, 98, 100]

How It Works
The Java array type works a bit differently than Java’s ArrayList (part of the Java Collections Framework).
Java arrays hold a fixed amount of data. That is, when an array is created, you must specify how much data it
can hold. Once an array has been created, you cannot insert or remove array items or otherwise change the
size of the array. However, if you have a fixed amount (and especially a very large amount) of data that you
just need to work on while iterating over it sequentially, an array may be a good choice.

The first thing you need to know about the Java array type is that it is an Object type. All arrays,
regardless of the type of data they contain, have Object as their superclass. The elements of an array may
be of any type, as long as all elements are of the same type—either primitive or object reference. Regardless
of the array type, the memory for an array is always allocated out of the heap space for the application. The
heap is the area of memory used by the JVM for dynamic memory allocation.

Chapter 7 ■ Data SourCeS anD ColleCtionS

173

 ■ Note it is possible to create an array of Objects (Object[]) that can hold references to objects of different
types; however, this is not recommended, as it requires you to check the type of elements and perform explicit
type casting when retrieving elements from the array.

There are two steps to completely defining an array object in Java: array variable declaration, which
specifies the array element type, and array creation, which allocates the memory for the array. Once an array
is declared and the memory is allocated, it can be initialized. There are multiple ways to initialize an array,
which are shown in the solution to this recipe. If you know in advance what data you need to store in the
array, you can combine array declaration, creation, and initialization in one step using a shortcut syntax you
will see demonstrated in the solution.

Let’s walk through the GradeAnalyzer class and examine the various ways to declare, create, initialize,
and access arrays. First, notice that the class has one instance variable to hold the grades to be analyzed:

private int[] _grades;

Like all other uninitialized Object reference instance variables, the _grades array instance variable is
automatically initialized to null. Before you can start analyzing grades, you have to set the _grades instance
variable to reference the grades data you want to analyze. This is done using the setGrades(int[]) method.
Once GradeAnalyzer has a collection of grades to analyze, the meanGrade(), minGrade(), and maxGrade()
methods can be called upon to compute their respective statistics. Together, these three methods
demonstrate how to iterate over the elements of an array, how to access elements of an array, and how to
determine the number of elements an array can hold. To determine the number of elements an array can
hold, simply access the implicitly defined, final instance variable, length, which is available for all arrays:

_grades.length

To iterate over the elements of an array, simply use a for loop, whose index variable goes through all
possible indices of the array. Array indices start at 0, so the last array index is always (_grades.length - 1).
While iterating over the array, you can access the array element at the current index by using the name of the
array variable followed by the current index enclosed in brackets (often called an array subscript):

// From the meanGrade() method:
for (int i = 0; i < _grades.length; i++) {
 sum += _grades[i];
}

Alternatively, the enhanced for loop, also known as the foreach loop, could be used to iterate over the
array (see Recipe 7-7 for more discussion of the foreach loop):

for (int grade : _grades) {
 sum += grade;
}

Notice that to determine the min and max grade, the grades are first sorted in their natural (ascending)
order using the utility sort method from the java.util.Arrays class. After sorting, the min grade is the simply the
first element (at index 0) of the array, and the max grade is the last element (at index length -1) of the array.

The three static class methods in the solution, initGrades1(), initGrades2(), and initGrades3(),
demonstrate three different ways of creating and initializing the array data you will use to “seed” the
GradeAnalyzer. The initGrades1() method declares and creates an array (using new) that can hold five

Chapter 7 ■ Data SourCeS anD ColleCtionS

174

grades, then manually sets the value at each element index to an integer grade value. The initGrades2()
method combines array creation and initialization in one line using the special array initializer syntax:

int[] grades = { 57, 88, 67, 95, 99, 74, 81 };

This syntax creates an array with a length of 7 and initializes the elements from index 0 through index
6 with the integer values shown. Note that this syntax can be used only in an array declaration, so the
following is not allowed:

int[] grades;
grades = { 57, 88, 67, 95, 99, 74, 81 }; // won't compile

The initGrades3() method looks very similar to initGrades2(), but is slightly different. This code creates
and returns an anonymous (unnamed) array:

return new int[]{ 100, 70, 55, 89, 97, 98, 82 };

With this syntax, you use the new keyword with the array element type, but the size of the array is not
explicitly specified. Similar to the array initializer syntax shown in the initGrades2() method, the array size is
implied by the number of elements given within the initializer brackets. So, again, this code is creating and
returning an array with a length of 7.

After computing the grade statistics for the three sets of grades data, the remainder of the
GradeAnalyzer main() method demonstrates various methods that can be used to determine array type
information and to convert an array to a printable String. You see that the code first assigns the array
returned from a call to the getGrades() instance method to an Object variable called testArray:

Object testArray = ga.getGrades();

You can make this assignment because, as stated previously, an array is an Object. You can also see
this by the result from the call to testArray.getSuperclass(). The call to testArray.getClass().getName() is also
interesting; it returns “I.” The left bracket means “I am an array type”, and the “I” means “with a component
type of integer.” This is also backed up by the result from the call to testArray.getComponentType(). Finally,
you call the Arrays.toString(int[]) method, which returns a nicely formatted String representation of the
array and its contents. Notice that because testArray is an Object reference, it must be cast to an int array for
the Arrays.toString(int[]) method. (See the Java documentation for the java.util.Arrays class for other useful
utility methods that can be used with arrays.)

As you have seen, arrays are simple and easy to work with. There will be times when this simplicity
works to your advantage. Recipe 7-6 shows an alternative to the array type that provides for easy insertion
and removal of elements: the ArrayList collection class.

7-5. Safely Enabling Types or Methods to Operate on
Objects of Various Types
Problem
Your application makes use of many different object types, and there are containers within your class that
are available for holding each of these different types. You are interested in ensuring your application
remains bug-free, yet you would like to dynamically change the type of object a particular container may
hold. In other words, you would like to define a generic container, but have the ability to specify its type each
time a new instance of the container is instantiated.

Chapter 7 ■ Data SourCeS anD ColleCtionS

175

Solution
Make use of generic types to decouple the type from the container. Generics are a way to abstract over object
types, not explicitly declaring what the type of an object or container should be. You’ll likely first encounter
generic types when using the interfaces and classes that are part of the Java Collections Framework (http://
download.oracle.com/javase/tutorial/collections/). The Collections Framework makes heavy use of
Java generics. All collection types are parameterized to allow you to specify, at the time of instantiation, the
type of elements the collection can hold. The following example code demonstrates how to use generics in a
couple of different scenarios. The comments in the code indicate where the generics are utilized.

public class MainClass {

 static List<Player> team;

 private static void loadTeam() {
 System.out.println("Loading team...");

 // Use of the diamond operator
 team = new ArrayList<>();
 Player player1 = new Player("Josh", "Juneau", 5);
 Player player2 = new Player("Duke", "Java", 15);
 Player player3 = new Player("Jonathan", "Gennick", 1);
 Player player4 = new Player("Bob", "Smith", 18);
 Player player5 = new Player("Steve", "Adams", 7);

 team.add(player1);
 team.add(player2);
 team.add(player3);
 team.add(player4);
 team.add(player5);

 }

 public static void main(String[] args) {
 loadTeam();

 // Create a list without specifying a type
 List objectList = new ArrayList();
 Object obj1 = "none";
 objectList.add(obj1);

 // Create a List that can be of type that is any superclass of Player
 List<? super Player> myTeam = objectList;
 for (Object p : myTeam) {
 System.out.println("Printing the objects...");
 System.out.println(p.toString());
 }

http://download.oracle.com/javase/tutorial/collections/
http://download.oracle.com/javase/tutorial/collections/

Chapter 7 ■ Data SourCeS anD ColleCtionS

176

 // Create a Map of String keys and String values
 Map<String, String> strMap = new HashMap<>();
 strMap.put("first", "Josh");
 strMap.put("last", "Juneau");
 System.out.println(strMap.values());
 }
}

 ■ Note When we talk generally about a collection or a collection type, you can read this as those types
that make up the Java Collections Framework. this includes all the classes and interfaces that descend from
the Collection and Map interfaces. Collection types generally refer to types that descend from the Collection
interface.

How It Works
The solution code demonstrates some basic use cases for generics. The examples in the GenericsDemo.java
file, contained within the recipe sources, go into more detail to demonstrate the use of generics with Java
collections versus showing you how to create generic types. Unless you are developing a library API, you
probably won’t be creating your own generic types. However, if you understand how generics are used with
the Collection interfaces and classes, you will have the knowledge you need to create your own generic types.

The first thing to understand and remember about Java generics is that they are strictly a compile-time
feature that aids the developer in creating more type-safe code. All the type information that you specify
when you parameterize a generic type gets “erased” by the compiler when the code is compiled down to byte
code. You’ll see this described as type erasure. Let’s look at an example of a generic Collection type: the
List. List is an interface defined as follows:

public interface List<E> extends Collection<E> { ... };

Now that is a strange syntax, especially because there is no object or type identified as E. As it turns
out, the E is known as a type parameter, which is a placeholder to indicate to the compiler that a type will be
assigned to the object at runtime. Type parameters are typically upper cased letters that are used to indicate
the type of parameter being defined. There are a variety of different type parameters to note, but keep in
mind that these are only applicable when defining a generic type. In most cases, generic types are only
defined when developing a library or API:

•	 E – Element

•	 K – Key

•	 N- Number

•	 T – Type

•	 V – Value

•	 S, U, V, and so on—second, third, and fourth types

Chapter 7 ■ Data SourCeS anD ColleCtionS

177

To specify the element type for a List (or any Collection type), simply include the type name in angle
brackets when declaring and instantiating objects. When you do this, you are specifying a “parameterized
type.” The following code declares List of Integers. A variable, aList, of the parameterized type List<Integer>
is declared and then initialized with the reference obtained from the instantiation of the parameterized type,
LinkedList<Integer> (also called a “concrete parameterized type”):

List<Integer> aList = new LinkedList<Integer>();

Now that you’ve parameterized these types to restrict the element type to Integers, the List add(E e)
method becomes:

boolean add(Integer e);

If you try to add anything other than an Integer to aList, the compiler will generate an error:

aList.add(new Integer(121));
aList.add(42); // 42 is the same as new Integer(42), due to autoboxing.
aList.add("Java"); // won't compile, wrong type

It’s important to note that it’s the reference type that is checked at compile time, so the following will
also result in a compiler error:

Number aNum = new Integer("7");
aList.add(aNum); // won't compile, wrong type

This is a compile error because aNum could reference any Number object. If the compiler were to allow
this, you could end up with a set that contains Doubles, Floats, and so on, which would violate the Integer
parameter constraint that was specified when you created aList. Of course, a simple type cast could get you
around the compiler error, but this would surely cause unintended consequences when casting between
incompatible Number objects. Generics were designed to reduce the amount of explicit type casting you have
to do in your code, so if you find yourself using explicit type casting when using methods of parameterized
types, this is a clue of potentially dangerous code.

aList.add((Integer)aNum); // compiles, but don't do this.

Other things to watch out for when using generic types are compiler warnings. They may indicate that
you’re doing something that is not recommended and it usually indicates that your code has a potential
runtime error looming. An example can help to illustrate this. The following code will compile but produce
two compiler warnings:

List rawList = new LinkedList();
aList = rawList;

First, you’re creating rawList, which is a raw type, a generic type that isn’t parameterized. When generics
were introduced into the language, the language designers decided that in order to maintain compatibility
with pregenerics code, they would need to allow the use of raw types. However, the use of raw types is strongly
discouraged for newer (post–Java 5) code, so compilers will generate a raw type warning if you use them.
Next, rawList is assigned to aList, which was created using parameterized types. Again, this is allowed by the
compiler (due to generics type erasure and backward compatibility), but an unchecked conversion warning
is generated for the assignment to flag potential runtime type incompatibility. Imagine if rawList contained
Strings. Later, if you tried to retrieve Integer elements from aList, you would get a runtime error.

Chapter 7 ■ Data SourCeS anD ColleCtionS

178

Regarding type compatibility, it doesn’t apply to generic type parameters. For example, the following is
not a valid assignment:

List<Number> bList = new LinkedList<Integer>(); // won't compile; incompatible types

Although Integers are Numbers (Integer is a subtype of Number), and LinkedList is a subtype of
List, LinkedList<Integer> is not a subtype of List<Number>. Fortunately, this won’t slip by you if you
accidentally write code like this; the compiler will generate an “incompatible types” warning.

So you may be wondering whether there is a way to achieve a variant subtyping relationship similar to
what we tried to do in the previous line of code. The answer is yes, by using a feature of generics called the
wildcard. A wildcard is denoted by use of a question mark (?) within the type parameter angle brackets.
Wildcards are used to declare parameterized types that are either bounded or unbounded. The following is
an example declaration of a bounded parameterized type:

List<? extends Number> cList;

When a wildcard is used with the extends keyword, an upper bound is established for the type
parameter. In this example, ? extends Number means any type that is either a Number or a subtype of
a Number. Therefore, the following would be valid assignments because both Integer and Double are
subtypes of Number:

cList = new LinkedList<Number>();
cList = new LinkedList<Integer>();
cList = new LinkedList<Double>();

So, cList can hold a reference to any List instance that has an element type that is compatible with
Number. In fact, cList could even reference a raw type. Obviously, this makes it a challenge for the compiler
to enforce type safety if it were to allow elements to be added to cList. Therefore, the compiler does not
allow elements (other than a null) to be added to a collection type that is parameterized with ? extends. The
following would result in a compiler error:

cList.add(new Integer(5)); // add() not allowed; cList could be LinkedList<Double>

However, you are allowed to get an element from the list without any problem:

Number cNum = cList.get(0);

The only restriction here is that the reference you get from the list has to be treated like a Number.
Remember, cList could be pointing to a list of Integers, a list of Doubles, or list of any other subtype of
Number.

A wildcard can also be used with the super keyword. In this case, a lower bound is established for the
type parameter:

List<? super Integer> dList;

In this example, ? super Integer means any type that is either an Integer or any supertype of
Integer. Therefore, the following would be valid assignments because Number and Object are the only
supertypes of Integer:

dList = new LinkedList<Integer>();
dList = new LinkedList<Number>();
dList = new LinkedList<Object>();

Chapter 7 ■ Data SourCeS anD ColleCtionS

179

So, you see that Integer is the lower bound. This lower bound now places a restriction on retrieving
elements from the list. Because dList can hold a reference to any one of the previous parameterized types,
the compiler would not be able to enforce type safety if an assumption were made about the type of the
element being retrieved. Therefore, the compiler must not allow calls to get() on a collection type that is
parameterized with ? super, and the following would result in a compiler error:

Integer n = dList.get(0); // get() not allowed; dList.get(0) could be a Number or Object

However, now you can add elements to the list, but the lower bound, Integer, still applies. Only
Integers can be added because Integer is compatible with Number and Object:

dList.add(new Integer(5)); // OK
Number dNum = new Double(7);
dList.add(dNum); // won't compile; dList could be LinkedList<Integer>

You will see the use of the wildcard with both extends and super throughout the collection types.
Most often, you will see them used in method parameter types, such as the addAll() method, which is
defined for all Collections. Sometimes you will see the collection types using the wildcard (?) alone as
a type parameter, which is called an unbounded wildcard. The Collection removeAll() method is such
an example. In most cases, this usage is self-explanatory. You probably won’t be (probably shouldn’t
be) defining your own parameterized types using an unbounded wildcard. If you try to do this, you will
soon learn there isn’t much you can do with it. If you understand concrete parameterized types, wildcard
parameterized types, and the concept of bounded and unbounded types, as described in this recipe, you
have most of what you need to work with the generic collection types, and create your own generic types if
you so chose.

Now that we’ve talked a lot about parameterizing types, we’re going to tell you to forget about some of
it. When Java 7 was released, a new feature called the diamond (sometimes seen referred to as the diamond
operator, although it is not considered to be an operator in Java) was introduced. The diamond allows the
compiler to infer the type argument(s) from the context of the parameterized type usage. A simple example
of the diamond usage follows:

List<Integer> eList = new ArrayList<>();

Notice there is no type argument specified between the angle brackets when instantiating the
ArrayList. The compiler can easily infer the type to be Integer, based on the context of the assignment
or initializer. Integer is the only type that would work in this context. In fact, the Java compiler (and most
compliant IDEs) will actually warn you if you do not use a diamond where it is possible to use it. Another
more complex example shows the benefit even better:

Map<Integer, List<String>> aMap = new HashMap<>(); // Nice!

The diamond can similarly be used in return statements, as well as in method arguments:

// diamond in method return
public static List<String> getEmptyList() {
 return new ArrayList<>();
}

// diamond in method argument
List<List<String>> gList = new ArrayList<>();
gList.set(0, new ArrayList<>(Arrays.asList("a", "b")));

Chapter 7 ■ Data SourCeS anD ColleCtionS

180

Note that using the diamond as shown here is not the same as using a raw type. The following is not
equivalent to the declaration of aMap that uses the diamond; it will result in an “unchecked conversion”
warning, and possibly a raw type warning, from the compiler:

Map<Integer, List<String>> bMap = new HashMap(); // compiler warnings; avoid raw types

The discussion around why this is different than the diamond example is beyond the scope of this
recipe. If you remember to avoid the use of raw types, you shouldn’t need to worry about this. Use the
diamond whenever possible to save yourself some typing, as well as to make your code more robust,
readable, and concise.

7-6. Working with Dynamic Arrays
Problem
You need a flexible data structure that can store a variable amount of data and that allows for easy insertion
and deletion of data.

Solution
Consider using an ArrayList. The following example code is the StockScreener class, which allows you
to screen a list of stocks or a single stock based on a specific screen parameter (P/E, Yield, and Beta) and
screen value. The class makes use of an ArrayList for containing stock Strings. An example screen might
be “Tell me which of the stocks in this list has a P/E (price-to-earnings ratio) of 15 or less.” Don’t worry if
you’re not familiar with these stock market terms. Whatever you do, don’t use this class to make your stock
investment decisions!

// See StockScreener.java
public class StockScreener {

 enum Screen { PE, YIELD, BETA };

 public static boolean screen(String stock, Screen screen, double threshold) {
 double screenVal = 0;
 boolean pass = false;
 switch (screen) {
 case PE:
 screenVal = Math.random() * 25;
 pass = screenVal <= threshold;
 break;
 case YIELD:
 screenVal = Math.random() * 10;
 pass = screenVal >= threshold;
 break;
 case BETA:
 screenVal = Math.random() * 2;
 pass = screenVal <= threshold;
 break;
 }
 System.out.println(stock + ": " + screen.toString() + " = " + screenVal);

Chapter 7 ■ Data SourCeS anD ColleCtionS

181

 return pass;
 }

 /**
 * Parse through stock listing to determine if each stock passes the screen tests. If
 * a particular element does not pass the screen, then remove it.
 */
 public static void screen(List<String> stocks, Screen screen, double threshold) {
 Iterator<String> iter = stocks.iterator();
 while (iter.hasNext()) {
 String stock = iter.next();
 if (!screen(stock, screen, threshold)) {
 iter.remove();
 }
 }
 }

 public static void main(String[] args) {

 List<String> stocks = new ArrayList<>();
 stocks.add("ORCL");
 stocks.add("AAPL");
 stocks.add("GOOG");
 stocks.add("IBM");
 stocks.add("MCD");
 System.out.println("Screening stocks: " + stocks);

 if (stocks.contains("GOOG") &&
 !screen("GOOG", Screen.BETA, 1.1)) {
 stocks.remove("GOOG");
 }
 System.out.println("First screen: " + stocks);

 StockScreener.screen(stocks, Screen.YIELD, 3.5);
 System.out.println("Second screen: " + stocks);
 StockScreener.screen(stocks, Screen.PE, 22);
 System.out.println("Third screen: " + stocks);

 System.out.println("Buy List: " + stocks);
 }
}

The output from running this code will vary because it is randomly assigning a stock’s screen result
value. Here is one sample of output from running the class:

Screening stocks: [ORCL, AAPL, GOOG, IBM, MCD]
GOOG: BETA = 1.9545048754918146
First screen: [ORCL, AAPL, IBM, MCD]
ORCL: YIELD = 5.54002319921808
AAPL: YIELD = 5.282200818124754
IBM: YIELD = 3.189521157557543

Chapter 7 ■ Data SourCeS anD ColleCtionS

182

MCD: YIELD = 3.978628208965815
Second screen: [ORCL, AAPL, MCD]
ORCL: PE = 3.5561302619951993
AAPL: PE = 13.578302484429233
MCD: PE = 23.504349376296886
Third screen: [ORCL, AAPL]
Buy List: [ORCL, AAPL]

How It Works
The ArrayList is one of the most often used classes in the Java Collections Framework. The ArrayList
class implements the List interface, which, in turn, implements the Collection interface. The Collection
interface defines the set of common operations for all Collection types, and the List interface defines the
set of operations that are specific to the list-oriented Collection types. The Collections Framework makes
heavy use of Java generics. If you are new to generics, it is recommended that you read Recipe 7-5, which
gives a brief summary of generics and their use with collections.

The StockScreener main() method starts by declaring a List of stocks, and specifying with the generic
type parameter, that the stocks list elements will be of type String. Notice that the actual list type is an
ArrayList that is created using the diamond, which is discussed in Recipe 7-5. The stocks list will hold a
variable number of stocks, represented by their stock market symbol (a String):

List<String> stocks = new ArrayList<>();

Now that you’ve specified that the stocks list can only hold Strings, all the List methods, in turn, get
parameterized to only allow Strings. So, next, the code makes several calls to the ArrayList’s add(String)
method to add the stocks to the list. After that, a screen is run on GOOG (Google) based on its Beta (a
measure of stock risk); if it does not pass the screen, the List remove(String) method is called to remove
the stock from the stock list. Two more screens are then run on the entire stock list to get a list of stocks that
have a P/E of 22.0 or less, and a Yield of 3.5% or more. The screen() method used for these screens takes
a parameter of type List<String>. It has to iterate over the list, run the screen for each stock in the list,
and remove those stocks that do not pass the screen. Note that in order to safely remove an element from
a Collection while iterating over it, you must use iterate using the Collection’s Iterator, which can be
obtained by calling its iterator() method. Here, we are showing the use of a while loop to iterate over the
stocks list (a for loop could similarly be used). As long as you’re not to the end of the list (iter.hasNext()),
you can get the next stock from the list (iter.next()), run the screen, and remove the element from the list
(iter.remove()) if the screen didn’t pass.

 ■ Note You may find that calling the list’s remove() method while iterating the list seems to work. the
problem is that it’s not guaranteed to work and will produce unexpected results. at some point, the code will
also throw a ConcurrentModificationexception, regardless of whether you have multiple threads accessing the
same list. remember to always remove elements through the iterator when iterating over any Collection.

The ArrayList is a very useful data structure that should normally be used in place of the array type. It
provides much more flexibility than a simple array, in that elements can be added and removed dynamically
with ease. While it is true that ArrayList uses an array internally, you benefit from optimized add() and
remove() operations that are implemented for you. Also, ArrayList implements many other very useful
methods. Refer to the online Java documentation for further details (https://docs.oracle.com/javase/9/
docs/api/java/util/ArrayList.html).

https://docs.oracle.com/javase/9/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/9/docs/api/java/util/ArrayList.html

Chapter 7 ■ Data SourCeS anD ColleCtionS

183

7-7. Making Your Objects Iterable
Problem
You have created a custom collection–based class that wraps (instead of extends) the underlying collection
type. Without exposing the internal implementation details of your class, you would like objects of your class
to become iterable, especially with the use of a foreach statement.

Solution
Have your class extend the Interable<T> interface, where T is the element type of the collection to be
iterated. Implement the iterator() method to return the Iterator<T> object from this collection. The
example for this recipe is the StockPortfolio class. Internally, StockPortfolio manages a collection of
Stock objects. We would like users of our class to be able to treat StockPortfolio objects as iterable objects
using a foreach statement. The StockPortfolio class follows:

// See StockPortfolio.java and Stock.java
public class StockPortfolio implements Iterable<Stock> {

 Map<String, Stock> portfolio = new HashMap<>();

 public void add(Stock stock) {
 portfolio.put(stock.getSymbol(), stock);
 }

 public void add(List<Stock> stocks) {
 for (Stock s : stocks) {
 portfolio.put(s.getSymbol(), s);
 }
 }

 @Override
 public Iterator<Stock> iterator() {
 return portfolio.values().iterator();
 }

 public static void main(String[] args) {

 StockPortfolio myPortfolio = new StockPortfolio();
 myPortfolio.add(new Stock("ORCL", "Oracle", 500.0));
 myPortfolio.add(new Stock("AAPL", "Apple", 200.0));
 myPortfolio.add(new Stock("GOOG", "Google", 100.0));
 myPortfolio.add(new Stock("IBM", "IBM", 50.0));
 myPortfolio.add(new Stock("MCD", "McDonalds", 300.0));

 // foreach loop (uses Iterator returned from iterator() method)
 System.out.println("====Print using legacy for-each loop====");
 for (Stock stock : myPortfolio) {
 System.out.println(stock);
 }

Chapter 7 ■ Data SourCeS anD ColleCtionS

184

 System.out.println("====Print using Java 8 foreach implementation====");
 myPortfolio.forEach(s->System.out.println(s));
 }
}

The following code is that of the Stock class:

public class Stock {
 private String symbol;
 private String name;
 private double shares;
 public Stock(String symbol, String name, double shares) {
 this.symbol = symbol;
 this.name = name;
 this.shares = shares;
 }
 public String getSymbol() {
 return symbol;
 }
 public String getName() {
 return name;
 }
 public double getShares() {
 return shares;
 }
 public String toString() {
 return shares + " shares of " + symbol + " (" + name + ")";
 }
}

The main() method creates a StockPortfolio and then calls the add() method to add a number of
stocks to the portfolio. Both variations of the foreach loop (legacy and forEach implementation) are then
used to loop over and print all the stocks in the portfolio. Running the StockPortfolio class results in the
following output:

50.0 shares of IBM (IBM)
300.0 shares of MCD (McDonalds)
100.0 shares of GOOG (Google)
200.0 shares of AAPL (Apple)
500.0 shares of ORCL (Oracle)

 ■ Note the order of the lines in the output may be different when you run the Stockportfolio class in your
environment because the underlying implementation uses a hashMap. a hashMap does not guarantee the order
of the elements stored in the map, and this extends to its iterators. if you wanted the iterator to return elements
sorted by the stock symbol, you could use one of the sorted collections, such as treeMap or treeSet, instead of
hashMap. another option is to utilize a stream on the collection. See recipe 7-10 for more about streams.

Chapter 7 ■ Data SourCeS anD ColleCtionS

185

How It Works
The Iterable interface was introduced in Java 5 to support the enhanced for loop (also known as the
foreach loop) which was introduced at the same time. Along with these enhancements to the language, all
Collection classes were retrofitted to implement the Iterable interface, thus allowing Collection classes
to be iterable using the foreach loop. The Iterable interface is a generic type defined as follows:

public interface Iterable<T> {
 Iterator<T> iterator();
}

Any class that implements Iterable<T> must implement the iterator() method to return an
Iterator<T> object. Typically, the Iterator returned is the default iterator of the underlying collection;
however, it may also return an instance of a custom Iterator. In the StockPortfolio class, a Map is used to
represent the stock portfolio. The key for each map entry is the stock symbol, and the value associated with
each key is a Stock object. Maps in Java are not iterable; that is, they are not Collection classes. Therefore,
they do not implement Iterable. However, both the keys and the values of a map are Collections, and
therefore are Iterables. We want our implementation of the Iterable iterator() method to return an
Iterator over the values (Stock references) of the portfolio map; therefore, our Iterable implementation is
parameterized by the Stock type:

public class StockPortfolio implements Iterable<Stock>

The Map values() method returns the Collection of map values; in this case, a Collection of Stocks.
The iterator() method implementation can then simply return the Iterator for this Collection:

@Override
public Iterator<Stock> iterator() {
 return portfolio.values().iterator();
}

With this implementation of Iterable<Stock>, either the legacy a foreach loop, or the forEach
implementation can be used to iterate a StockPortfolio instance and print each Stock:

myPortfolio.forEach(s->System.out.println(s));

The forEach method was new to the Iterable interface with the release of Java 8. The method performs
the specified action for each element within the Iterable until all elements have been processed, or the
specified action throws an exception. In this solution, the specified action is a lambda expression (see
Chapter 6), which prints the value of each element within the myPortfolio Iterable.

You will notice that StockPortfolio also contains the add(List<Stock>) method, which allows the
portfolio to be populated from a List. This method also uses a foreach loop to iterate through the input
List. Again, this is possible because Lists are Iterables. (Note that this method is never called in the code;
it exists only for illustration purposes.)

http://dx.doi.org/10.1007/978-1-4842-1976-8_6

Chapter 7 ■ Data SourCeS anD ColleCtionS

186

 ■ Note there’s one issue with our implementation of Stockportfolio. We have gone to great lengths to
not expose the internal implementation details of our class (the portfolio map). this allows us to change the
implementation without affecting the Stockportfolio client code. however, when we implemented iterable, we
effectively exported the underlying portfolio map through the iterator() method. as was demonstrated in recipe
7-5, an iterator allows the underlying collection to be modified by calling its remove() method. unfortunately,
Java does not provide an unmodifiableiterator class that could be used to wrap an iterator and prevent
modification of the underlying Collection. however, it would be simple to implement such a class that forwards
the hasnext() and next() calls to the wrapped iterator, but leaves the remove() method unimplemented (per the
iterator Java documentation, unsupportedoperationexception should be thrown). alternatively, your iterator()
method could return the iterator from an unmodifiable Collection obtained through a call to the Collections.
unmodifiableCollection() class method. You are encouraged to explore these two options. to give you a start,
one possible implementation of unmodifiableiterator has been provided in the source code download (see
unmodifiableiterator.java).

As you have seen in this recipe, the Iterable interface allows you to create iterable objects that
are compatible with a foreach implementation. This is very useful when you want to design a custom
collection-based class that encapsulates implementation details. Just keep in mind that in order to enforce
the encapsulation and prevent modification of your underlying collection, you should implement one of the
solutions mentioned in the preceding note.

7-8. Iterating Over Collections
Problem
Your application contains Collection types, and you want to iterate over the elements within them.

Solution
Generate a stream on any type that extends or implements java.util.Collection, and then perform the
desired task(s) on each element of the collection. In the following code, an ArrayList loaded with Stock
objects is used to demonstrate the concept of streams.

public class StreamExample {
 static List<Stock> myStocks = new ArrayList();

 private static void createStocks(){
 myStocks.add(new Stock("ORCL", "Oracle", 500.0));
 myStocks.add(new Stock("AAPL", "Apple", 200.0));
 myStocks.add(new Stock("GOOG", "Google", 100.0));
 myStocks.add(new Stock("IBM", "IBM", 50.0));
 myStocks.add(new Stock("MCD", "McDonalds", 300.0));
 }

Chapter 7 ■ Data SourCeS anD ColleCtionS

187

 public static void main(String[] args){
 createStocks();
 // Iterate over each element and print the stock names
 myStocks.stream()
 .forEach(s->System.out.println(s.getName()));

 boolean allGt = myStocks.stream()
 .allMatch(s->s.getShares() > 100.0);
 System.out.println("All Stocks Greater Than 100.0 Shares? " + allGt);

 // Print out all stocks that have more than 100 shares
 System.out.println("== We have more than 100 shares of the following:");
 myStocks.stream()
 .filter(s -> s.getShares() > 100.0)
 .forEach(s->System.out.println(s.getName()));

 System.out.println("== The following stocks are sorted by shares:");
 Comparator<Stock> byShares = Comparator.comparing(Stock::getShares);
 Stream<Stock> sortedByShares = myStocks.stream()
 .sorted(byShares);
 sortedByShares.forEach(s -> System.out.println("Stock: " + s.getName() + " - Shares:

" + s.getShares()));

 // May or may not return a value
 Optional<Stock> maybe = myStocks.stream()
 .findFirst();
 System.out.println("First Stock: " + maybe.get().getName());

 List newStocks = new ArrayList();
 Optional<Stock> maybeNot = newStocks.stream()
 .findFirst();
 Consumer<Stock> myConsumer = (s) ->
 {
 System.out.println("First Stock (Optional): " + s.getName());
 };
 maybeNot.ifPresent(myConsumer);

 if(maybeNot.isPresent()){
 System.out.println(maybeNot.get().getName());
 }

 newStocks.add(new Stock("MCD", "McDonalds", 300.0));
 Optional<Stock> maybeNow = newStocks.stream()
 .findFirst();
 maybeNow.ifPresent(myConsumer);
 }

}

The results of executing this code demonstrate the concept of using streams. External iteration
(for loops) is no longer a requirement for iterating over a collection of data.

Chapter 7 ■ Data SourCeS anD ColleCtionS

188

How It Works
Prior to Java 8, iterating over a Collection required some kind of looping block. This is known as external
iteration, a.k.a. programmatic looping in sequential order. In most cases, a for loop was used to work
through each element within a Collection, processing each element according to an application’s
requirements. While a for loop is a reasonable solution for performing iteration, it is both a nonintuitive
and verbose strategy. Since the release of Java 8, the boilerplate of iterating over Collections was removed,
along with the requirement to spell out how the iteration is to be completed. The compiler already knows
how to iterate over a Collection, so why tell the compiler exactly how to do it? Why not simply tell the
compiler: “I would like to iterate over this Collection, and perform this task on each element”? The concept
of streams enables this hands-off approach to iteration.

Let the compiler take care of the nonintuitive looping, and simply hand the task off to the compiler and
tell it what action to perform on each element. This concept is known as internal iteration. With internal
iteration, your application determines what needs to be iterated, and the JDK decides how to perform the
iteration. Internal iteration not only alleviates the requirement to program the looping logic, but it also has
other advantages. One such advantage is that internal iteration is not limited to sequential iteration over
elements. Therefore, the JDK decides how to iterate, choosing the best algorithm for the task at hand. Internal
iteration also can more easily take advantage of parallel computing. This concept involves subdividing tasks
into smaller problems, solving each in a simultaneous manner, and then combining the results.

A stream is a sequence of object references that can be generated on all Collection types. The Stream
API makes it possible to perform a sequence of aggregate operations upon those object references and either
return a result or apply the changes to the objects inline. This is also known as a pipeline. The pseudocode
for generation and use of a stream is as follows:

Collection -> (Stream) -> (Zero or More Intermediate Operations) -> (Terminal Operation)

Let’s put this pseudocode into a real example. In the solution, a list of Stock objects is used for
demonstrating stream iteration. Let’s suppose you want to print out each stock that contains a number of
shares that is over a designated threshold (100 shares in this example). You can use the following code to
perform this task:

myStocks.stream()
 .filter(s -> s.getShares() > 100.0)
 .forEach(s->System.out.println(s.getName()));

In the previous example, an intermediate operation known as a filter() is used to apply a limitation
on the elements, thereby filtering out all of the elements that do not match the supplied predicate. The
predicate is written in the form of a lambda expression; it performs the test on each element and returns
a Boolean result. The terminal operation in the example uses forEach() to print each of the matching
elements. A terminal operation is the last operation in a pipeline, and it produces a nonstream result such as
a primitive, collection, or no value at all. In the example case, no result is returned.

To generate a stream on a Collection type, call the stream() method, which will return a Stream type.
In most cases, the Stream type is not the desired result, so the Stream API makes it possible to invoke zero or
more intermediate operations upon a stream, forming a pipeline of operations. For example, in the solution
the list of Stock objects is sorted by the number of shares using the following code. Note that Comparator
byShares is applied to each object in the stream and a Stream<Stock> is returned as a result:

Stream<Stock> sortedByShares = myStocks.stream()
 .sorted(byShares);

Chapter 7 ■ Data SourCeS anD ColleCtionS

189

In the previous example, a single intermediate operation, sorted(), is performed on the stream. As
mentioned previously, there could be more than one intermediate operation chained to this pipeline, thereby
performing the next operation upon those objects that meet the criteria of the previous operation. Each of the
intermediate operations returns a Stream. Each pipeline can contain a terminal operation, thereby applying
the terminal operation to each of the resulting stream objects. As mentioned previously, a terminal operation
may or may not return a result. In the previous example, no terminal operation is applied.

 ■ Note the online documentation for Stream (https://docs.oracle.com/javase/9/docs/api/java/
util/stream/Stream.html) lists all of the intermediate and terminal operations available upon a stream.

Streams have been a revolutionary change for the Java programming language. They change the way
in which a developer thinks about a program, making the developer more productive and the code more
efficient. While legacy iteration techniques such as the for loop are still considered valid procedures,
streams are the preferred technique for iteration when you’re using Java 8 or beyond.

7-9. Iterating Over a Map
Problem
You are using one of the Map classes, such as HashMap or TreeMap, and you need to iterate over the keys,
values, or both. You also want to remove elements from the map while you are iterating over it.

Solution
There are multiple ways to iterate over a Map. The method you choose should depend on which portions
of the map you need to access and whether you need to remove elements from the map while iterating.
The StockPortfolio1 class is a continuation of the StockPorfolio class shown in the previous recipe. It
adds three methods, summary(), alertList(), and remove(List<String>), that demonstrate alternative
methods for iterating over the portfolio map:

// See StockPortfolio1.java
Map<String, Stock> portfolio = new HashMap<>();
...
public void summary() {
 System.out.println("==Legacy technique for traversing Map.Entry==");
 for (Map.Entry<String, Stock> entry : portfolio.entrySet()) {
 System.out.println("Stock = " + entry.getKey() + ", Shares = " + entry.getValue().
getShares());
 }

 System.out.println("==Utilization of new foreach and lambda combination==");
 portfolio.forEach((k,v)->System.out.println("Stock = " + k + ", Shares = " +
v.getShares()));
}

https://docs.oracle.com/javase/9/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/9/docs/api/java/util/stream/Stream.html

Chapter 7 ■ Data SourCeS anD ColleCtionS

190

/**
 * Utilize for loop to traverse Map keys and apply filter to obtain desired
 * stocks
 * @return
 */
public List<Stock> alertListLegacy() {
 System.out.println("==Legacy technique for filtering and collecting==");
 List<Stock> alertList = new ArrayList<>();
 for (Stock stock : portfolio.values()) {
 if (!StockScreener.screen(stock.getSymbol(), StockScreener.Screen.PE, 20)) {
 alertList.add(stock);
 }
 }

 return alertList;
}

/**
 * Utilize stream and filters to obtain desired stocks
 * @return
 */
public List<Stock> alertList(){
 return
 portfolio.values().stream()
 .filter(s->!StockScreener.screen(s.getSymbol(), StockScreener.Screen.PE, 20))
 .collect(Collectors.toList());

}

public void remove(List<String> sellList) {
 Iterator<String> keyIter = portfolio.keySet().iterator();
 while (keyIter.hasNext()) {
 if (sellList.contains(keyIter.next())) {
 keyIter.remove();
 }
 }
}

How It Works
A Map is an object that contains a collection of key/value pairs. Maps can be beneficial when you need to
store an index (key) and associate it with a particular value. A Map must not contain any duplicate keys, and
each key maps to exactly one value. The source code for the solution (StockPortfolio1.java) demonstrates
how to add and remove entries from a Map. It also contains the source that is listed in the solution to this
recipe, demonstrating how to iterate over Map entries using legacy techniques, as well as newer syntax that
takes advantage of lambda expressions and streams.

Chapter 7 ■ Data SourCeS anD ColleCtionS

191

The summary() method uses a foreach loop implementation to iterate over the portfolio map’s Entry
set. To iterate using the legacy code, the Map entrySet() method returns a Set of Map.Entry objects. Within
the loop, you then have access to the key and value for the current Map.Entry by calling the respective
methods, key() and value(), on that entry. Use this method of iterating when you need to access both the
map keys and values while iterating, and you don’t need to remove elements from the map. Taking a look at
the newer syntax, you can see that the same iteration can be performed in a single line of code. The newer
syntax utilizes the forEach() method, which was added to the Map interface in Java 8. It applies a lambda
expression to each entry within the list. The lambda expression takes both the key and value as arguments,
and then prints them out.

The alertListLegacy() method uses a foreach loop implementation to iterate over just the values
of the portfolio map. The Map values() method returns a Collection of the map values; in this case, a
Collection of Stocks. Use this method of iterating when you only need access to the map values and you
don’t need to remove elements from the list. Similarly, if you only need access to the map keys (again,
without the need to remove elements), you can iterate using the keySet() method:

for (String symbol : portfolio.keySet()) {
 ...
}

If you also need to also access the map value while iterating using the key set, avoid the following, as it is
very inefficient. Instead, use the method of iteration shown in the summary() method.

for (String symbol : portfolio.keySet()) {
 Stock stock = portfolio.get(symbol);
 ...
}

Taking a look at the alertList() method in the solution, you can see that the same iteration can be
performed with much less work using a combination of streams, filters, and collectors. See Recipe 7-8 for
more details regarding streams and the Stream API. In alertList(), a stream is generated, and then a
filter, in the form of a lambda expression, is applied to that stream. Finally, a collector is applied to the filter,
creating a List<Stock> to return.

The remove(List<String>) method takes a list of stock symbols representing the stocks to be removed
from the portfolio. This method iterates over the portfolio map keys using the keySet() iterator, removing
the current map entry if it is one of the stocks specified for removal. Notice that the map element is removed
through the iterator’s remove() method. This is possible because the key set is backed by the map, so
changes made through the key set’s iterator are reflected in the map. You could also iterate over the portfolio
map using its values() iterator:

Iterator<Stock> valueIter = portfolio.values().iterator();
while (valueIter.hasNext()) {
 if (sellList.contains(valueIter.next().getSymbol())) {
 valueIter.remove();
 }
}

As with the key set, the values collection is backed by the map, so calling remove() through the values
iterator will result in removal of the current entry from the portfolio map.

In summary, if you need to remove elements from a map while iterating over the map, iterate using
one of the map’s collection iterators and remove map elements through the iterator, as shown in the
remove(List<String>) method. This is the only safe way to remove map elements during iteration.
Otherwise, if you don’t need to remove map elements, you can make use of a foreach loop and one of the
methods of iteration shown in the solution to this recipe.

Chapter 7 ■ Data SourCeS anD ColleCtionS

192

7-10. Executing Streams in Parallel
Problem
You want to iterate over a Collection in parallel to distribute the work over multiple CPUs.

Solution
Utilize a stream construct on the Collection, and invoke parallelStream() as the first intermediate
operation in order to take advantage of multiple CPU processing. The following class demonstrates multiple
uses of the parallelStream() operation:

public class StockPortfolio2 {
 static List<Stock> myStocks = new ArrayList();

 private static void createStocks(){
 myStocks.add(new Stock("ORCL", "Oracle", 500.0));
 myStocks.add(new Stock("AAPL", "Apple", 200.0));
 myStocks.add(new Stock("GOOG", "Google", 100.0));
 myStocks.add(new Stock("IBM", "IBM", 50.0));
 myStocks.add(new Stock("MCD", "McDonalds", 300.0));
 }

 public static void main(String[] args){
 createStocks();
 // Iterate over each element and print the stock names
 myStocks.stream()
 .forEach(s->System.out.println(s.getName()));

 boolean allGt = myStocks.parallelStream()
 .allMatch(s->s.getShares() > 100.0);
 System.out.println("All Stocks Greater Than 100.0 Shares? " + allGt);

 // Print out all stocks that have more than 100 shares
 System.out.println("== We have more than 100 shares of the following:");
 myStocks.parallelStream()
 .filter(s -> s.getShares() > 100.0)
 .forEach(s->System.out.println(s.getName()));

 System.out.println("== The following stocks are sorted by shares:");
 Comparator<Stock> byShares = Comparator.comparing(Stock::getShares);
 Stream<Stock> sortedByShares = myStocks.parallelStream()
 .sorted(byShares);
 sortedByShares.forEach(s -> System.out.println("Stock: " + s.getName() + " - Shares:

" + s.getShares()));

 // May or may not return a value
 Optional<Stock> maybe = myStocks.parallelStream()
 .findFirst();
 System.out.println("First Stock: " + maybe.get().getName());

Chapter 7 ■ Data SourCeS anD ColleCtionS

193

 List newStocks = new ArrayList();
 Optional<Stock> maybeNot = newStocks.parallelStream()
 .findFirst();
 Consumer<Stock> myConsumer = (s) ->
 {
 System.out.println("First Stock (Optional): " + s.getName());
 };
 maybeNot.ifPresent(myConsumer);

 if(maybeNot.isPresent()){
 System.out.println(maybeNot.get().getName());
 }

 newStocks.add(new Stock("MCD", "McDonalds", 300.0));
 Optional<Stock> maybeNow = newStocks.stream()
 .findFirst();
 maybeNow.ifPresent(myConsumer);

 }

}

How It Works
By default, operations are executed in serial stream. However, you can specify that the Java runtime split
the operations between multiple subtasks, thus taking advantage of multiple CPUs for performance. When
operations are executed in this manner, they are executed in “parallel.” Streams can be partitioned into
multiple substreams by the Java runtime by invoking the parallelStream() intermediate operation. When
this operation is invoked, aggregate operations can process the multiple substreams and then the results will
be combined in the end. You can also execute a stream in parallel by invoking the operation BaseStream.
parallel.

Summary
This chapter looked at various data structures and how to work with them. First, you took a look at Enums and
learned how to utilize them effectively. Next, we covered the basics of Arrays and ArrayList, and learned
how to iterate over elements within these structures. The chapter also covered Java generics, which allow
you to decouple object types from container types, providing for more type-safe and efficient code. Lastly,
this chapter covered the Streams API, which is one of the most important updates introduced with the
release of Java 8, for working with collections.

195© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_8

CHAPTER 8

Input and Output

Oftentimes in applications, there is a requirement to obtain and manipulate the I/O terminals. In today’s
operating systems, that usually means file access and network connectivity. In previous releases, Java was slow
to adopt a good file and network framework in order to maintain universal compatibility. Standing true to its
roots of write once, read everywhere, a lot of the original file I/O and network connectivity needed to be simple
and universal. Since the release of Java 7, developers have been taking advantage of much better I/O APIs.

The file and network I/O has evolved over the years into a much better framework for handling files,
network scalability, and ease of use. As of the network input output version 2 API (NIO.2), Java has the
capability of monitoring folders, accessing OS-dependent methods, and creating scalable asynchronous
network sockets. This is in addition to the already robust library for handling input and output streams, and
serializing (and deserializing) object information.

In this chapter, we cover recipes that demonstrate different input and output processes. You learn
about serialization of files, sending files over the network, file manipulation, and much more. After reading
the recipes in this chapter, you will be armed with the capability to develop applications containing
sophisticated input and output tasks.

STREAMS AND THE DECORATOR PATTERN

I/O streams are the foundation of most of the Java I/O and include a plethora of ready-made streams
for just about any occasion, but they are very confusing to use if some context is not provided. A stream
(like a river) represents an inflow/outflow of data. Think about it this way. When you type, you create
a stream of characters that the system receives (input stream). When the system produces sounds,
it sends them to the speaker (output stream). The system could be receiving keystrokes and sending
sound all day long, and thus the streams can be either processing data or waiting for more data.

When a stream doesn’t receive any data, it waits (nothing else to do, right?). As soon as data comes in,
the stream starts processing this data. The stream then stops and waits for the next data item to come.
This keeps going until this proverbial river becomes dry (the stream is closed).

Like a river, streams can be connected to each other (this is the decorator pattern). For the content
of this chapter, there are mainly two input streams that you care about. One of them is the file input
stream, and the other is the network socket input stream. These two streams are a source of data
for your I/O programs. There are also their corresponding output streams: file output stream and the
network socket output streams (how creative, isn’t it?). Like a plumber, you can hook them together and
create something new. For example, you could weld together a file input stream to a network output
stream to send the contents of the file through a network socket. Or you could do the opposite and

ChApTer 8 ■ InpuT And OuTpuT

196

connect a network input stream (data coming in) to a file output stream (data being written to disk). In
I/O parlance, the input streams are called sources, while the output streams are called sinks.

There are other input and output streams that can be glued together. For example, there is a
BufferedInputStream, which allows you to read the data in chunks (it’s more efficient than reading
it byte by byte), and DataOutputStream allows you to write Java primitives to an output stream
(instead of just writing bytes). One of the most useful streams is the ObjectInputStream and
ObjectOutputStream pair, which will allow you to serialize/deserialize object (see recipe 8-1).

The decorator pattern allows you to keep plucking streams together to get many different effects. The
beauty of this design is that you can actually create a stream that will take any input and produce any
output, and then can be thrown together with every other stream.

8-1. Serializing Java Objects
Problem
You need to serialize a class (save the contents of the class) so that you can restore it at a later time.

Solution
Java implements a built-in serialization mechanism. You access that mechanism via the
ObjectOutputStream class. In the following example, the method saveSettings() uses an
ObjectOutputStream to serialize the settings object in preparation for writing the object to disk:

public class Ch_8_1_SerializeExample {
 public static void main(String[] args) {
 Ch_8_1_SerializeExample example = new Ch_8_1_SerializeExample();
 example.start();
 }

 private void start() {
 ProgramSettings settings = new ProgramSettings(new Point(10,10),
 new Dimension(300,200), Color.blue,
 "The title of the application");
 saveSettings(settings,"settings.bin");
 ProgramSettings loadedSettings = loadSettings("settings.bin");
 if(loadedSettings != null)
 System.out.println("Are settings are equal? :"+loadedSettings.equals(settings));

 }

 private void saveSettings(ProgramSettings settings, String filename) {
 try {
 FileOutputStream fos = new FileOutputStream(filename);
 try (ObjectOutputStream oos = new ObjectOutputStream(fos)) {
 oos.writeObject(settings);
 }

ChApTer 8 ■ InpuT And OuTpuT

197

 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 private ProgramSettings loadSettings(String filename) {
 try {
 FileInputStream fis = new FileInputStream(filename);
 ObjectInputStream ois = new ObjectInputStream(fis);
 return (ProgramSettings) ois.readObject();
 } catch (IOException | ClassNotFoundException e) {
 e.printStackTrace();
 }
 return null;
 }
}

How It Works
Java supports serialization, which is the capability of taking an object and creating a byte representation that
can be used to restore the object at a later time. By using an internal serialization mechanism, most of the
setup to serialize objects is taken care of. Java will transform the properties of an object into a byte stream,
which can then be saved to a file or transmitted over the wire.

 ■ Note The original Java Serialization framework uses reflection to serialize the objects, so it might be
an issue if serializing/deserializing heavily. There are plenty of open source frameworks that offer different
trade-offs depending on your need (speed versus size versus ease of use). See https://github.com/eishay/
jvm-serializers/wiki/.

For a class to be serializable, it needs to implement the Serializable interface, which is a Marker
interface: it doesn’t have any methods, but instead tells the serialization mechanism that you have allowed
your class to be serialized. While not evident from the onset, serialization exposes all the internal workings of
your class (including protected and private members), so if you want to keep secret the authorization code
for a nuclear launch, you might want to make any class that contains such information nonserializable.

It is also necessary that all properties (a.k.a. members, variables, or fields) of the class are serializable
(and/or transient, which we will get to in a minute). All primitives—int, long, double, and float (plus their
wrapper classes)—and the String class, are serializable by design. Other Java classes are serializable on a
case-by-case basis. For example, you can’t serialize any Swing components (like JButton or JSpinner), and
you can’t serialize File objects, but you can serialize the Color class (awt.color, to be more precise).

As a design principle you don’t want to serialize your main classes, but instead you want to create
classes that contain only the properties that you want to serialize. It will save a lot of headache in debugging
because serialization becomes very pervasive. If you mark a major class as serializable (implements
Serializable), and this class contains many other properties, you need to declare those classes as
serializable as well. If your Java class inherits from another class, the parent class should also be serializable.
In the case where the parent class is not serializable, the parent’s properties will not be serialized.

If you want to mark a property as nonserializable, you may mark it as transient. Transient properties tell
the Java compiler that you are not interested in saving/loading the property value, so it will be ignored. Some
properties are good candidates for being transient, like cached calculations, or a date formatter that you
always instantiate to the same value.

https://github.com/eishay/jvm-serializers/wiki/
https://github.com/eishay/jvm-serializers/wiki/

ChApTer 8 ■ InpuT And OuTpuT

198

By the virtue of the Serialization framework, static properties are not serializable; neither are static
classes. The reason is that a static class cannot be instantiated, although a public static inner class can be
instantiated. Therefore, if you save and then load the static class at the same time, you will have loaded
another copy of the static class, throwing the JVM for a loop.

The Java serialization mechanism works behind the scenes to convert and traverse every object within
the class that is marked as Serializable. If an application contains objects within objects, and even perhaps
contains cross-referenced objects, the Serialization framework will resolve those objects, and store only
one copy of any object. Each property then gets translated to a byte[] representation. The format of the
byte array includes the actual class name (for example: com.somewhere.over.the.rainbow.preferences.
UserPreferences), followed by the encoding of the properties (which in turn may encode another object
class, with its properties, etc., etc., ad infinitum).

For the curious, if you look at the file generated (even in a text editor), you can see the class name as
almost the first part of the file.

 ■ Note Serialization is very brittle. By default, the Serialization framework generates a Stream Unique
Identifier (SUID) that captures information about what fields are presented in the class, what kind they are
(public/protected), and what is transient, among other things. even a perceived slight modification of the class
(for example, changing an int to a long property) will generate a new SuId. A class that has been saved with
a prior SuId cannot be deserialized on the new SuId. This is done to protect the serialization/deserialization
mechanism, while also protecting the designers.

You can actually tell the Java class to use a specific SuId. This will allow you to serialize classes, modify them,
and then deserialize the original classes while implementing some backward compatibility. The danger you
run into is that the deserialization must be backward-compatible. renaming or removing fields will generate
an exception as the class is being deserialized. If you are specifying your own serial Serializable on your
Serializable class, be sure to have some unit tests for backward compatibility every time you change
the class. In general, the changes that can be made on a class to keep it backward-compatible are found
here: http://docs.oracle.com/javase/9/docs/platform/serialization/spec/serial-arch.html.

due to the nature of serialization, don’t expect constructors to be called when an object is deserialized. If you
have initialization code in constructors that is required for your object to function properly, you may need to
refactor the code out of the constructor to allow proper execution after construction. The reason is that in
the deserialization process, the deserialized objects are “restored” internally (not created) and do not invoke
constructors.

http://docs.oracle.com/javase/9/docs/platform/serialization/spec/serial-arch.html

ChApTer 8 ■ InpuT And OuTpuT

199

8-2. Serializing Java Objects More Efficiently
Problem
You want to serialize a class, but want to make the output more efficient, or smaller in size, than the product
generated via the built-in serialization method.

Solution
By making the object implement the Externalizable interface, you instruct the Java Virtual Machine to
use a custom serialization/deserialization mechanism, as provided by the readExternal/writeExternal
methods in the following example.

public class ExternalizableProgramSettings implements Externalizable {
 private Point locationOnScreen;
 private Dimension frameSize;
 private Color defaultFontColor;
 private String title;

 // Empty constructor, required for Externalizable implementors
 public ExternalizableProgramSettings() {

 }

 @Override
 public void writeExternal(ObjectOutput out) throws IOException {
 out.writeInt(locationOnScreen.x);
 out.writeInt(locationOnScreen.y);
 out.writeInt(frameSize.width);
 out.writeInt(frameSize.height);
 out.writeInt(defaultFontColor.getRGB());
 out.writeUTF(title);
 }

 @Override
 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
 locationOnScreen = new Point(in.readInt(), in.readInt());
 frameSize = new Dimension(in.readInt(), in.readInt());
 defaultFontColor = new Color(in.readInt());
 title = in.readUTF();
 }
// getters and setters omitted for brevity
}

How It Works
The Java Serialization framework provides the ability for you to specify the implementation for serializing
an object. As such, it requires implementing the Externalizable interface in lieu of the Serializable
interface. The Externalizable interface contains two methods: writeExternal(ObjectOutput out) and
readExternal(ObjectInput in). By implementing these methods, you are telling the framework how to
encode/decode your object.

ChApTer 8 ■ InpuT And OuTpuT

200

The writeExternal() method will pass in as a parameter an ObjectOutput object. This object will
then let you write your own encoding for the serialization. The ObjectOutput contains the methods listed in
Table 8-1.

Table 8-1. ObjectOutput Methods

ObjectOutput ObjectInput Description

writeBoolean (boolean v) booleanreadBoolean () Read/writes the Boolean primitive.

writeByte(int v) intreadByte() Read/writes a byte.
Note: Java doesn’t have a byte primitive,
so an int is used as a parameter, but only the
least-significant byte will be written.

writeShort(int v) intreadShort() Read/writes two bytes.
Note: Only the two least-significant bytes will
be written.

writeChar(int v) intreadChar() Read/writes two bytes as a char (reverse
order than writeShort).

writeInt (int v) intreadInt() Read/writes an integer.

writeLong (long v) intreadLong() Read/writes a long.

writeDouble (double v) double readDouble Read/writes a double.

One reason you may choose to implement the Externalizable interface instead of the Serializable
interface is because Java’s default serialization is very inefficient. Because the Java Serialization framework
needs to ensure that every object (and dependent object) is serialized, it will write even objects that have
default values or that might be empty and/or null. Implementing the Externalizable interface also provides
for finer-grained control on how your class is being serialized. In our example, the Serializable version
created a setting of 439 bytes, compared with the Externalizable version of only 103 bytes!

 ■ Note Classes that implement the Externalizable interface must contain an empty (no-arg) constructor.

8-3. Serializing Java Objects as XML
Problem
Although you love the Serialization framework, you want to create something that is at least cross-language-
compatible (or human readable). You would like to save and load your objects using XML.

Solution
In this example, the XMLEncoder object is used to encode the Settings object, which contains program
settings information and writes it to the settings.xml file. The XMLDecoder takes the settings.xml file and
reads it as a stream, decoding the Settings object. A FileSystem is used to gain access to the machine’s file

ChApTer 8 ■ InpuT And OuTpuT

201

system; FileOutputStream is used to write a file to the system; and FileInputStream is used to obtain input
bytes from a file within the file system. In this example, these three file objects are used to create new XML
files, as well as read them for processing.

//Encoding
FileSystem fileSystem = FileSystems.getDefault();
try (FileOutputStream fos = new FileOutputStream("settings.xml"); XMLEncoder encoder =
 new XMLEncoder(fos)) {
 encoder.setExceptionListener((Exception e) -> {
 System.out.println("Exception! :"+e.toString());
 });
 encoder.writeObject(settings);
}

// Decoding
try (FileInputStream fis = new FileInputStream("settings.xml"); XMLDecoder decoder =
 new XMLDecoder(fis)) {
 ProgramSettings decodedSettings = (ProgramSettings) decoder.readObject();
 System.out.println("Is same? "+settings.equals(decodedSettings));
}

Path file= fileSystem.getPath("settings.xml");
List<String> xmlLines = Files.readAllLines(file, Charset.defaultCharset());
xmlLines.stream().forEach((line) -> {
 System.out.println(line);
});

How It Works
XMLEncoder and XMLDecoder, like the Serialization framework, use reflection to determine which fields are to
be written, but instead of writing the fields as binary, they are written as XML. Objects that are to be encoded
do not need to be serializable, but they do need to follow the Java Beans specification.

Java Bean is the name of any object that conforms to the following contract:

•	 The object contains a public empty (no-arg) constructor.

•	 The object contains public getters and setters for each protected/private property
that takes the name of get{Property}() and set{Property}().

The XMLEncoder and XMLDecoder will encode/decode only the properties of the Bean that have public
accessors (get{property}, set{property}), so any properties that are private and do not have accessors
will not be encoded/decoded.

 ■ Tip It is a good idea to register an exception Listener when encoding/decoding.

The XmlEncoder creates a new instance of the class that being serialized (remember that they need to
be Java Beans, so they must have an empty no-arg constructor), and then figures out which properties are
accessible (via get{property}, set{property}). And if a property of the newly instantiated class contains
the same value as the property of the original class (i.e., has the same default value), the XmlEncoder doesn’t
write that property. In other words, if the default value of a property hasn’t changed, the XmlEncoder will not

ChApTer 8 ■ InpuT And OuTpuT

202

write it out. This provides the flexibility of changing what a “default” value is between versions. For example,
if the default value of a property is 2 when an object is encoded, and later decoded after the default property
changed from 2 to 4, the decoded object will contain the new default property of 4 (which might not be
correct).

The XMLEncoder also keeps track of references. If an object appears more than once when being
persisted in the object graph (for example, an object is inside a Map from the main class, but is also as the
DefaultValue property), then the XMLEncoder will only encode it once, and link up a reference by putting
a link in the xml. The XMLEncoder/XMLDecoder is much more forgiving than the Serialization framework.
When decoding, if a property type is changed, or if it was deleted/added/moved/renamed, the decoding will
decode “as much as it can” while skipping the properties that it couldn’t decode.

The recommendation is to not persist your main classes (even though the XMLEncoder is more
forgiving), but to create special objects that are simple, hold the basic information, and do not perform many
tasks by themselves.

8-4. Creating a Socket Connection and Sending Serializable
Objects Across the Wire
Problem
You need to open a network connection, and send/receive objects from it.

Solution
Use Java’s New Input Output API version 2 (NIO.2) to send and receive objects. The following solution
utilizes the NIO.2 features of nonblocking sockets (by using Future tasks):

public class Ch_8_4_AsyncChannel {
 private AsynchronousSocketChannel clientWorker;

 InetSocketAddress hostAddress;

 public Ch_8_4_AsyncChannel() {
 }

 private void start() throws IOException, ExecutionException, TimeoutException,
InterruptedException {
 hostAddress = new InetSocketAddress(InetAddress.getByName("127.0.0.1"), 2583);

 Thread serverThread = new Thread(() -> {
 serverStart();
 });

 serverThread.start();

 Thread clientThread = new Thread(() -> {
 clientStart();
 });
 clientThread.start();

 }

ChApTer 8 ■ InpuT And OuTpuT

203

 private void clientStart() {
 try {
 try (AsynchronousSocketChannel clientSocketChannel = AsynchronousSocketChannel.

open()) {
 Future<Void> connectFuture = clientSocketChannel.connect(hostAddress);
 connectFuture.get(); // Wait until connection is done.
 OutputStream os = Channels.newOutputStream(clientSocketChannel);
 try (ObjectOutputStream oos = new ObjectOutputStream(os)) {
 for (int i = 0; i < 5; i++) {
 oos.writeObject("Look at me " + i);
 Thread.sleep(1000);
 }
 oos.writeObject("EOF");
 }
 }
 } catch (IOException | InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }

 }

 private void serverStart() {
 try {
 AsynchronousServerSocketChannel serverSocketChannel =

AsynchronousServerSocketChannel.open().bind(hostAddress);
 Future<AsynchronousSocketChannel> serverFuture = serverSocketChannel.accept();
 final AsynchronousSocketChannel clientSocket = serverFuture.get();
 System.out.println("Connected!");
 if ((clientSocket != null) && (clientSocket.isOpen())) {
 try (InputStream connectionInputStream = Channels.

newInputStream(clientSocket)) {
 ObjectInputStream ois = null;
 ois = new ObjectInputStream(connectionInputStream);
 while (true) {
 Object object = ois.readObject();
 if (object.equals("EOF")) {
 clientSocket.close();
 break;
 }
 System.out.println("Received :" + object);
 }
 ois.close();
 }
 }

 } catch (IOException | InterruptedException | ExecutionException |
ClassNotFoundException e) {
 e.printStackTrace();
 }

 }

ChApTer 8 ■ InpuT And OuTpuT

204

 public static void main(String[] args) throws IOException, ExecutionException,
TimeoutException, InterruptedException {
 Ch_8_4_AsyncChannel example = new Ch_8_4_AsyncChannel();
 example.start();
 }
}

How It Works
At its basic level, sockets require a type, IP address, and port. While sockets literature has consumed
whole books, the main idea is pretty straightforward. Like the post office, socket communication relies on
addresses. These addresses are used to deliver data. In this example, we picked the loopback (the same
computer where the program is running) address (127.0.0.1), and chose a random port number (2583).

The advantage of the new NIO.2 is that it is asynchronous in nature. By using asynchronous calls, you
can scale your application without creating thousands of threads for each connection. In our example, we
take the asynchronous calls and wait for a connection, effectively making it single-threaded for the sake of
the example, but don’t let that stop you for enhancing this example with more asynchronous calls. (Check
the recipes on the multithreaded section of this book.)

For a client to connect, it requires a socket channel. The NIO.2 API allows creation of
asynchronous socket channels. Once a socket channel is created, it will need an address to connect to. The
socketChannel.connect() operation does not block; instead it returns a Future object (this is a different
from traditional NIO, where calling socketChannel.connect() will block until a connection is established).
The Future object allows a Java program to continue what it is doing and simply query the status of the
submitted task. To take the analogy further, instead of waiting at the front door for your mail to arrive, you
go do other stuff, and “check” periodically to see whether the mail has arrived. Future objects have methods
like isDone() and isCancelled() that let you know if the task is done or cancelled. It also has the get()
method, which allows you to actually wait for the task to finish. In our example, we use the Future.get() to
wait for the client connection to be established.

Once the connection is established, we use Channels.newOutputStream() to create an output stream to
send information. Using the decorator pattern, we decorate the outputStream with our ObjectOutputStream
to finally send objects through the socket.

The server code is a little more elaborate. Server socket connections allow more than one connection
to occur, thus they are used to monitor or receive connections instead of initiating a connection. For this
reason, the server is usually waiting for a connection asynchronously.

The server begins by establishing the address it listens to (127.0.0.1:2583) and accepting connections.
The call to serverSocketChannel.accept() returns another Future object that will give you the flexibility of
how to deal with incoming connections. In our example, the server connection simply calls Future.get(),
which will block (stop the execution of the program) until a connection is accepted.

After the server acquires a socket channel, it creates an inputStream by calling Channels.
newInputStream(socket) and then wrapping that input stream with an ObjectInputStream. The server
then proceeds to loop and read each object coming from the ObjectInputStream. If the object received’s
toString() method equals EOF, the server stops looping and the connection is closed.

ChApTer 8 ■ InpuT And OuTpuT

205

 ■ Note using an ObjectOutputStream and ObjectInputStream to send and receive a lot of objects can lead
to memory leaks. ObjectOutputStream keeps a copy of the sent object for efficiency. If you were to send the
same object again, ObjectOutputStream and ObjectInputStream will not send the same object again, but
instead send a previously sent Object Id. This behavior or just sending the Object Id instead of the whole object
raises two issues.

The first issue is that objects that are changed in place (mutable) will not get the change reflected in the
receiving client when sent through the wire. The reason is that because the object was sent once, the
ObjectOutputStream believes that the object is already transmitted and will only send the Id, negating any
changes to the object that have happened since it was sent. To avoid this, don’t make changes to objects that
were sent down the wire. This rule also applies to subobjects from the object graph.

The second issue is that because ObjectOutputStream maintains a list of sent objects and their Object Ids, if
you send a lot of objects the dictionary of sent objects to keys grows indefinitely, causing memory starvation on
a long-running program. To alleviate this issue, you can call ObjectOutputStream.reset(), which will clear
the dictionary of sent objects. Alternatively, you can invoke ObjectOutputStream.writeUnshared() to not
cache the object in the ObjectOutputStream dictionary.

8-5. Obtaining the Java Execution Path
Problem
You want to get the path where the Java program is running.

Solution
Invoke the System class’s getProperty method. For example:

String path = System.getProperty("user.dir");

How It Works
When a Java program starts, the JDK updates the user.dir system property to record where the JDK was
invoked. The solution example passes the property name "user.dir" to the getProperty method, which
returns the value.

8-6. Copying a File
Problem
You need to copy a file from one folder to another.

ChApTer 8 ■ InpuT And OuTpuT

206

Solution
From the default FileSystem, you create the “to” and “from” paths where the files/folders exist and then use
the Files.copy static method to copy files between the created paths:

FileSystem fileSystem = FileSystems.getDefault();
Path sourcePath = fileSystem.getPath("file.log");
Path targetPath = fileSystem.getPath("file2.log");
System.out.println("Copy from "+sourcePath.toAbsolutePath().toString()+
" to "+targetPath.toAbsolutePath().toString());
try {
 Files.copy(sourcePath, targetPath, StandardCopyOption.REPLACE_EXISTING);
} catch (IOException e) {
 e.printStackTrace();
}

How It Works
In the new NIO.2 libraries, Java works with an abstraction level that allows for more direct manipulation of
file attributes belonging to the underlying operating system.

FileSystem.getDefaults() gets the usable abstract system that you can do file operations on. For
example, running this example in Windows will get you a WindowsFileSystem; if you were running this
example in Linux, a LinuxFileSystem object would be returned; on OS X, a MacOSXFileSystem is returned.
AllFileSystems supports basic operations; in addition, each concrete FileSystem provides access to the
unique features offered for that operating system.

After getting the default FileSystem object, you can query for file objects. In the NIO.2 file, folders
and links are all called paths. Once you get a path, you can perform operations with it. In this example,
Files.copy is called with the source and destination paths. The last parameter refers to the different copy
options. The different copy options are file system dependent so make sure that the one that you choose is
compatible with the operating system you intend to run the application in.

8-7. Moving a File
Problem
You need to move a file from one file system location to another.

Solution
As in Recipe 8-6, you use the default FileSystem to create the “to” and “from” paths, and invoke the
Files.move() static method:

FileSystem fileSystem = FileSystems.getDefault();
Path sourcePath = fileSystem.getPath("file.log");
Path targetPath = fileSystem.getPath("file2.log");
System.out.println("Copy from "+sourcePath.toAbsolutePath().toString()+
 " to "+targetPath.toAbsolutePath().toString());

ChApTer 8 ■ InpuT And OuTpuT

207

try {
 Files.move(sourcePath, targetPath);
} catch (IOException e) {
 e.printStackTrace();
}

How It Works
In the same manner as copying a file, create the path of source and destination. After having the source and
destination paths, Files.move will take care of moving the file from one location to another for you. Other
methods provided by the Files object are the following:

•	 Delete (path): Deletes a file (or a folder, if it’s empty).

•	 Exists (path): Checks whether a file/folder exists.

•	 isDirectory (path): Checks whether the path created points to a directory.

•	 isExecutable (path): Checks whether the file is an executable.

•	 isHidden (path): Checks whether the file is visible or hidden in the operating
system.

8-8. Creating a Directory
Problem
You need to create a directory from your Java application.

Solution 1
By using the default FileSystem, you instantiate a path pointing to the new directory; then invoke the
Files.createDirectory() static method, which creates the directory specified in the path.

FileSystem fileSystem = FileSystems.getDefault();
Path directory= fileSystem.getPath("./newDirectory");
try {
 Files.createDirectory(directory);
} catch (IOException e) {
 e.printStackTrace();
}

Solution 2
If using a *nix operating system, you can specify the folder attributes by invoking the PosixFilePermission()
method, which lets you set access at the owner, group, and world levels. For example:

FileSystem fileSystem = FileSystems.getDefault();
Path directory= fileSystem.getPath("./newDirectoryWPermissions");
try {
 Set<PosixFilePermission> perms = PosixFilePermissions.fromString("rwxr-x---");

ChApTer 8 ■ InpuT And OuTpuT

208

 FileAttribute<Set<PosixFilePermission>> attr =
 PosixFilePermissions.asFileAttribute(perms);
 Files.createDirectory(directory, attr);

} catch (IOException e) {
 e.printStackTrace();
}

How It Works
The Files.createDirectory() method takes a path as a parameter and then creates the directory, as
demonstrated in solution 1. By default, the directory created will inherit the default permissions. If you
wanted to specify specific permissions in Linux, you can use the PosixAttributes as an extra parameter in
the createDirectory() method. Solution 2 demonstrates the ability to pass a Set of PosixFilePermissions
to set up the permissions on the newly created directory.

8-9. Iterating Over Files in a Directory
Problem
You need to scan files from a directory. There are possibly subdirectories with more files. You want to
include those in your scan.

Solution
Using the NIO.2, create a FileVisitor object and perform a desired implementation within its visitFile
method. Next, obtain the default FileSystem object and grab a reference to the Path that you’d like to scan
via the getPath() method. Lastly, invoke the Files.walkFileTree() method, passing the Path and the
FileVisitor that you created. The following code demonstrates how to perform these tasks.

FileVisitor<Path> myFileVisitor = new SimpleFileVisitor<Path>() {
 @Override
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
 throws IOException {
 System.out.println("Visited File: "+file.toString());
 return FileVisitResult.CONTINUE;
 }
};

FileSystem fileSystem = FileSystems.getDefault();
Path directory= fileSystem.getPath(".");
try {
 Files.walkFileTree(directory, myFileVisitor);
} catch (IOException e) {
 e.printStackTrace();
}

ChApTer 8 ■ InpuT And OuTpuT

209

How It Works
Before NIO.2, trying to traverse a directory tree involved recursion, and depending on the implementation,
it could be very brittle. The calls to get files within a folder were synchronous and required the scanning of
the whole directory before returning; generating what would appear to be an unresponsive method call to
an application user. With NIO.2, one can specify which folder to start traversing on, and the NIO.2 calls will
handle the recursion details. The only item that you provide to the NIO.2 API is a class that tells it what to do
when a file/folder is found (SimpleFileVisitor implementation). NIO.2 uses a Visitor pattern, so it isn’t
required to prescan the entire folder, but instead processes files as they are being iterated over.

The implementation of the SimpleFileVisitor class as an anonymous inner class includes overriding
the visitFile(Path file, BasicFileAttributesattrs() method. When you override this method, you
can specify the tasks to perform when a file is encountered.

The visitFile method returns a FileVisitReturn enum. This enum then tells the FileVisitor which
action to take:

•	 CONTINUE: Continues with the traversing of the directory tree.

•	 TERMINATE: Stops the traversing.

•	 SKIP_SUBTREE: Stops going deeper from the current tree level (useful only if this
enum is returned on the preVisitDirectory() method).

•	 SKIP_SIBLINGS: Skips the other directories at the same tree level as the current.

The SimpleFileVisitor class, aside from the visitFile() method, also contains the following:

•	 preVisitDirectory: Called before entering a directory to be traversed.

•	 postVisitDirectory: Called after finished traversing a directory.

•	 visitFile: Called as it visits the file, as in the example code.

•	 visitFileFailed: Called if the file cannot be visited; for example, on an I/O error.

8-10. Querying (and Setting) File Metadata
Problem
You need to get information about a particular file, such as file size, whether it is a directory, and so on.
Also, you might want to mark a file as archived in the Windows operating system or grant specific POSIX file
permissions in the *nix operating system (refer to Recipe 8-8).

Solution
Using Java NIO.2 you can obtain any file information by simply invoking methods on the java.nio.file.
Files utility class, passing the path for which you’d like to obtain the metadata. You can obtain attribute
information by calling the Files.getFileAttributeView() method, passing the specific implementation
for the attribute view that you would like to use. The following code demonstrates these techniques for
obtaining metadata.

Path path = FileSystems.getDefault().getPath("./file2.log");
try {
 // General file attributes, supported by all Java systems
 System.out.println("File Size:"+Files.size(path));

ChApTer 8 ■ InpuT And OuTpuT

210

 System.out.println("Is Directory:"+Files.isDirectory(path));
 System.out.println("Is Regular File:"+Files.isRegularFile(path));
 System.out.println("Is Symbolic Link:"+Files.isSymbolicLink(path));
 System.out.println("Is Hidden:"+Files.isHidden(path));
 System.out.println("Last Modified Time:"+Files.getLastModifiedTime(path));
 System.out.println("Owner:"+Files.getOwner(path));

 // Specific attribute views.
 DosFileAttributeView view = Files.getFileAttributeView(path,
 DosFileAttributeView.class);
 System.out.println("DOS File Attributes\n");
 System.out.println("------------------------------------\n");
 System.out.println("Archive :"+view.readAttributes().isArchive());
 System.out.println("Hidden :"+view.readAttributes().isHidden());
 System.out.println("Read-only:"+view.readAttributes().isReadOnly());
 System.out.println("System :"+view.readAttributes().isSystem());

 view.setArchive(false);

} catch (IOException e) {
 e.printStackTrace();
}

How It Works
Java NIO.2 allows much more flexibility in getting and setting file attributes than older I/O techniques.
NIO.2 abstracts the different operating system attributes into both a “Common” set of attributes and an “OS
Specific” set of attributes. The standard attributes are the following:

•	 isDirectory: True if it’s a directory.

•	 isRegularFile: Returns false if the file isn’t considered a regular file, the file doesn’t
exist, or it can’t be determined whether it’s a regular file.

•	 isSymbolicLink: True if the link is symbolic (most prevalent in Unix systems).

•	 isHidden: True if the file is considered to be hidden in the operating system.

•	 LastModifiedTime: The time the file was last updated.

•	 Owner: The file’s owner per the operating system.

Also, NIO.2 allows entering the specific attributes of the underlying operating system. To do so,
you first need to get a view that represents the operating system’s file attributes (in this example, it is a
DosFileAttributeView). Once you get the view, you can query and change the OS-specific attributes.

 ■ Note The AttributeView will only work for the operating system that is intended (you cannot use the
DosFileAttributeView in a *nix machine).

ChApTer 8 ■ InpuT And OuTpuT

211

8-11. Monitoring a Directory for Content Changes
Problem
You need to keep track when a directory’s content has changed (for example, a file was added, changed, or
deleted) and act upon those changes.

Solution
By using a WatchService, you can subscribe to be notified about events occurring within a folder. In the
following example, we subscribe for ENTRY_CREATE, ENTRY_MODIFY, and ENTRY_DELETE events:

try {
 System.out.println("Watch Event, press q<Enter> to exit");
 FileSystem fileSystem = FileSystems.getDefault();
 WatchService service = fileSystem.newWatchService();
 Path path = fileSystem.getPath(".");
 System.out.println("Watching :"+path.toAbsolutePath());
 path.register(service, StandardWatchEventKinds.ENTRY_CREATE, StandardWatchEventKinds.
ENTRY_DELETE, StandardWatchEventKinds.ENTRY_MODIFY);
 boolean shouldContinue = true;
 while(shouldContinue) {
 WatchKey key = service.poll(250, TimeUnit.MILLISECONDS);

 // Code to stop the program
 while (System.in.available() > 0) {
 int readChar = System.in.read();
 if ((readChar == 'q') || (readChar == 'Q')) {
 shouldContinue = false;
 break;
 }
 }
 if (key == null) continue;
 key.pollEvents().stream()
 .filter((event) -> !(event.kind() == StandardWatchEventKinds.OVERFLOW))
 .map((event) -> (WatchEvent<Path>)event).forEach((ev) -> {
 Path filename = ev.context();
 System.out.println("Event detected :"+filename.toString()+" "+ev.kind());
 });
 boolean valid = key.reset();
 if (!valid) {
 break;
 }
 }
} catch (IOException | InterruptedException e) {
 e.printStackTrace();
}

ChApTer 8 ■ InpuT And OuTpuT

212

How It Works
NIO.2 includes a built-in polling mechanism to monitor for changes in the FileSystem. Using a poll
mechanism allows you to wait for events and poll for updates at a specified interval. Once an event occurs,
you can process and consume it. A consumed event tells the NIO.2 framework that you are ready to handle a
new event.

To start monitoring a folder, create a WatchService that you can use to poll for changes. After the
WatchService has been created, register the WatchService with a path. A path symbolizes a folder in the
file system. When the WatchService is registered with the path, you define the kinds of events you want to
monitor (see Table 8-2).

Table 8-2. Types of watchEvents

WatchEvent Description

OVERFLOW An event that has overflown (ignore)

ENTRY_CREATE A directory or file was created

ENTRY_DELETE A directory or file has been deleted

ENTRY_MODIFY A directory or file has been modified

After registering the WatchService with the path, you can then “poll” the WatchService for event
occurrences. By calling the watchService.poll() method, you will wait for a file/folder event to occur on
that path. Using the watchService.poll(int timeout, Timeunit timeUnit) will wait until the specified
timeout is reached before continuing. If the watchService receives an event, or if the allowed time has
passed, then it will continue execution. If there were no events and the timeout was reached, the WatchKey
object returned by the watchService.poll(int timeout) will be null; otherwise, the WatchKey object
returned will contain the relevant information for the event that has occurred.

Because many events can occur at the same time (say, for example, moving an entire folder or pasting a
bunch of files into a folder), the WatchKey might contain more than one event. You can use the WatchKey to
obtain all the events that are associated with that key by calling the watchKey.pollEvents() method.

The watchKey.pollEvents() call will return a list of watchEvents that can be iterated over. Each
watchEvent contains information on the actual file or folder to which the event refers (for example, an entire
subfolder could have been moved or deleted), and the event type (add, edit, delete). Only those events that
were registered on the WatchService will be processed. The event types you can register are listed in Table 8-2.

Once an event has been processed, it is important to call the EventKey.reset(). The reset will
return a Boolean value determining whether the WatchKey is still valid. A WatchKey becomes invalid if it is
cancelled or if its originating WatchService is closed. If the eventKey returns false, you should break from
the watch loop.

8-12. Reading Property Files
Problem
You want to establish some configurational settings for your application, and you want to have the ability to
modify the settings manually or programmatically. Moreover, you wish to enable some of the configuations
to be changed on the fly without the need to recompile and redeploy.

ChApTer 8 ■ InpuT And OuTpuT

213

Solution
Create a properties file to store the application configurations. Using the Properties object, load properties
stored within the properties file for application processing. Properties can also be updated and modified
within the properties file. The following example demonstrates how to read a properties file named
properties.conf, load the values for application use, and finally set a property and write it to the file.

File file = new File("properties.conf");
Properties properties = null;
try {
 if (!file.exists()) {
 file.createNewFile();
 }
 properties = new Properties();

 properties.load(new FileInputStream("properties.conf"));
} catch (IOException e) {
 e.printStackTrace();
}
boolean shouldWakeUp = false;
int startCounter = 100;
String shouldWakeUpProperty = properties.getProperty("ShouldWakeup");
shouldWakeUp = (shouldWakeUpProperty == null) ? false : Boolean.parseBoolean(shouldWakeUp
Property.trim());

String startCounterProperty = properties.getProperty("StartCounter");
try {
 startCounter = Integer.parseInt(startCounterProperty);
} catch (Exception e) {
 System.out.println("Couldn't read startCounter, defaulting to " + startCounter);
}
String dateFormatStringProperty = properties.getProperty("DateFormatString", "MMM dd yy");

System.out.println("Should Wake up? " + shouldWakeUp);
System.out.println("Start Counter: " + startCounter);
System.out.println("Date Format String:" + dateFormatStringProperty);

//setting property
properties.setProperty("StartCounter", "250");
try {
properties.store(new FileOutputStream("properties.conf"), "Properties Description");
} catch (IOException e) {
 e.printStackTrace();
}
properties.list(System.out);

ChApTer 8 ■ InpuT And OuTpuT

214

How It Works
The Java Properties class helps you manage program properties. It allows you to manage the
properties either via external modification (someone editing a property file) or internally by using the
Properties.store() method.

The Properties object can be instantiated either without a file or with a preloaded file. The files that the
Properties object read are in the form of [name]=[value] and are textually represented. If you need to store
values in other formats, you need to write to and read from a String.

If you are expecting the files to be modified outside the program (the user directly opens a text editor
and changes the values), be sure to sanitize the inputs; like trimming the values for extra spaces and ignoring
case if need be.

To query the different properties programmatically, you call the getProperty(String) method, passing
the String-based name of the property whose value you want to retrieve. The method will return null if the
property is not found. Alternatively, you can invoke the getProperty (String,String) method, on which
if the property is not found in the Properties object, it will return the second parameter as its value. It is a
good practice to specify default values in case the file doesn’t have an entry for a particular key.

Upon looking at a generated property file, you will notice that the first two lines indicate the description
of the file and the date when it was modified. These two lines start with #, which in Java property files is the
equivalent of a comment. The Properties object will skip any line starting with # when processing the file.

 ■ Note If you allow users to modify your configuration files directly, it is important to have validation in
place when retrieving properties from the Properties object. One of the most common issues encountered
in the value of properties is leading and/or trailing spaces. If specifying a Boolean or integer property, be sure
that they can be parsed from a String. At a minimum, catch an exception when trying to parse to survive an
unconventional value (and log the offending value).

8-13. Uncompressing Files
Problem
Your application has the requirement to decompress and extract files from a compressed .zip file.

Solution
Using the Java.util.zip package, you can open a .zip file and iterate through its entries. While traversing
the entries, directories can be created for directory entries. Similarly, when a file entry is encountered, write
the decompressed file to the file .unzipped. The following lines of code demonstrate how to perform the
decompress and file iteration technique, as described.

ZipFile file = null;
try {
 file = new ZipFile("file.zip");
 FileSystem fileSystem = FileSystems.getDefault();
 Enumeration<? extends ZipEntry> entries = file.entries();
 String uncompressedDirectory = "uncompressed/";
 Files.createDirectory(fileSystem.getPath(uncompressedDirectory));

ChApTer 8 ■ InpuT And OuTpuT

215

 while (entries.hasMoreElements()) {
 ZipEntry entry = entries.nextElement();
 if (entry.isDirectory()) {
 System.out.println("Creating Directory:" + uncompressedDirectory + entry.getName());
 Files.createDirectories(fileSystem.getPath(uncompressedDirectory +
 entry.getName()));
 } else {
 InputStream is = file.getInputStream(entry);
 System.out.println("File :" + entry.getName());
 BufferedInputStream bis = new BufferedInputStream(is);

 String uncompressedFileName = uncompressedDirectory + entry.getName();
 Path uncompressedFilePath = fileSystem.getPath(uncompressedFileName);
 Files.createFile(uncompressedFilePath);
 try (FileOutputStream fileOutput = new FileOutputStream(uncompressedFileName)) {
 while (bis.available() > 0) {
 fileOutput.write(bis.read());
 }
 }
 System.out.println("Written :" + entry.getName());
 }
 }
} catch (IOException e) {
 e.printStackTrace();
}

How It Works
To work with the contents of a .Zip archive, create a ZipFile object. A ZipFile object can be instantiated,
passing the name of a .zip archive to the constructor. After creating the object, you gain access to the
specified.zip file information. Each ZipFile object will contain a collection of entries that represent the
directories and files contained within the archive, and by iterating through the entries you can obtain
information on each of the compressed files. Each ZipEntry instance will have the compressed and
uncompressed size, the name, and the input stream of the uncompressed bytes.

The uncompressed bytes can be read into a byte buffer by generating an InputStream, and later (in our
case) written to a file. Using the FileStream, it is possible to determine how many bytes can be read without
blocking the process. Once the determined number of bytes has been read, then those bytes are written to
the output file. This process continues until the total number of bytes has been read.

 ■ Note reading the entire file into memory may not be a good idea if the file is extremely large. If you need
to work with a large file, it’s best to first write it in an uncompressed format to disk (as in the example) and then
open it and load it in chunks. If the file that you are working on is not large (you can limit the size by checking
the getSize() method), you can probably load it in memory.

ChApTer 8 ■ InpuT And OuTpuT

216

8-14. Managing Operating System Processes
Problem
You would like the ability to identify and control native operating system processes from your Java
application.

Solution
Utilize the Process API, enhanced in Java 9, to obtain information regarding individual operating system
processes or destroy them. In this example, we will call upon the ProcessHandle.info() method to retrieve
information about an operating system process. In particular, we will take a look at the current JVM process
that is running, and we’ll start another process from it. Lastly, we’ll interrogate the new process.

import java.lang.ProcessBuilder;
import java.lang.Process;
import java.time.Instant;
import java.time.Duration;
import java.time.temporal.ChronoUnit;

public class Recipe08_14 {

 public static void printProcessDetails(ProcessHandle currentProcess){
 //Get the instance of process info
 ProcessHandle.Info currentProcessInfo = currentProcess.info();
 if (currentProcessInfo.command().orElse("").equals("")){
 return;
 }
 //Get the process id
 System.out.println("Process id: " + currentProcess.getPid());
 //Get the command pathname of the process
 System.out.println("Command: " + currentProcessInfo.command().orElse(""));
 //Get the arguments of the process
 String[] arguments = currentProcessInfo.arguments().orElse(new String[]{});
 if (arguments.length != 0){
 System.out.print("Arguments: ");
 for(String arg : arguments){
 System.out.print(arg + " ");
 }
 System.out.println();
 }
 //Get the start time of the process
 System.out.println("Started at: " + currentProcessInfo.startInstant().orElse(Instant.

now()).toString());
 //Get the time the process ran for
 System.out.println("Ran for: " + currentProcessInfo.totalCpuDuration().orElse(Duration.

ofMillis(0)).toMillis() + "ms");
 //Get the owner of the process
 System.out.println("Owner: " + currentProcessInfo.user().orElse(""));
 }

ChApTer 8 ■ InpuT And OuTpuT

217

 public static void main(String[] args){
 ProcessHandle current = ProcessHandle.current();
 ProcessHandle.Info currentInfo = current.info();
 System.out.println("Command Line Process: " + currentInfo.commandLine());
 System.out.println("Process User: " + currentInfo.user());
 System.out.println("Process Start Time: " + currentInfo.startInstant());
 System.out.println("PID: " + current.getPid());

 ProcessBuilder pb = new ProcessBuilder("ls");
 try {
 Process process = pb.start();
 System.out.println(process);
 process.children()
 .forEach((p) ->{
 System.out.println(p);
 });
 ProcessHandle pHandle = process.toHandle();
 System.out.println("Parent of Process: " + pHandle.parent());
 } catch (java.io.IOException e){
 System.out.println(e);
 }

 }
}

Results:

Command Line Process: Optional[/Library/Java/JavaVirtualMachines/jdk1.9.0.jdk/Contents/Home/
bin/java Recipe0814]
Process User: Optional[Juneau]
Process Start Time: Optional[2016-02-20T06:14:56.064Z]
PID: 10892
java.lang.ProcessImpl@7c30a502
Parent of Process: Optional.empty

How It Works
The process API has been enhanced in Java 9 to provide the ability to obtain valuable information about
operating system processes. The ProcessHandle interface has been added to the API, providing an info()
method that can be used to interrogate a specified process and retrieve more information. A number of
other useful utility methods have been added to obtain information about a specified process.

The ProcessHandle.Info object, an informational snapshot of the current process, is returned from
calling upon the ProcessHandle info() method. ProcessHandle.Info can be utilized to return the
executable command of a process, the process start time, and several other useful features. Table 8-3 shows
the different methods available to ProcessHandle.Info.

ChApTer 8 ■ InpuT And OuTpuT

218

The ProcessHandle interface can be utilized to return information, such as the process children, PID
(Process ID), parent, and so forth. It can also be used to determine a number of useful bits of information,
such as if the process is still alive. Table 8-4 shows the different methods of ProcessHandle.

Table 8-3. ProcessHandle.Info

Method Description

arguments() Returns array of Strings of the process arguments.

command() Returns executable pathname of process.

commandLine() Returns command line of the process.

startInstant() Returns the start time of the process.

totalCpuDuration() Returns the total accumulated CPU time of the process.

user() Returns the user under which the process is running.

Table 8-4. ProcessHandle

Method Return Description

allProcesses() static
Stream<ProcessHandle>

Returns snapshot of all processes that
are visible the current process.

children() Stream<ProcessHandle> Returns a snapshot of direct children of
the current process.

compareTo() int Compares one ProcessHandle to
another, and returns order.

current() static ProcessHandle Returns a ProcessHandle for the current
process.

descendents() Stream<ProcessHandle> Returns a snapshot of the current
process descendents.

destroy() boolean Requests the termination of the current
process.

destroyForcibly() boolean Requests the forced termination of
current process.

equals(Object) boolean Compares the current process to
another object, returning true if the
object is not null, and represents the
same system process.

getPid() long Returns the native process ID of the
current process.

hashCode() int Returns a hash code value for the
current ProcessHandle.

info() ProcessHandle.info Returns a snapshot of information for
the current process.

(continued)

ChApTer 8 ■ InpuT And OuTpuT

219

To utilize the API, call upon the ProcessHandle.info() method to retrieve a ProcessHandle.info
object. The object can then be used to execute commands, or retrieve information about the process. If
utilized together with the Process and ProcessBuilder classes, the API can be used to spawn, monitor, and
terminate operating system processes.

Summary
This chapter demonstrated several examples for working with file and network I/O in Java. You learned how
to serialize files so that they could be stored to disk, and also how to manipulate a host’s file system with
the Java APIs. The chapter also covered how to read and write property files, and perform file compression.
Lastly, the chapter touched upon the new features of the Process API that have been added in Java 9.

Method Return Description

isAlive() boolean Tests whether the current process is
active.

of(long pid) static
Optional<ProcessHandle>

Returns an Optional<ProcessHandle>
for an existing process.

onExit() CompletableFuture<Proces
sHandle>

Returns a CompleteableFuture<Process
Handle> for the current process.

parent() Optional<ProcessHandle> Returns Optional<ProcessHandle>
for the parent process of the current
process.

supportsNormalTermination() boolean Returns true if the implementation
of the current process contains a
destroy() method that supports normal
process termination.

Table 8-4. (continued)

221© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_9

CHAPTER 9

Exceptions and Logging

Exceptions are a way of describing exceptional circumstances within a program. They are an indicator that
something unexpected (exceptional) has occurred. For that reason, exceptions are efficient at interrupting
the current flow of the program and signaling that there is something that requires attention. As such,
programs that utilize exceptions judiciously benefit from a better control flow and become more robust and
informative for the user. Even so, using exceptions indiscriminately can cause performance degradation.

Within Java, exceptions can be thrown or caught. Throwing an exception involves indicating to the code
that an exception has been encountered, using the throw keyword to signal the JVM to find any code capable
of handling this exceptional circumstance within the current stack. Catching an exception involves telling
the compiler which exceptions can be handled, and which part of the code should be monitored for these
exceptions to occur. This is denoted within the try/catch Java block (described in Recipe 9-1)

All exceptions inherit from Throwable, as shown in Figure 9-1. Classes that are inherited from
Throwable can be defined in the catch clause of a try/catch statement. The Error classes are primarily used
by the JVM to denote serious and/or fatal errors. According to the Java documentation, applications are not
expected to catch Error exceptions since they are considered fatal (think of a computer being on fire). The
bulk of exceptions within a Java program will be inherited from the Exception class.

Figure 9-1. Part of the exception class hierarchy in Java

Chapter 9 ■ exCeptions and Logging

222

Within the JVM there are two types of exceptions: checked and unchecked. Checked exceptions are
enforced by methods. In the method signature, you can specify the kind of exceptions a method can throw.
This requires any caller of the method to create a try/catch block, which handles the exceptions that were
declared within the method signature. Unchecked exceptions do not require such a stringent convention,
and are free to be thrown anywhere without enforcing the implementation of a try/catch block. Even so,
unchecked exceptions (as described in Recipe 9-6) are usually discouraged because they can lead to threads
unraveling (if nothing catches the exception) and poor visibility of problems. Exception classes that inherit
from RuntimeException are considered to be unchecked exceptions, whereas exception classes that inherit
directly from Exception are considered to be checked exceptions.

Be aware that the act of throwing exceptions is expensive (compared with other language construct
alternatives), and as such throwing exceptions makes a poor substitute for control flow. For example,
you shouldn’t throw an exception to indicate an expected result of a method call (say a method like
isUsernameValid (String username). It is a better practice to call the method and return a boolean with
the result than try to throw an InvalidUsernameException to indicate failure.

While exceptions play an essential role in solid software development, logging of exceptions can be just
as important. Logging within an application helps the developer to understand what events are occurring
without the need for debugging the code. This is especially true in production environments where there
isn’t the opportunity for live debugging. In that sense, logging collects clues on what is occurring (most likely
what went wrong) and helps you troubleshoot production problems. Many developers choose to utilize a
structured logging framework to provide more robust logging for an application. A solid logging framework
with a sound methodology will save many late nights at work wondering, “what happened?”

Logging for Java is very mature. There are many open source projects that are widely accepted as the
de facto standard for logging. In the recipes in this chapter, you will use Java’s Logging framework and the
Simple Logging Façade for Java (SLF4J). Both of these projects together create a good-enough solution for
most logging needs. For the recipes involving SLF4J and Log4j, download SLF4J (http://www.slf4j.org/)
and put it in your project’s dependency path. This chapter will also touch upon the lower-level JVM logging
that has been added with the release of Java 9.

9-1. Catching Exceptions
Problem
You want to gracefully handle any exceptions generated from your code.

Solution
Use the built-in try/catch language construct to catch exceptions. Do so by wrapping any blocks of code
that may throw an exception within a try/catch block. In the following example, a method is used to
generate a Boolean value to indicate whether a specified String is greater than five characters long. If the
String that’s passed as an argument is null, a NullPointerException is thrown by the length() method and
caught within the catch block.

private void start() {
 System.out.println("Is th String 1234 longer than 5 chars?:"+
 isStringShorterThanFiveCharacters("1234"));
 System.out.println("Is th String 12345 longer than 5 chars?:"+
 isStringShorterThanFiveCharacters("12345"));
 System.out.println("Is th String 123456 longer than 5 chars?:"+
 isStringShorterThanFiveCharacters("123456"));

http://www.slf4j.org/

Chapter 9 ■ exCeptions and Logging

223

 System.out.println("Is th String null longer than 5 chars?:"+
 isStringShorterThanFiveCharacters(null));

}

private boolean isStringShorterThanFiveCharacters(String aString) {
 try {
 return aString.length() > 5;
 } catch (NullPointerException e) {
 System.out.println("An Exception Occurred: " + e);
 return false;
 }
}

How It Works
The try keyword specifies that the enclosed code segment have the potential to raise an exception. The
catch clause is placed at the end of the try clause. Each catch clause specifies which exception is being
caught. If a catch clause is not provided for a checked exception, the compiler will generate an error. Two
possible solutions are to add a catch clause or to include the exception in the throws clause of the enclosing
method. Any checked exceptions that are thrown but not caught will propagate up the call stack. If this
method doesn’t catch the exception, the thread that executed the code terminates. If the thread terminating
is the only thread in the program, it terminates the execution of the program.

If a try clause needs to catch more than one exception, more than one exception can be specified,
separated by a bar character. For instance, the following try/catch block could be used for catching both a
NumberFormatException and a NullPointerException.

try {
 // code here
} catch (NumberFormatException|NullPointerException ex) {
 // logging

}

For more information regarding catching multiple exceptions, see Recipe 9-4.

 ■ Note Be careful when throwing an exception. if the thrown exception is not caught, it will propagate up the
call stack; and if there isn’t any catch clause capable of handling the exception, it will cause the running thread
to terminate (also known as unraveling). if your program has only one main thread, an uncaught exception will
terminate your program.

9-2. Guaranteeing a Block of Code Is Executed
Problem
You want to write code that executes when control leaves a code segment, even if control leaves due to an error
being thrown or the segment ending abnormally. For example, you have acquired a lock and want to be sure that
you are releasing it correctly. You want to release the lock in the event of an error and also in the event of no error.

Chapter 9 ■ exCeptions and Logging

224

Solution
Use a try/catch/finally block to properly release locks and other resources that you acquire in a code
segment. Place the code that you want to have executed regardless of exceptions into the finally clause. In
the example, the finally keyword specifies a code block that will always execute, regardless of whether an
exception was thrown in the try block. Within the finally block, the lock is released by calling lock.unlock():

private void callFunctionThatHoldsLock() {
 myLock.lock();
 try {
 int number = random.nextInt(5);
 int result = 100 / number;
 System.out.println("A result is " + result);
 FileOutputStream file = new FileOutputStream("file.out");
 file.write(result);
 file.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 myLock.unlock();
 }
}

How It Works
Code that is placed within the finally clause of a try/catch/finally block will always be executed. In this
example, by acquiring the lock at the beginning of the function and then releasing it in the finally block,
you guarantee that the lock will be released at the end of the function regardless of whether an exception
(checked or unchecked) is thrown. In all, acquired locks should always be released in a finally block. In
the example, suppose that the mylock.unlock() function call were not in the finally block (but at the end
of the try block); if an exception were to happen in this case, the call to mylock.unlock() would not happen
because code execution would be interrupted in the location where the exception happened. In that case,
the lock would be forever acquired and never released.

 ■ Caution if you need to return a value on a method, be very careful of returning values in the finally
block. a return statement in the finally block will always execute, regardless of any other return statements
that might have happened within the try block.

9-3. Throwing Exceptions
Problem
You want to abort the execution of the current code path by throwing an exception if a certain situation
occurs within your application.

Chapter 9 ■ exCeptions and Logging

225

Solution
Use the throw keyword to throw a specified exception when the situation occurs. Using the throw keyword,
you can signal the current thread to look for try/catch blocks (at the current level and up the stack), which
can process the thrown exception. In the following example, the callSomeMethodThatMightThrow throws a
NullPointerException if the parameter passed in is null.

private void start() {
 try {
 callSomeMethodThatMightThrow(null);
 } catch (IllegalArgumentException e) {
 System.out.println("There was an illegal argument exception!");
 }

}

private void callSomeFunctionThatMightThrow(Object o) {
 if (o == null) throw new NullPointerException("The object is null");

}

In this code example, the method callSomeMethodThatMightThrow checks to ensure that a valid
argument was passed to it. If the argument is null, it then throws a NullPointerException, signaling that
the caller of this method invoked it with the wrong parameters.

How It Works
The throw keyword allows you to explicitly generate an exceptional condition. When the current thread
throws an exception, it doesn’t execute anything beyond the throw statement and instead transfers control
to the catch clause (if there are any) or terminates the thread.

 ■ Note When throwing an exception, be sure that you intend to do so. if an exception is not caught as
it propagates up the stack, it will terminate the thread that is executing (also known as unraveling). if your
program has only one main thread, an uncaught exception will terminate your program.

9-4. Catching Multiple Exceptions
Problem
A block of code in your application has the possibility of throwing multiple exceptions. You want to catch
each of the exceptions that may occur within a try block.

Solution 1
More than one catch clause can be specified in situations where multiple exceptions may be encountered
within the same block. Each catch clause can specify a different exception to handle, so that each exception
can be handled in a different manner. In the following code, two catch clauses are used to handle an
IOException and a ClassNotFoundException.

Chapter 9 ■ exCeptions and Logging

226

try {
 Class<?> stringClass = Class.forName("java.lang.String");
 FileInputStream in = new FileInputStream("myFile.log") ; // Can throw IOException
 in.read();

} catch (IOException e) {
 System.out.println("There was an exception "+e);
} catch (ClassNotFoundException e) {
 System.out.println("There was an exception "+e);
}

Solution 2
If your application has the tendency to throw multiple exceptions within a single block, then a vertical
bar operator (|) can be utilized for handling each of the exceptions in the same manner. In the following
example, the catch clause specifies multiple exception types separated with a vertical bar (|) to handle each
of the exceptions in the same manner.

 try {
 Class<?> stringClass = Class.forName("java.lang.String");
 FileInputStream in = new FileInputStream("myFile.log") ;
// Can throw IOException
 in.read();

 } catch (IOException | ClassNotFoundException e) {
 System.out.println("An exception of type "+e.getClass()+" was thrown! "+e);
 }

How It Works
There are a couple of different ways to handle situations where multiple exceptions may be thrown. You
can specify separate catch clauses to handle each of the exceptions in a different way. To handle each of the
exceptions in the same manner, you can utilize a single catch clause and specify each exception separated
with a vertical bar operator.

 ■ Note if you’re catching an exception in multiple catch blocks (solution 1), make sure that the catch
blocks are defined from the most specific to the most general. Failure to follow this convention will prevent
an exception from being handled by the more specific blocks. this is most important when there are catch
(Exception e) blocks, which catch almost all exceptions.

Having a catch (Exception e) block—called a catch-all or Pokémon exception handler (gotta catch
them all)—is usually poor practice because such a block will catch every exception type and treat them all
the same. This becomes a problem because the block can catch other exceptions that may occur deeper
within the call stack that you may not have intended the block to catch (an OutOfMemoryException). It is a
best practice to specify each possible exception, rather than specifying a catch-all exception handler to catch
all exceptions.

Chapter 9 ■ exCeptions and Logging

227

9-5. Catching the Uncaught Exceptions
Problem
You want to know when a thread is being terminated due to an uncaught exception such as a
NullPointerException.

Solution 1
When creating a Java thread, sometimes you need to ensure that any exception is caught and handled
properly to help determine the reason for the thread termination. To that effect, Java allows you to register
an ExceptionHandler() either per thread or globally. The following code demonstrates an example of
registering an exception handler on a per-thread basis.

private void start() {
 Thread.setDefaultUncaughtExceptionHandler((Thread t, Throwable e) -> {
 System.out.println("Woa! there was an exception thrown somewhere! "+t.getName()+": "+e);
 });

 final Random random = new Random();
 for (int j = 0; j < 10; j++) {
 int divisor = random.nextInt(4);
 System.out.println("200 / " + divisor + " Is " + (200 / divisor));
 }
}

The for loop in this thread will execute properly until an exception is encountered, at which time the
DefaultUncaughtExceptionHandler will be invoked. UncaughtExceptionHandler is a functional interface,
so it is possible to utilize a lambda expression to implement the exception handler.

Solution 2
It is possible to register an UncaughtExceptionHandler on a specific thread. After doing so, any exception
that occurs within the thread and that has not been caught will be handled by the uncaughtException()
method of the UncaughtExceptionHandler(). For example:

private void startForCurrentThread() {
 Thread.currentThread().setUncaughtExceptionHandler((Thread t, Throwable e) -> {
 System.out.println("In this thread "+t.getName()+" an exception was thrown "+e);
 });

 Thread someThread = new Thread(() -> {
 System.out.println(200/0);
 });
 someThread.setName("Some Unlucky Thread");
 someThread.start();

 System.out.println("In the main thread "+ (200/0));
}

Chapter 9 ■ exCeptions and Logging

228

In the previous code, an UncaughtExceptionHandler is registered on the currentThread. Just like
Solution 1, UncaughtExceptionHandler is a functional interface, so it is possible to utilize a lambda
expression to implement the exception handler.

How It Works
The Thread.defaultUncaughtExceptionHandler() will be invoked for each unchecked exception that
has not been caught. When the UncaughtExceptionHandler() handles an exception, it means that there
was no try/catch block in place to catch the exception. As such, the exception bubbled all the way up
the thread stack. This is the last code executed on that thread before it terminates. When an exception is
caught on either the thread’s or the default’s UncaughtExceptionHandler(), the thread will terminate. The
UncaughtExceptionHandler() can be used to log information on the exception to help pinpoint the reason
of the exception.

In the second solution, the UncaughtExceptionHandler() is set up specifically for the
current thread. When the thread throws an exception that is not caught, it will bubble up to
the UncaughtExceptionHandler() of the thread. If this is not present, it will bubble up to the
defaultUncaughtExceptionHandler(). Again, in either situation, the thread originating the exception will
terminate.

 ■ Tip When dealing with multiple threads, it is always good practice to explicitly name the threads. it makes
life easier to know exactly which thread caused the exception, rather than having to trace down an unknown
thread named like Thread-## (the default naming pattern of unnamed threads).

9-6. Managing Resources with try/catch Blocks
Problem
In the event of an exception, you need to ensure that any resources used within a try/catch block are
released.

Solution
Make use of the Automatic Resource Management (ARM) feature, which can be specified with a try-
with-resources statement. When using a try-with-resources statement, any resources that are specified
within the try clause are automatically released when the block terminates. In the following code, the
FileOutputStream, BufferedOutputStream, and DataOutputStream resources are automatically handled by
the try-with-resources block.

try (
 FileOutputStream fos = new FileOutputStream("out.log");
 BufferedOutputStream bos = new BufferedOutputStream(fos);
 DataOutputStream dos = new DataOutputStream(bos)
) {
 dos.writeUTF("This is being written");
} catch (Exception e) {
 System.out.println("Some bad exception happened ");
}

Chapter 9 ■ exCeptions and Logging

229

How It Works
In most cases, you want to cleanly close/dispose of resources that are acquired within a try/catch block after
the block execution is complete. If a program does not close/dispose of its resources or does so improperly,
the resources could be acquired indefinitely, causing issues such as memory leaks to occur. Most resources
are limited (file handles or database connections), and as such will cause performance degradation (and more
exceptions to be thrown). To avoid these situations, Java provides a means of automatically releasing resources
when an exception occurs within a try/catch block. By declaring a try-with-resources block, the resource
on which the try block was checked will be closed if there is an exception thrown within the block. Most of the
resources that are built into Java will work properly within a try-with-resources statement (for a full list, see
implementers of the java.lang.AutoCloseable interface). Also, third-party implementers can create resources
that will work with the try-with-resources statements by implementing the AutoCloseable interface.

The syntax for the try-with-resources statement involves the try keyword, followed by an opening
parenthesis and then followed by all the resource declarations that you want to have released in the event
of an exception or when the block completes, and ending with a closing parenthesis. Note that if you try to
declare a resource/variable that doesn’t implement the AutoCloseable interface, you will receive a compiler
error. After the closing parenthesis, the syntax of the try/catch block is the same as a normal block.

The main advantage of the try-with-resources feature is that it allows a cleaner release of resources.
Usually when acquiring a resource, there are a lot of interdependencies (creating file handlers, which are
wrapped in output streams, which are wrapped in buffered streams). Properly closing and disposing of these
resources in exceptional conditions requires checking the status of each dependent resource and carefully
disposing of it, and doing so requires that you write a lot of code. By contrast, the try-with-resources
construct allows the JVM to take care of proper disposal of resources, even in exceptional conditions.

 ■ Note a try-with-resources block will always close the defined resources, even if no exceptions were thrown.

9-7. Creating an Exception Class
Problem
You want to create a new type of exception that can be used to indicate a particular event.

Solution 1
Create a class that extends java.lang.RuntimeException to create an exception class that can be
thrown at any time. In the following code, a class identified by IllegalChatServerException extends
RuntimeException and accepts a String as an argument to the constructor. The exception is then thrown
when a specified event occurs within the code.

class IllegalChatServerException extends RuntimeException {
 IllegalChatServerException(String message) {
 super(message);
 }
}

private void disconnectChatServer(Object chatServer) {
 if (chatServer == null) throw new IllegalChatServerException("Chat server is empty");
}

Chapter 9 ■ exCeptions and Logging

230

Solution 2
Create a class that extends java.lang.Exception to generate a checked exception class. A checked
exception is required to be caught or rethrown up the stack. In the following example, a class identified as
ConnectionUnavailableException extends java.lang.Exception and accepts a String as an argument to
the constructor. The checked exception is then thrown by a method in the code.

class ConnectionUnavailableException extends Exception {
 ConnectionUnavailableException(String message) {
 super(message);
 }
}

private void sendChat(String chatMessage) throws ConnectionUnavailableException {
 if (chatServer == null)
 throw new ConnectionUnavailableException("Can't find the chat server");
}

How It Works
Sometimes there is a requirement to create a custom exception, especially in situations when you’re creating
an API. The usual recommendation is to use one of the available Exception classes provided by the JDK. For
example, use IOException for I/O-related issues or the IllegalArgumentException for illegal parameters.
If there isn’t a JDK exception that fits cleanly, you can always extend java.lang.Exception or java.lang.
RuntimeException and implement its own family of exceptions.

Depending on the base class, creating an Exception class is fairly straightforward. Extending
RuntimeException allows you the ability to throw the resulting exception any time without requiring it to
be caught up the stack. This is advantageous in that RuntimeException is a more lax contract to work with,
but throwing such an exception can lead to thread termination if the exception is not caught. Extending
Exception instead allows you to clearly force any code that throws the exception to be able to handle it
within a catch clause. The checked exception is then forced by contract to implement a catch handler,
potentially avoiding a thread termination.

In practice, we discourage extending RuntimeException because it can lead to poor exception handling.
Our rule of thumb is that if it’s possible to recover from an exception, you should create the associated
exception class by extending Exception. If a developer cannot reasonably be expected to recover from the
exception (say a NullPointerException), then extend RuntimeException.

9-8. Rethrowing the Caught Exception
Problem
Your application contains a multicatch exception, and you want to rethrow an exception that was previously
caught.

Solution
Throw the exception from a catch block, and it will rethrow it on the same type as it was caught. In the
following example, exceptions are caught within a block of code and rethrown to the method’s caller.

private void doSomeWork() throws IOException, InterruptedException {
 LinkedBlockingQueue<String> queue = new LinkedBlockingQueue<>();

Chapter 9 ■ exCeptions and Logging

231

 try {
 FileOutputStream fos = new FileOutputStream("out.log");
 DataOutputStream dos = new DataOutputStream(fos);
 while (!queue.isEmpty()) {
 dos.writeUTF(queue.take());
 }
 } catch (InterruptedException | IOException e) {
 e.printStackTrace();
throw e;
 }

 }

How It Works
It is possible to simply throw the exception that has been previously caught, and the JVM will bubble the
exception to the appropriate type. As is the case of throwing a checked exception; it must also be defined in
the method declaration. In the example to this solution, the doSomeWork() method throws an IOException
and an InterruptedException, which causes the calling code to perform a try-catch to handle the thrown
exception appropriately.

9-9. Logging Events Within Your Application
Problem
You want to log events, debug messages, error conditions, and other events within your application.

Solution
Utilize SLF4J within your application, along with the Java Logging API, to implement a logging solution. The
following example first creates a logger object with the name of recipeLogger. In this example, the SLF4J
API is used to log an informational message, a warning message, and an error message:

private void loadLoggingConfiguration() {
 FileInputStream ins = null;
 try {
 ins = new FileInputStream(new File("logging.properties"));
 LogManager.getLogManager().readConfiguration(ins);
 } catch (IOException e) {
 e.printStackTrace();
 }
}
private void start() {
 loadLoggingConfiguration();
 Logger logger = LoggerFactory.getLogger("recipeLogger");
 logger.info("Logging for the first Time!");
 logger.warn("A warning to be had");
 logger.error("This is an error!");
}

Chapter 9 ■ exCeptions and Logging

232

How It Works
In the example, loadLogConfiguration() function opens a stream to the logging.properties file and
passes it to java.util.logging.LogManager(). Doing so configures the java.util.logging framework
to use the settings specified in the logging.properties file. Then, within the start method of the solution,
the code acquires a logger object named recipeLogger. The example proceeds to log messages to through
recipeLogger. More information on the actual logging parameters can be found in Recipe 9-10.

SLF4J provides a common API using a simple facade pattern that abstracts the underlying logging
implementation. SLF4J can be used with most of the common logging frameworks, such as the Java Logging
API (java.util.logging), Log4j, Jakarta Commons Logging, and others. In practice, SLF4J provides the
flexibility to choose (and swap) logging frameworks and allows projects that use SLF4J to quickly become
integrated into an application’s selected logging framework.

To use SLF4J in an application, download the SLF4J binaries located at http://www.slf4j.org/. Once
they’re downloaded, extract the contents and add slf4j-api-x.x.x.jar to the project. This is the main .jar
file that contains the SLF4J API (on which a program can call to log information). After adding the slf4j-
api-x.x.x.jar file to the project, find slf4j-jdk14-x.x.x.jar and add that to the project. This second file
indicates that SLF4J will use the java.util.logging classes to log information.

The way SLF4J works is that at runtime SLF4J scans the class path and picks the first .jar that
implements the SLF4J API. In the example case, the slf4j-jdk14-x.x.x.jar is found and loaded. This
.jar represents the native Java Logging Framework (known as jdk.1.4 logging). If, for example, you
wanted to use another logging framework, replace slf4j-jdk14-x.x.x.jar with the corresponding SLF4J
implementation for the desired logger. For example, to use Apache’s Log4j logging framework, include
slf4j-log4j12-x.x.x.jar.

 ■ Note the java.util.logging framework is configured by the properties log file.

Once SLF4J is configured, you can log information in your application by calling the SLF4J logging
methods. The methods log information depending on the logging level. The logging level can then be used
to filter which messages are actually logged. The ability to filter messages by log level is useful because there
may be a lot of informational or debugging information being logged. If there is the need to troubleshoot an
application, the logging level can be changed, and more information can be made visible in the logs without
changing any code. The ability to filter messages through their level is referred to as setting the log level. Each
logging framework reference contains its own configuration file that sets the log level (among other things,
such as the logging file name and logging-file configurations). In the example case, because SLF4J is using
the java.util.logging framework to log, you would need to configure the java.util.logging properties
for the desired logging. See Table 9-1.

Table 9-1. Logging Levels

Logging Level Recommendation

Trace Least important of the logging events

Debug Use for extra information that helps with debugging

Info Use for everyday logging messages

Warn Use for recoverable issues, or where the suspicions of a wrong setting/nonstandard
behavior happens

Error Use for exceptions, actual errors, and things that you really need to know

Fatal Most important

http://www.slf4j.org/

Chapter 9 ■ exCeptions and Logging

233

 ■ Note When setting the log level, loggers will log at that level and below. therefore, if a logging
configuration sets the log level to info, messages at the Info, Warn, Error, and Fatal levels will be logged.

9-10. Rotating and Purging Logs
Problem
You have started to log information, but the information logged continues growing out of control. You would
like to keep only the last 250KB worth of log entries within your log files.

Solution
Use SLF4J with java.util.logging to configure rolling logs. In this example, a logger named recipeLogger
is used to log many messages. The output will produce rolled log files with the most recent logged
information in the important Log0.log file.

 loadLoggingConfiguration();

 Logger logger = LoggerFactory.getLogger("recipeLogger");
 logger.info("Logging for the first Time!");
 logger.warn("A warning to be had");
 logger.error("This is an error!");

 Logger rollingLogger = LoggerFactory.getLogger("rollingLogger");
 for (int i =0;i < 5000;i++) {
 rollingLogger.info("Logging for an event with :"+i);
 }

logging.properties file

handlers = java.util.logging.FileHandler

recipeLogger.level=INFO

.level=ALL

java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter
java.util.logging.FileHandler.pattern=ImportantApplication%d.log
java.util.logging.FileHandler.limit=50000
java.util.logging.FileHandler.count=4

How It Works
To control the size of log files, configure the java.util.logging framework and specify rolling log files.
Choosing the rolling log files option causes the latest information to be kept in ImportantApplication0.log.
Progressively older information will be in ImportantApplication1.log, ImportantApplication2.log,
and so forth. When ImportantApplication0.log fills to the limit you specify (50,000 bytes in this example),

Chapter 9 ■ exCeptions and Logging

234

its name will be rotated to ImportantApplicationLog1.log, and the other files will have their names
similarly rotated downward. The number of log files to maintain is determined by the java.util.logging.
FileHandler.count property, which is set to 4 in this recipe’s example.

The logging.properties file begins by defining the handlers that the java.util.logging framework
will use. Handlers are objects that take care of logging messages. FileHandler is specified in the recipe,
which logs messages to files. Other possible handlers are the ConsoleHandler (logs to the system.output
device), SocketHandler (logs to a socket), and MemoryHandler (keeps logs in a circular buffer in memory).
There is also the possibility of specifying your own handler implementation by creating a class that extends
the Handler abstract class.

Next, the logging levels are defined. Within a logging framework there is the concept of separate
logger objects. A logger can carry different configurations (for example, different logging levels) and can be
identified in the log file. The example configures the recipeLogger’s level to info, whereas the root logger’s
level is ALL (root loggers in the java.util.logging framework are denoted by not having any prefix before
the property).

The next section of the logging.properties file defines the FileHandler configuration. The formatter
indicates how the log information will be written to disk. The simpleFormatter writes the information
as plain text, with a line indicating the date and time, a line with the logging level, and the message to
be logged. The other default choice for the formatter is XMLFormatter, which will create XML markup
containing the date, time, logger name, level, thread, and message information for each log event. You can
create custom formatters by extending the Formatter abstract class.

Following the formatter, the fileHandler pattern is defined. This specifies the file name and location of
the log files (the %d is replaced by the rolling log number [0 ~ 4]). The Limit property defines how many bytes
the log can have before rolling over (50,000 bytes ~ 50kb). The count defines the maximum index of log files
to keep (in this recipe’s case, it’s 4).

 ■ Note Logging can be expensive; if you are logging a lot of information, your Java program will start
consuming memory (as the java.util.logging framework will try to keep all the information that needs to be
written to disk in memory until it can be flushed). if the java.util.logging framework cannot write the log
file as fast as log entries are created, you will run into OutOfMemory errors. the best approach is to log only the
necessary information, and, if needed, check to see Logger.isDebugEnabled() before writing out debugging
log messages. the logging level can be changed from the logging configuration file.

9-11. Logging Exceptions
From the previous recipes you learned how to catch exceptions and how to log information. This recipe will
put these two recipes together.

Problem
You want to record exceptions in your log file.

Solution
Configure your application to use SLF4J. Utilize try/catch blocks to log exceptions within the error log. In
the following example, an SLF4J Logger is used to log messages from within an exception handler.

Chapter 9 ■ exCeptions and Logging

235

static Logger rootLogger = LoggerFactory.getLogger("");
private void start() {
 loadLoggingConfiguration();
 Thread.setDefaultUncaughtExceptionHandler((Thread t, Throwable e) -> {
 rootLogger.error("Error in thread "+t+" caused by ",e);
 });

 int c = 20/0;
}
private void loadLoggingConfiguration() {
 FileInputStream ins = null;
 try {
 ins = new FileInputStream(new File("logging.properties"));
 LogManager.getLogManager().readConfiguration(ins);
 } catch (IOException e) {
 e.printStackTrace();
 }
}

How It Works
The example demonstrates how to use an UncaughtExceptionHandler in conjunction with SLF4J to log
exceptions to a logging file. When logging an exception, it is good to include the stack trace showing where
the exception was thrown. In the example, a thread contains an UncaughtExceptionHandler, which utilizes
a lambda expression containing a logger. The logger is used to write any caught exceptions to a log file.

 ■ Note if an exception is thrown repeatedly, the JVM tends to stop populating the stack trace in the
Exception object. this is done for performance reasons because retrieving the same stack trace becomes
expensive. if this happens, you will see an exception with no stack trace being logged. When that happens,
check the log’s previous entries and see whether the same exception was thrown. if the same exception has
been thrown previously, the full stack trace will be present on the first logged instance of the exception.

9-12. Logging with the Unified JVM Logger
Problem
You wish to perform logging of JVM processes and you want to have fine-grained control over the logging.

Solution
Utilize the unified JVM logger utility that was added as part of Java 9. In the following solution, the JVM
logger utility is configured to perform logging and direct to a file on the operating system.

To initiate the logging, open the command prompt or terminal, and execute the following statement:

java -Xlog:all:file=test.txt:time,level

Chapter 9 ■ exCeptions and Logging

236

The statement will configure the JVM to log all tags to a file named test.txt. The decorations that will
be logged are time and level. The next example demonstrates how to log tags using ‘gc’ using ‘trace’ level to
stdout using the ‘uptime’ decoration.

java –Xlog:gc=trace:uptime

How It Works
Logging for the JVM has been enhanced with the release of Java 9 to allow a single unified system offering
fine-grained control. In the past, logging a JVM system-level component could become a time consuming
task since it was difficult to pinpoint the root causes of many issues. The updated logging facility provides the
following features:

•	 Common command-line options for logging various JVM processes

•	 Tag categorization

•	 Differentiation between logging levels

•	 Ability to log to a file

•	 File rotation capability

•	 Dynamic configuration

To configure the JVM logging, execute the java.exe with the –Xlog flag, appending options to the flag
separated by a colon [:]. If you wish to perform logging for a single run of the JVM, include the –Xlog flag
when invoking the Java application.

There are several options available for the –Xlog flag that indicate “what” to log, and “where” to log in
the following format:

-Xlog[:option=<what:level>:<output>:<decorators>:<output-options>]

Note that in the format, you can specify –Xlog without any options to indicate that all tags should be
logged, and all logging levels will go to stdout. In the solution, we saw that to configure logging of all tags,
you may also specify the “all” option. Omitting the <what> portion will default to tag-set “all” with a level
of “info.” Ommitting the <level> will default to “info.” The available decorators are listed in Table 9-2, and
omitting them altogether defaults to “uptime,” “level,” “tags.”

Chapter 9 ■ exCeptions and Logging

237

Three types of output are supported: stdout, stderr, and text file. Output can be configured to rotate files,
limit file size, and so on by specifying output options. The possible output options include:

•	 filecount=<file count>

•	 filesize=<file size in kb>

•	 parameter=value

The logging API can be controlled at runtime via the jcmd diagnostic commands utility. All of the
options available at the command line are also available via the utility.

 ■ Note help on the JVM logging utility is available using the –xlog:help switch. this switch will print usage
syntax and available tags, levels, decorators, and examples.

Summary
In this section, we took a look at one of the most important phases in application development, exception
handling. The sections discussed how to handle single and multiple exceptions, and also how to log those
exceptions. There are many mature logging APIs available for the JVM, and we covered SLF4J in this chapter.
Lastly, we took a look at the Unified JVM logging process that was introduced in Java 9.

Table 9-2. Xlog Decorators

Decorator Description

Time Current time and date (ISO-8601)

Uptime Amount of time surpassed since the start of the JVM (seconds and milliseconds)

Timemillis System.currentTimeMillis() output

Uptimemillis Milliseconds surpassed since the start of the JVM

Timenanos System.nanoTime() output

Uptimenanos Nanoseconds surpassed since the start of the JVM

Pid Process identifier

Tid Thread identifier

Level Associated log message level

Tags Associated log message tag

239© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_10

CHAPTER 10

Concurrency

Concurrency is one of the toughest topics to handle in modern computer programming; understanding
concurrency requires the capacity of thinking abstractly, and debugging concurrent problems is like trying
to pilot an airplane by dead reckoning. Even so, with modern releases of Java, it has become easier
(and more accessible) to write bug-free concurrent code.

Concurrency is the ability of a program to execute different (or the same) instructions at the same time.
A program that is said to be concurrent has the ability to be split up and run on multiple CPUs. By making
concurrent programs, you take advantage of today’s multicore CPUs. You can even see benefit on single-core
CPUs that are I/O intensive.

In this chapter, we present the most common need for concurrency tasks—from running a background
task to splitting a computation into work units. Throughout the chapter, you will find the most up-to-date
recipes for accomplishing concurrency in Java.

10-1. Starting a Background Task
Problem
You have a task that needs to run outside of your main thread.

Solution
Create a class implementation that includes the task that needs to be run in a different thread. Implement
a Runnable interface in the task implementation class and start a new Thread. In the following example, a
counter is used to simulate activity, as a separate task is run in the background.

 ■ Note: The code in this example could be refactored to utilize method references (see Chapter 6), rather
than creating an inner class for the new Thread implementation. However for clarity, the anonymous inner class
has been shown.

private void someMethod() {
 Thread backgroundThread = new Thread(new Runnable() {
 public void run() {
 doSomethingInBackground();
 }
 },"Background Thread");

http://dx.doi.org/10.1007/978-1-4842-1976-8_6

CHapTer 10 ■ ConCurrenCy

240

 System.out.println("Start");
 backgroundThread.start();
 for (int i= 0;i < 10;i++) {
 System.out.println(Thread.currentThread().getName()+": is counting "+i);
 }

 System.out.println("Done");
 }

 private void doSomethingInBackground() {
 System.out.println(Thread.currentThread().getName()+
 ": is Running in the background");
 }

If the code is executed more than once, the output should be different from time to time. The
background thread will execute separately, so its message is printed at a different time across each run.

The same code for creating the background thread can be written as follows if you’re using lambda
expressions:

Thread backgroundThread = new Thread(this::doSomethingInBackground, "Background Thread");

How It Works
The Thread class allows executing code in a new thread (path of execution), distinct from the current
thread. The Thread constructor requires as a parameter a class that implements the Runnable interface. The
Runnable interface requires the implementation of only one method: public void run(). Hence, it is a
functional interface, which facilitates the use of lambda expressions. When the Thread.start() method is
invoked, it will in turn create the new thread and invoke the run() method of the Runnable.

Within the JVM are two types of threads: User and Daemon. User threads keep executing until their
run() method completes, whereas Daemon threads can be terminated if the application needs to exit. An
application exits if there are only Daemon threads running in the JVM. When you start to create multithreaded
applications, you must be aware of these differences and understand when to use each type of thread.

Usually, Daemon threads will have a Runnable interface that doesn’t complete; for example a while
(true) loop. This allows these threads to periodically check or perform a certain condition throughout the
life of the program, and be discarded when the program is finished executing. In contrast, User threads,
while alive, will execute and prevent the program from terminating. If you happen to have a program that is
not closing and/or exiting when expected, you might want to check the threads that are actively running.

To set a thread as a Daemon thread, use thread.setDaemon(true) before calling the thread.start()
method. By default, Thread instances are created as User thread types.

 ■ Note This recipe shows the simplest way to create and execute a new thread. The new thread created
is a User thread, which means that the application will not exit until both the main thread and the background
thread are done executing.

10-2. Updating (and Iterating) a Map
Problem
You need to update a Map object from multiple threads, and you want to make sure that the update doesn’t
break the contents of the Map object and that the Map object is always in a consistent state. You also want to
traverse (look at) the content of the Map object while other threads are updating the Map object.

CHapTer 10 ■ ConCurrenCy

241

Solution
Use a ConcurrentMap to update Map entries. The following example creates 1,000 threads. Each thread then
tries to modify the Map at the same time. The main thread waits for a second, and then proceeds to iterate
through the Map (even when the other threads are still modifying the Map):

Set<Thread> updateThreads = new HashSet<>();

private void startProcess() {
 ConcurrentMap<Integer,String> concurrentMap = new ConcurrentHashMap<>();
 for (int i =0;i < 1000;i++) {
 startUpdateThread(i, concurrentMap);
 }
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 concurrentMap.entrySet().stream().forEach((entry) -> {
 System.out.println("Key :"+entry.getKey()+" Value:"+entry.getValue());
 });

 updateThreads.stream().forEach((thread) -> {
 thread.interrupt();
 });
}

Random random = new Random();
private void startUpdateThread(int i, final ConcurrentMap<Integer, String> concurrentMap) {
 Thread thread = new Thread(() -> {
 while (!Thread.interrupted()) {
 int randomInt = random.nextInt(20);
 concurrentMap.put(randomInt, UUID.randomUUID().toString());
 }
 });
 thread.setName("Update Thread "+i);
 updateThreads.add(thread);
 thread.start();
}

How It Works
For performing work on a hash table in a concurrent manner, ConcurrentHashMap allows multiple threads
to modify the hash table concurrently and safely. ConcurrentHashMap is a hash table supporting full
concurrency for retrievals, and adjustable expected concurrency for updates. In the example, 1,000 threads
make modifications to the Map over a short period of time. The ConcurrentHashMap iterator, as well as
streams that are generated on a ConcurrentHashMap, allows safe iteration over its contents. When using the
ConcurrentMap’s iterator, you do not have to worry about locking the contents of the ConcurrentMap while
iterating over it (and it doesn’t throw ConcurrentModificationExceptions).

For a complete list of the newly added methods, refer to the online documentation at http://docs.
oracle.com/javase/9/docs/api/java/util/concurrent/ConcurrentHashMap.html.

http://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ConcurrentHashMap.html
http://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ConcurrentHashMap.html

CHapTer 10 ■ ConCurrenCy

242

 ■ Note ConcurrentMap iterators, while thread-safe, don’t guarantee that you will see entries added/updated
after the iterator was created.

10-3. Inserting a Key into a Map Only If the Key Is Not
Already Present
Problem
A Map within your application is continuously being updated, and you need to put a key/value pair into it if
the key does not already exist. Therefore, you need to check for the key’s presence, and you need assurance
that some other thread doesn’t insert the same key in the meantime.

Solution
Using the ConcurrentMap.putIfAbsent() method, you can determine whether the map was modified
atomically. For example, the following code uses the method to check and insert in a single step, thus
avoiding the concurrency problem:

private void start() {
 ConcurrentMap<Integer, String> concurrentMap = new ConcurrentHashMap<>();
 for (int i = 0; i < 100; i++) {
 startUpdateThread(i, concurrentMap);
 }

 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 concurrentMap.entrySet().stream().forEach((entry) -> {
 System.out.println("Key :" + entry.getKey() + " Value:" + entry.getValue());
 });

}

Random random = new Random();

private void startUpdateThread(final int i, final ConcurrentMap<Integer, String>
concurrentMap) {
 Thread thread = new Thread(() -> {
 int randomInt = random.nextInt(20);
 String previousEntry = concurrentMap.putIfAbsent(randomInt, "Thread # " + i + " has

made it!");
 if (previousEntry != null) {
 System.out.println("Thread # " + i + " tried to update it but guess what, we're

too late!");

CHapTer 10 ■ ConCurrenCy

243

 } else {
 System.out.println("Thread # " + i + " has made it!");
 }
 });
 thread.start();
}

When running the program, some of the entries will be successfully inserted, while others
will not because the key has already been inserted by another thread. Note that in the example,
startUpdateThread() accepts a final int i argument. Marking a method argument as final ensures that
the method cannot change the value of the variable i. If the value of i changes inside the method, it is not a
visible change from outside of the method.

How It Works
Updating a Map concurrently is difficult because it involves two operations: a check-then-act type of operation.
First, the Map has to be checked to see whether an entry already exists in it. If the entry doesn’t exist, you can
put the key and the value into the Map. On the other hand, if the key exists, the value for the key is retrieved.
To do so, we use the ConcurrentMap’s putIfAbsent atomic operation. This ensures that either the key
was present so the value is not overwritten, or the key was not present and so the value is set. For the JDK
implementations of ConcurrentMap, the putIfAbsent() method will return null if there was no value for
the key or return the current value if the key has a value. By asserting that the putIfAbsent() method returns
null, you are assured that the operation was successful and that a new entry in the map has been created.

There are cases when putIfAbsent() might not be efficient to execute. For example, if the result is a
large database query, executing the database query all the time and then invoking putIfAbsent() will not
be efficient. In this kind of scenario, you could first call the map’s containsKey() method to ensure that the
key is not present. If it’s not present, then call the putIfAbsent() with the expensive database query. There
might be a chance that the putIfAbsent() didn’t put the entry, but this type of check reduces the number of
potentially expensive value creation.

See the following code snippet:

keyPresent = concurrentMap.containsKey(randomInt);
 if (!keyPresent) {
 concurrentMap.putIfAbsent(randomInt, "Thread # " + i + " has made it!");
 }

In this code, the first operation is to check whether the key is already in the map. If it is, it doesn’t
execute the putIfAbsent() operation. If the key is not present, we can proceed to execute the
putIfAbsent() operation.

If you are accessing the values of the map from different threads, you should make sure that the values
are thread-safe. This is most evident when using collections as values because they then could be accessed
from different threads. Ensuring that the main map is thread-safe will prevent concurrent modifications
to the map. However, once you gain access to the values of the map, you must exercise good concurrency
practices around the values of the map.

 ■ Note ConcurrentMaps do not allow null keys, which is different from its non–thread-safe cousin HashMap
(which does allow null keys).

CHapTer 10 ■ ConCurrenCy

244

10-4. Iterating Through a Changing Collection
Problem
You need to iterate over each element in a collection. However, other threads are constantly updating the
collection.

Solution 1
By using CopyOnWriteArrayList, you can safely iterate through the collection without worrying about
concurrency. In the following solution, the startUpdatingThread() method creates a new thread, which
actively changes the list passed to it. While startUpdatingThread() modifies the list, it is concurrently
iterated using the stream forEach() function.

private void copyOnWriteSolution() {
 CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<String>();
 startUpdatingThread(list);
 list.stream().forEach((element) -> {
 System.out.println("Element :" + element);
 });
 stopUpdatingThread();

}

Solution 2
Using a synchronizedList() allows us to atomically change the collection. Also, a synchronizedList()
provides a way to synchronize safely on the list while iterating through it (which is done in the stream). For
example:

private void synchronizedListSolution() {
 final List<String> list = Collections.synchronizedList(new ArrayList<String>());
 startUpdatingThread(list);
 synchronized (list) {
 list.stream().forEach((element) -> {
 System.out.println("Element :" + element);
 });
 }
 stopUpdatingThread();
}

How It Works
Java comes with many concurrent collection options. Which collection to use depends on how the read
operations compare with the write operations within the context of your application. If writing occurs
far and in-between compared with reads, using a copyOnWriteArrayList instance is most efficient
because it doesn’t block (stop) other threads from reading the list and is thread-safe to iterate over (no
ConcurrentModificationException is thrown when iterating through it). If there are the same number of
writes and reads, using a SynchronizedList is the preferred choice.

CHapTer 10 ■ ConCurrenCy

245

In solution 1, the CopyOnWriteArrayList is being updated while you traverse the list. Because the
recipe uses the CopyOnWriteArrayList instance, there is no need to worry of thread safety when iterating
through the collection (as is being done in this recipe by using the stream). It is good to note that the
CopyOnWriteArrayList offers a snapshot in time when iterating through it. If another thread modifies the list
as you’re iterating through it, changes are that the modified list will not be visible when iterating.

 ■ Note Locking properly depends on the type of collection being used. any collections returned as
a result of using Collections.synchronized can be locked via the collection itself (synchronized
(collectionInstance)). However, some more efficient (newer) concurrent collections such as the
ConcurrentMap cannot be used in this fashion because their internal implementations don’t lock in the
object itself.

Solution 2 creates a synchronized list, which is created by using the Collections helper class.
The Collection.synchronizedList() method wraps a List object (it can be ArrayList, LinkedList, or
another List implementation) into a list that synchronizes the access to the list operations. Each time that
you need to iterate over a list (either by using the stream, a for loop, or an iterator) you must be aware of the
concurrency implications for that list’s iterator. The CopyOnWriteArrayList is safe to iterate over
(as specified in the Javadoc), but the synchronizedList iterator must be synchronized manually
(also specified in the Collections.synchronizedlist.list iterator Javadoc). In the solution, the list can
safely be iterated while inside the synchronized(list) block. When synchronizing on the list, no read/
updates/other iterations can occur until the synchronized(list) block is completed.

10-5. Coordinating Different Collections
Problem
You need to modify different but related collections at the same time and you want to ensure that no other
threads can see these modifications until they have been completed.

Solution 1
By synchronizing on the principal collection, you can guarantee that collection can be updated at the same
time. In the following example, the fulfillOrder method needs to check the inventory of the order to be
fulfilled, and if there is enough inventory to fulfill the order, it needs to add the order to the customerOrders
list. The fulfillOrder() method synchronizes on the inventoryMap map and modifies both the
inventoryMap and the customerOrders list before finishing the synchronized block.

 private boolean fulfillOrder(String itemOrdered, int quantityOrdered, String
customerName) {

 synchronized (inventoryMap) {
 int currentInventory = 0;
 if (inventoryMap != null) {
 currentInventory = inventoryMap.get(itemOrdered);
 }
 if (currentInventory < quantityOrdered) {
 System.out.println("Couldn't fulfill order for "+customerName+" not enough

"+itemOrdered+" ("+quantityOrdered+")");

CHapTer 10 ■ ConCurrenCy

246

 return false; // sorry, we sold out
 }
 inventoryMap.put(itemOrdered,currentInventory - quantityOrdered);
 CustomerOrder order = new CustomerOrder(itemOrdered, quantityOrdered,

customerName);
 customerOrders.add(order);
 System.out.println("Order fulfilled for "+customerName+" of "+itemOrdered+"

("+quantityOrdered+")");
 return true;
 }
}

 private void checkInventoryLevels() {
 synchronized (inventoryMap) {
 System.out.println("------------------------------------");
 inventoryMap.entrySet().stream().forEach((inventoryEntry) -> {
 System.out.println("Inventory Level :"+inventoryEntry.getKey()+"

"+inventoryEntry.getValue());
 });
 System.out.println("------------------------------------");
 }
 }

 private void displayOrders() {
 synchronized (inventoryMap) {
 customerOrders.stream().forEach((order) -> {
 System.out.println(order.getQuantityOrdered()+" "+order.getItemOrdered()+"

for "+order.getCustomerName());
 });
 }
 }

Solution 2
Using a reentrant lock, you can prevent multiple threads from accessing the same critical area of the code.
In this solution, the inventoryLock is acquired by calling inventoryLock.lock(). Any other thread that
tries to acquire the inventoryLock lock will have to wait until the inventoryLock lock is released. At the
end of the fulfillOrder() method (in the finally block), the inventoryLock is released by calling the
inventoryLock.unlock() method:

Lock inventoryLock = new ReentrantLock();
 private boolean fulfillOrder(String itemOrdered, int quantityOrdered, String customerName) {
 try {
 inventoryLock.lock();
 int currentInventory = inventoryMap.get(itemOrdered);
 if (currentInventory < quantityOrdered) {
 System.out.println("Couldn't fulfill order for " + customerName +
 " not enough " + itemOrdered + " (" + quantityOrdered + ")");
 return false; // sorry, we sold out
 }
 inventoryMap.put(itemOrdered, currentInventory - quantityOrdered);

CHapTer 10 ■ ConCurrenCy

247

 CustomerOrder order = new CustomerOrder(itemOrdered, quantityOrdered,
customerName);

 customerOrders.add(order);
 System.out.println("Order fulfilled for " + customerName + " of " +
 itemOrdered + " (" + quantityOrdered + ")");
 return true;
 } finally {
 inventoryLock.unlock();
 }
 }

 private void checkInventoryLevels() {
 try {
 inventoryLock.lock();
 System.out.println("------------------------------------");
 inventoryMap.entrySet().stream().forEach((inventoryEntry) -> {
 System.out.println("Inventory Level :" + inventoryEntry.getKey() + " " +

inventoryEntry.getValue());
 });
 System.out.println("------------------------------------");
 } finally {
 inventoryLock.unlock();
 }
 }

 private void displayOrders() {
 try {
 inventoryLock.lock();
 customerOrders.stream().forEach((order) -> {
 System.out.println(order.getQuantityOrdered() + " " +
 order.getItemOrdered() + " for " + order.getCustomerName());
 });
 } finally {
 inventoryLock.unlock();
 }
 }

How It Works
If you have different structures that are required to be modified at the same time, you need to make sure
that these structures are updated atomically. An atomic operation refers to a set of instructions that can be
executed as a whole or none at all. An atomic operation is visible to the rest of the program only when it is
complete.

In solution 1 (atomically modifying both the inventoryMap map and the customerOrders list), you pick
a “principal” collection on which you will lock (the inventoryMap). By locking on the principal collection,
you guarantee that if another thread tries to lock on the same principal collection, it will have to wait until
the current executing thread releases the lock on the collection.

CHapTer 10 ■ ConCurrenCy

248

 ■ Note notice that even though displayOrders doesn’t use the inventoryMap, you still synchronize on it (in
solution 1). Because the inventoryMap is the main collection, even operations done on secondary collections
will still need to be protected by the main collection synchronization.

Solution 2 is more explicit, offering an independent lock that is used to coordinate the atomic
operations instead of picking a principal collection. Locking refers to the ability of the JVM to restrict
certain code paths to be executed by only one thread. Threads try to obtain the lock (locks are provided,
for example, by a ReentrantLock instance, as shown in the example), and the lock can be given to only
one thread at a time. If other threads were trying to acquire the same lock, they will be suspended (WAIT)
until the lock becomes available. The lock becomes available when the thread that currently holds the lock
releases it. When a lock is released, it can then be acquired by one (and only one) of the threads that were
waiting for that lock.

Locks by default are not “fair.” In other words, the order of the threads that requested the lock is not
kept; this allows for very fast locking/unlocking implementation in the JVM, and in most situations, it is
generally okay to use unfair locks. On a very highly contended lock, if there is a requirement to evenly
distribute the lock (make it fair), you do so by setting the setFair property on the lock.

In solution 2, calling the inventoryLock.lock() method, will either acquire the lock and continue,
or will suspend execution (WAIT) until the lock can be acquired. Once the lock is acquired, no other thread
will be able to execute within the locked block. At the end of the block, the lock is released by calling
inventoryLock.unlock().

It is common practice when working with Lock objects (ReentrantLock, ReadLock, and WriteLock)
to surround the use of these Lock objects by a try/finally clause. After opening the try block, the first
instruction would be a call to the lock.lock() method. This guarantees that the first instruction executed
is the acquisition of the lock. The release of the lock (by calling lock.unlock()) is done in the matching
finally block. In the event of a RuntimeException occurring while you have acquired the lock, unlocking
within the finally clause assures that one doesn’t “keep” the lock and prevent other threads from
acquiring it.

The use of the ReentrantLock object offers additional features that the synchronized statement doesn’t
offer. As an example, the ReentrantLock has the tryLock() function, which attempts to get the lock only if
no other threads have it (the method doesn’t make the invoking thread wait). If another thread holds the
lock, the method returns false but continues executing. It is better to use the synchronized keyword for
synchronization and use ReentrantLock only when its features are needed. For more information on the
other methods provided by ReentrantLock, visit https://docs.oracle.com/javase/9/docs/api/java/
util/concurrent/locks/ReentrantLock.html.

 ■ Tip While this is only a recipe book and proper threading techniques span their own volumes, it is
important to raise awareness of deadlocks. Deadlocks occur when two locks are involved (and are acquired in
reverse order within another thread). The simplest way to avoid a deadlock is to avoid letting the lock “escape.”
This means that the lock, when acquired, should not execute code calling on other methods that could possibly
acquire a different lock. If that’s not possible, release the lock before calling such a method.

Care should be taken in that any operation that refers to one or both collections needs to be protected
by the same lock. Operations that depend on the result of one collection to query the second collection need
to be executed atomically; they need to be done as a unit in which neither collection can change until the
operation is completed.

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/locks/ReentrantLock.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/locks/ReentrantLock.html

CHapTer 10 ■ ConCurrenCy

249

10-6. Splitting Work into Separate Threads
Problem
You have work that can be split into separate threads and want to maximize the use of available CPU
resources.

Solution
Use a ThreadpoolExecutor instance, which allows us to break the tasks into discrete units. In the
following example, a BlockingQueue is created, which includes a Runnable object. It then is passed to
the ThreadPoolExecutor instance. The ThreadPoolExecutor is then initialized and started by calling the
prestartAllCoreThreads() method. Next, perform an orderly shutdown in which all previously submitted
tasks are executed by calling the shutdown() method, followed by the awaitTermination() method:

private void start() throws InterruptedException {
 BlockingQueue<Runnable> queue = new LinkedBlockingQueue<>();
 for (int i =0;i < 10;i++) {
 final int localI = i;
 queue.add((Runnable) () -> {
 doExpensiveOperation(localI);
 });
 }
 ThreadPoolExecutor executor = new ThreadPoolExecutor(10,10,1000,
 TimeUnit.MILLISECONDS, queue);
 executor.prestartAllCoreThreads();
 executor.shutdown();
 executor.awaitTermination(100000,TimeUnit.SECONDS);

 System.out.println("Look ma! all operations were completed");
}

How It Works
A ThreadPoolExecutor consists of two components: the Queue of tasks to be executed, and the Executor,
which tells how to execute the tasks. The Queue is filled with Runnable objects, on which the method run()
contains the code to be executed.

The Queue used by a ThreadPoolExecutor is an implementer of the BlockingQueue interface. The
BlockingQueue interface denotes a queue in which the consumers of the queue will wait (be suspended) if
there are no elements within the Queue. This is necessary for the ThreadPoolExecutor to work efficiently.

The first step is to fill the Queue with the tasks that need to be executed in parallel. This is done by calling
the Queue’s add() method and passing to it a class that implements the Runnable interface. Once that’s done,
the executor is initialized.

The ThreadPoolExecutor constructor has many parameter options; the one used in the solution is the
simplest. Table 10-1 has a description of each parameter.

CHapTer 10 ■ ConCurrenCy

250

After the ThreadPoolExecutor is initialized, you call the prestartAllCoreThreads(). This method
“warms up” the ThreadPoolExecutor by creating the number of threads specified in the CorePoolSize and
actively starts consuming tasks from the Queue if it is not empty.

Call the shutdown() method of the ThreadPoolExecutor to wait for all the tasks to be completed.
By calling this method, the ThreadPoolExecutor is instructed to accept no new events from the queue
(previously submitted events will finish processing). This is the first step in the orderly termination
of a ThreadPoolExecutor. Call the awaitTermination() method to wait for all the tasks in the
ThreadPoolExecutor to be done. This method will force the main thread to wait until all the Runnables in
the ThreadPoolExecutor's queue have completed executing. After all the Runnables have executed, the
main thread will wake up and continue.

 ■ Note a ThreadPoolExecutor needs to be configured correctly to maximize Cpu usage. The most efficient
number of threads for an executor depends on the types of tasks that are submitted. If the tasks are Cpu-
intensive, having an executor with the current number of cores would be ideal. If the tasks are I/o-intensive,
the executor should have more threads than the current number of cores of threads. The more I/o-bound, the
higher the number of threads.

10-7. Coordinating Threads
Problem
Your application requires that two or more threads be coordinated to work in unison.

Solution 1
With wait/notify for thread synchronization, threads can be coordinated. In this solution, the main
thread waits for the objectToSync object until the database-loading thread is finished executing. Once
the database-loading thread is finished, it notifies the objectToSync that whoever is waiting on it can
continue executing. The same process occurs when loading the orders into our system. The main thread
waits on objectToSync until the orders-loading thread notifies objectToSync to continue by calling the
objectToSync.notify() method. After ensuring that both the inventory and the orders are loaded, the main
thread executes the processOrder() method to process all orders.

Table 10-1. ThreadPoolExecutor’s Parameters

Parameter Description

CorePoolSize The minimum number of threads that are created as tasks are submitted

MaximumPoolSize The maximum number of threads that the Executor would create

KeepAliveTime The time that the waiting threads will wait for work before being disposed (as long as
the number of live threads is still more than the CorePoolSize)

TimeUnit The unit on which the KeepAliveTime is expressed (that is, TimeUnit.SECONDS,
TimeUnit.MILLISECONDS)

WorkQueue The Blocking queue that contains the tasks to be processed by the Executor

CHapTer 10 ■ ConCurrenCy

251

private final Object objectToSync = new Object();

private void start() {
 loadItems();

 Thread inventoryThread = new Thread(() -> {
 System.out.println("Loading Inventory from Database...");
 loadInventory();
 synchronized (objectToSync) {
 objectToSync.notify();
 }
 });

 synchronized (objectToSync) {
 inventoryThread.start();
 try {
 objectToSync.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 Thread ordersThread = new Thread(() -> {

 System.out.println("Loading Orders from XML Web service...");
 loadOrders();
 synchronized (objectToSync) {
 objectToSync.notify();

 }
 });

 synchronized (objectToSync) {
 ordersThread.start();
 try {
 objectToSync.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 processOrders();
}

Solution 2
You can control when the main thread continues using a CountDownLatch object. In the following code,
a CountDownLatch with an initial value of 2 is created; then the two threads for loading the inventory and
loading the order information are created and started. As each of the two threads finish executing, they call
the CountDownLatch’s countDown() method, which decrements the latch’s value by one. The main thread
waits until the CountDownLatch reaches 0, at which point it resumes execution.

CHapTer 10 ■ ConCurrenCy

252

CountDownLatch latch = new CountDownLatch(2);

private void start() {
 loadItems();

 Thread inventoryThread = new Thread(() -> {
 System.out.println("Loading Inventory from Database...");
 loadInventory();
 latch.countDown();
 });

 inventoryThread.start();

 Thread ordersThread = new Thread(() -> {
 System.out.println("Loading Orders from XML Web service...");
 loadOrders();
 latch.countDown();
 });

 ordersThread.start();

 try {
 latch.await();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 processOrders();

}

Solution 3
By using Thread.join(), you can wait for a thread to finish executing. The following example has a thread
for loading the inventory and another thread for loading the orders. Once each thread is started, a call to
inventoryThread.join() will make the main thread wait for the inventoryThread to finish executing before
continuing.

private void start() {
 loadItems();

 Thread inventoryThread = new Thread(() -> {
 System.out.println("Loading Inventory from Database...");
 loadInventory();
 });

 inventoryThread.start();
 try {
 inventoryThread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

CHapTer 10 ■ ConCurrenCy

253

 Thread ordersThread = new Thread(() -> {
 System.out.println("Loading Orders from XML Web service...");
 loadOrders();
 });

 ordersThread.start();
 try {
 ordersThread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 processOrders();
}

How It Works
There are many ways of coordinating threads in Java, and these coordination efforts rely on the notion of
making a thread wait. When a thread waits, it suspends execution (it doesn’t continue to the next instruction
and is removed from the JVM’s thread scheduler). If a thread is waiting, it can then be awakened by notifying it.
Within the Java’s concurrency lingo, the word notify implies that a thread will resume execution (the JVM will
add the thread to the thread scheduler). So in the natural course of thread coordination, the most common
sequence of events is a main thread waiting, and a secondary thread then notifying the main thread to continue
(or wake up). Even so, there is the possibility of a waiting thread being interrupted by some other event. When a
thread is interrupted, it doesn’t continue to the next instruction, but instead throws an InterruptedException,
which is a way of signaling that even though the thread was waiting for something to happen, some other event
happened that requires the thread’s attention. This is better illustrated by the following example:

BlockingQueue queue = new LinkedBlockingQueue();
while (true) {
 synchronized (this) {
 Object itemToProcess = queue.take();
 processItem (itemToProcess);
 }
}

If you look at the previous code, the thread that executes this code would never terminate because it
loops forever and waits for an item to be processed. If there are no items in the Queue, the main thread waits
until there is something added to the Queue from another thread. You couldn’t graciously shut down the
previous code (especially if the thread running the loop is not a Daemon thread).

BlockingQueue queue = new LinkedBlockingQueue();
while (true) {
 synchronized (this) {
 Object itemToProcess = null;
 try {
 itemToProcess = queue.take();
 } catch (InterruptedException e) {
 return;
 }
 processItem (itemToProcess);
 }
}

CHapTer 10 ■ ConCurrenCy

254

The new code now has the ability of “escaping” the infinite loop. From another thread, you can call
thread.interrupt(), which throws the InterruptedException that is then caught by the main thread’s
catch clause. The infinite loop can be exited within this clause.

InterruptedExceptions are a way of sending extra information to waiting (or sleeping) threads so
that they may handle a different scenario (for example, an orderly program shutdown). For this reason,
every operation that changes the state of the thread to sleep/wait will have to be surrounded by a try/
catch block that can catch the InterruptedException. This is one of the cases in which the exception
(InterruptedException) is not really an error but more of a way of signaling between threads that
something has occurred that requires attention.

Solution 1 demonstrates the most common (oldest) form of coordination. The solution requires making
a thread wait and suspending execution until the thread gets notified (or awakened) by another thread.

For solution 1 to work, the originating thread needs to acquire a lock. This lock will then be the “phone
number” on which another thread can notify the originating thread to wake up. After the originating thread
acquires the lock (phone number), it proceeds to wait. As soon as the wait() method is called, the lock is
released, allowing other threads to acquire the same lock. The secondary thread then proceeds to acquire
the lock (the phone number) and then notifies (which, in fact, would be like dialing a wake-up call) the
originating thread. After the notification, the originating thread resumes execution.

In the solution 1 code, the lock is a dummy object identified as objectToSync. In practice, the object
on which locks are waiting and notifying could be any valid instance object in Java; for example, we could
have used the this reference to make the main thread wait (and within the threads we could have used the
Recipe 10_7_1.this variable reference to notify the main thread to continue).

The main advantage of using this technique is the explicitness of controlling on whom to wait and when
to notify (and the ability to notify all threads that are waiting on the same object; see the following tip).

 ■ Tip Multiple threads can wait on the same lock (same phone number to be awakened). When a secondary
thread calls notify, it will wake up one of the “waiting” threads (there is no fairness about which is awakened).
Sometimes you will need to notify all the threads; you can call the notifyAll() method instead of calling the
notify() method. This is mostly used when preparing many threads to take some work, but the work is not yet
finished setting up.

Solution 2 uses a more modern approach to notification, as it involves a CountDownLatch. When setting
up, specify how many “counts” the latch will have. The main thread will then wait (stop execution) by calling
the CountDownLatch’s await() method until the latch counts down to 0. When the latch reaches 0, the main
thread will wake up and continue execution. As the worker thread completes, call the latch.countdown()
method, which will decrement the latch’s current count value. If the latch’s current value reaches 0, the main
thread that was waiting on the CountDownLatch will wake up and continue execution.

The main advantage of using CountDownLatches is that it is possible to spawn multiple tasks at the same
time and just wait for all of them to complete. (In the solution example, we didn’t need to wait until one or
the other threads were completed before continuing; they all were started, and when the latch was 0, the
main thread continued.)

Solution 3 instead offers a solution in which we have access to the thread we want to wait on. For the
main thread, it’s just a matter of calling the secondary thread’s join() method. Then the main thread will
wait (stop executing) until the secondary thread completes.

The advantage of this method is that it doesn’t require the secondary threads to know any
synchronization mechanism. As long as the secondary thread terminates execution, the main thread can
wait on them.

CHapTer 10 ■ ConCurrenCy

255

10-8. Creating Thread-Safe Objects
Problem
You need to create an object that is thread-safe because it will be accessed from multiple threads.

Solution 1
Use synchronized getters and setters and protect critical regions that change state. In the following example,
an object is created with getters and setters that are synchronized for each internal variable. The critical
regions are protected by using the synchronized(this) lock:

class CustomerOrder {
 private String itemOrdered;
 private int quantityOrdered;
 private String customerName;

 public CustomerOrder() {

 }

 public double calculateOrderTotal (double price) {
 synchronized (this) {
 return getQuantityOrdered()*price;
 }
 }

 public synchronized String getItemOrdered() {
 return itemOrdered;
 }

 public synchronized int getQuantityOrdered() {
 return quantityOrdered;
 }

 public synchronized String getCustomerName() {
 return customerName;
 }

 public synchronized void setItemOrdered(String itemOrdered) {
 this.itemOrdered = itemOrdered;
 }

 public synchronized void setQuantityOrdered(int quantityOrdered) {
 this.quantityOrdered = quantityOrdered;
 }

 public synchronized void setCustomerName(String customerName) {
 this.customerName = customerName;
 }
}

CHapTer 10 ■ ConCurrenCy

256

Solution 2
Create an immutable object (an object that, once created, doesn’t change its internal state). In the following
code, the internal variables of the object are declared final and are assigned at construction. By doing so, it
is guaranteed that the object is immutable:

class ImmutableCustomerOrder {
 final private String itemOrdered;
 final private int quantityOrdered;
 final private String customerName;

 ImmutableCustomerOrder(String itemOrdered, int quantityOrdered, String customerName) {
 this.itemOrdered = itemOrdered;
 this.quantityOrdered = quantityOrdered;
 this.customerName = customerName;
 }

 public String getItemOrdered() {
 return itemOrdered;
 }

 public int getQuantityOrdered() {
 return quantityOrdered;
 }

 public String getCustomerName() {
 return customerName;
 }

 public double calculateOrderTotal (double price) {
 return getQuantityOrdered()*price;
 }
}

How It Works
Solution 1 relies on the principle that a lock protects any change done to the object. Using the synchronized
keyword is a shortcut to writing the expression synchronized (this). By synchronizing your getters and
setters (and any other operation that alters the internal state of your object), you guarantee that the object is
consistent. Also, it is important that any operations that should occur as a unit (say something that modifies
two collections at the same time, as listed in Recipe 10-5) are done within a method of the object and are
protected by using the synchronized keyword.

For instance, if an object offers a getSize() method as well as getItemNumber(int index), it would be
unsafe to write the following object.getItemNumber (object.getSize()-1). Even though it looks that the
statement is concise, another thread can alter the contents of the object between getting the size and getting
the item number. Instead, it is safer to create a object.getLastElement() method, which atomically figures
out the size and the last element.

CHapTer 10 ■ ConCurrenCy

257

Solution 2 relies on the property of immutable objects. Immutable objects cannot change their internal
state, and objects that cannot change their internal state (are immutable) are by definition thread-safe. If
you need to modify the immutable object due to an event, instead of explicitly changing its property, create
a new object with the changed properties. This new object then takes the place of the old object, and on
future requests for the object, the new immutable object is returned. This is by far the easiest (albeit verbose)
method for creating thread-safe code.

10-9. Implementing Thread-Safe Counters
Problem
You need a counter that is thread-safe so that it can be incremented from within different execution threads.

Solution
By using the inherently thread-safe Atomic objects, it is possible to create a counter that guarantees thread
safety and has an optimized synchronization strategy. In the following code, an Order object is created, and
it requires a unique order ID that is generated using the AtomicLong incrementAndGet() method:

AtomicLong orderIdGenerator = new AtomicLong(0);

 for (int i =0;i < 10;i++) {
 Thread orderCreationThread = new Thread(() -> {
 for (int i1 = 0; i1 < 10; i1++) {
 createOrder(Thread.currentThread().getName());
 }
 });
 orderCreationThread.setName("Order Creation Thread "+i);
 orderCreationThread.start();
 }

//
 private void createOrder(String name) {
 long orderId = orderIdGenerator.incrementAndGet();
 Order order = new Order(name, orderId);
 orders.add(order);
 }

How It Works
AtomicLong (and its cousin AtomicInteger) are built to be used safely in concurrent environments. They
have methods to atomically increment (and get) the changed value. Even if hundreds of threads call the
AtomicLong increment() method, the returned value will always be unique.

If you need to make decisions and update the variables, always use the atomic operations that are
offered by AtomicLong; for example, compareAndSet. If not, your code will not be thread-safe (as any check-
then-act operation needs to be atomic) unless you externally protect the atomic reference by using your own
locks (see Recipe 10-7).

CHapTer 10 ■ ConCurrenCy

258

The following code illustrates several code safety issues to be aware of. First, changing a long value may
be done in two memory write operations (as allowed by the Java Memory Model), and thus two threads
could end up overlapping those two operations in what might on the surface appear to be thread-safe code.
The result would be a completely unexpected (and likely wrong) long value:

long counter = 0;

public long incrementCounter() {
 return counter++;
}

This code also suffers from unsafe publication, which refers to the fact that a variable might be cached
locally (in the CPU’s internal cache) and might not be committed to main memory. If another thread
(executing in another CPU) happens to be reading the variable from main memory, that other thread may
miss the changes made by the first thread. The changed value may be cached by the first thread’s CPU,
and not yet committed to main memory where the second thread can see it. For safe publication, you
must use the volatile Java modifier (see http://download.oracle.com/javase/tutorial/essential/
concurrency/atomic.html).

A final issue with the preceding code is that it is not atomic. Even though it looks like there is only one
operation to increment the counter, in reality there are two operations that occur at the machine-language
level (a retrieve of the variable and then an increment). There could be two or more threads that obtain the
same value as they both retrieve the variable but haven’t incremented it yet. Then all the threads increment
the counter to the same number.

10-10. Breaking Down Tasks into Discrete Units of Work
Problem
You have an algorithm that benefits from using a divide-and-conquer strategy, which refers to the ability of
breaking down a unit of work into two separate subunits and then piecing together the results from these
subunits. The subunits can then be broken down into more subunits of work until reaching a point where
the work is small enough to just be executed. By breaking down the unit of work into subunits, you can take
advantage of the multicore nature of today’s processors with minimum pain.

Solution
The new Fork/Join framework makes applying the divide-and-conquer strategy straightforward. The
following example creates a representation of the Game of Life. The code uses the Fork/Join framework to
speed up the calculation for each iteration when advancing from one generation to the next:

//

 ForkJoinPool pool = new ForkJoinPool();
 long i = 0;

 while (shouldRun) {
 i++;
 final boolean[][] newBoard = new boolean[lifeBoard.length][lifeBoard[0].length];
 long startTime = System.nanoTime();

http://download.oracle.com/javase/tutorial/essential/concurrency/atomic.html
http://download.oracle.com/javase/tutorial/essential/concurrency/atomic.html

CHapTer 10 ■ ConCurrenCy

259

 GameOfLifeAdvancer advancer = new GameOfLifeAdvancer(lifeBoard, 0,0, lifeBoard.
length-1, lifeBoard[0].length-1,newBoard);

 pool.invoke(advancer);
 long endTime = System.nanoTime();
 if (i % 100 == 0) {
 System.out.println("Taking "+(endTime-startTime)/1000 + "ms");
 }
 SwingUtilities.invokeAndWait(() -> {
 model.setBoard(newBoard);
 lifeTable.repaint();
 });
 lifeBoard = newBoard;
 }
//

 class GameOfLifeAdvancer extends RecursiveAction{

 private boolean[][] originalBoard;
 private boolean[][] destinationBoard;
 private int startRow;
 private int endRow;
 private int endCol;
 private int startCol;

 GameOfLifeAdvancer(boolean[][] originalBoard, int startRow, int startCol, int
endRow, int endCol, boolean [][] destinationBoard) {

 this.originalBoard = originalBoard;
 this.destinationBoard = destinationBoard;
 this.startRow = startRow;
 this.endRow = endRow;
 this.endCol = endCol;
 this.startCol = startCol;
 }

 private void computeDirectly() {
 for (int row = startRow; row <= endRow;row++) {
 for (int col = startCol; col <= endCol; col++) {
 int numberOfNeighbors = getNumberOfNeighbors (row, col);
 if (originalBoard[row][col]) {
 destinationBoard[row][col] = true;
 if (numberOfNeighbors < 2) destinationBoard[row][col] = false;
 if (numberOfNeighbors > 3) destinationBoard[row][col] = false;
 } else {
 destinationBoard[row][col] = false;
 if (numberOfNeighbors == 3) destinationBoard[row][col] = true;
 }
 }
 }
 }

CHapTer 10 ■ ConCurrenCy

260

 private int getNumberOfNeighbors(int row, int col) {
 int neighborCount = 0;
 for (int leftIndex = -1; leftIndex < 2; leftIndex++) {
 for (int topIndex = -1; topIndex < 2; topIndex++) {
 if ((leftIndex == 0) && (topIndex == 0)) continue; // skip own
 int neighbourRowIndex = row + leftIndex;
 int neighbourColIndex = col + topIndex;
 if (neighbourRowIndex<0) neighbourRowIndex =
 originalBoard.length + neighbourRowIndex;
 if (neighbourColIndex<0) neighbourColIndex =
 originalBoard[0].length + neighbourColIndex ;
 boolean neighbour = originalBoard[neighbourRowIndex % originalBoard.

length][neighbourColIndex % originalBoard[0].length];
 if (neighbour) neighborCount++;
 }
 }
 return neighborCount;
 }

 @Override
 protected void compute() {
 if (getArea() < 20) {
 computeDirectly();
 return;
 }
 int halfRows = (endRow - startRow) / 2;
 int halfCols = (endCol - startCol) / 2;
 if (halfRows > halfCols) {
 // split the rows
 invokeAll(new GameOfLifeAdvancer(originalBoard, startRow, startCol,

startRow+halfRows, endCol,destinationBoard),
 new GameOfLifeAdvancer(originalBoard, startRow+halfRows+1,

startCol, endRow, endCol,destinationBoard));
 } else {
 invokeAll(new GameOfLifeAdvancer(originalBoard, startRow, startCol, endRow,

startCol+ halfCols,destinationBoard),
 new GameOfLifeAdvancer(originalBoard, startRow,

startCol+halfCols+1, endRow, endCol,destinationBoard));
 }
 }

 private int getArea() { return (endRow - startRow) * (endCol - startCol); }

 }

How It Works
The Fork/Join framework can be used for breaking down tasks into discrete units of work. The first part of
the solution creates a ForkJoinPool object. The default constructor provides reasonable defaults (such as
creating as many threads as there are CPU cores) and sets up an entry point to submit divide-and-conquer
work. While the ForkJoinPool inherits from ExecutorService, it is best suited to handle tasks that extend
from RecursiveAction. The ForkJoinPool object has the invoke(RecursiveAction) method, which will
take a RecursiveAction object and apply the divide-and-conquer strategy.

CHapTer 10 ■ ConCurrenCy

261

The second part of the solution creates the GameOfLifeAdvancer class, which extends the
RecursiveAction class. By extending the RecursiveAction class, the work can be split. The
GameOfLifeAdvancer class advances the Game of Life board to the next generation. The constructor takes a
two-dimensional Boolean array (which represents a Game of Life board), a start row/column, an end row/
column, and a destination two-dimensional Boolean array, on which the result of advancing the Game of
Life for one generation is collected.

The GameOfLifeAdvancer is required to implement the compute() method. In this method, determine
how much work there is to be completed. If the work is small enough, the work is completed directly
(achieved by calling the computeDirectly() method and returning). If the work is not small enough, the
method splits the work by creating two GameOfLifeAdvancer instances that process only half of the current
GameOfLifeAdvancer work. This is done by either splitting the number of rows to be processed into two
chunks or by splitting the number of columns into two chunks. The two GameOfLifeAdvancer instances are
then passed to the ForkJoin pool by calling the invokeAll() method of the RecursiveAction class. The
invokeAll() method takes the two instances of GameOfLifeAdvancer (it can take as many as needed) and
waits until they both are finished executing (that is, the meaning of the –all postfix in the invokeAll()
method name; it waits for all of the tasks submitted to be completed before returning control).

In this way, the GameOfLifeAdvancer instance is broken down into new GameOfLifeAdvancer instances
that each processes only part of the Game of Life board. Each instance waits for all the subordinate parts to
be completed before returning control to the caller. The resulting division of work can take advantage of the
multiple CPUs available in the typical system today.

 ■ Tip The ForkJoinPool is generally more efficient than an ExecutorService because it implements a
work-stealing policy. each thread has a Queue of work to complete; if the Queue of any thread is empty, the
thread will “steal” work from another thread queue, making a more efficient use of Cpu processing power.

10-11. Updating a Common Value Across Multiple Threads
Problem
Your application needs to safely maintain a single summed value across multiple threads.

Solution
Utilize a DoubleAdder or LongAdder to contain the value that is being summed across multiple threads in
order to ensure safe handling. In the following example, two threads are adding values to a DoubleAdder at
the same time, and in the end the value is summed and displayed.

DoubleAdder da = new DoubleAdder();

private void start() {

 Thread thread1 = new Thread(() -> {
 for (int i1 = 0; i1 < 10; i1++) {
 da.add(i1);
 System.out.println("Adding " + i1);
 }
 });

CHapTer 10 ■ ConCurrenCy

262

 Thread thread2 = new Thread(() -> {
 for (int i1 = 0; i1 < 10; i1++) {
 da.add(i1);
 System.out.println("Adding " + i1);
 }
 });

 thread1.start();
 thread2.start();

 try {
 System.out.println("Sleep while summing....");
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 System.out.println("The sum is: " + da.doubleValue());

 }
}

Results:

Adding 0
Adding 1
Adding 2
Adding 3
Adding 4
Adding 5
Adding 6
Adding 7
Adding 0
Adding 8
Adding 9
Adding 1
Adding 2
Adding 3
Adding 4
Adding 5
Adding 6
Adding 7
Adding 8
Adding 9
The sum is: 90.0

CHapTer 10 ■ ConCurrenCy

263

How It Works
Prior to the release of Java 8, it was important to utilize atomic numbers when working with values across
multiple threads. Atomic variables prevent thread interference without causing obstruction in the way that
synchronized access may cause in some cases. Java 8 introduced a new line of atomic variables that provide
for faster throughput than standard atomic variables. The java.util.concurrent.atomic.DoubleAdder
and java.util.concurrent.atomic.LongAdder classes are preferable to AtomicDouble and AtomicLong in
most cases when the values may be accessed and updated across multiple threads. Both DoubleAdder and
LongAdder extend Number, and they are useful when summing values across threads, especially under high
contention.

In the solution, a DoubleAdder is used to sum numbers across two different threads. Using the add()
method, various numbers are “added” to the DoubleAdder value. After the threads have had ample time to
perform their work, the doubleValue() method is called upon to return the sum of all values as a double.

Both the DoubleAdder and LongAdder classes contain similar methods, although the LongAdder does
contain a couple of additional helper methods for incrementing and decrementing the value of the adder.
Table 10-2 shows the methods that are contained within each of the classes.

Table 10-2. DoubleAdder and LongAdder Methods

Method Description

add() Adds the given value.

decrement() (LongAdder only.) Equivalent to add(-1).

doubleValue() Returns the sum() as a double value (after performing widening primitive conversion
on LongAdder).

floatValue() Returns the sum() as a float value after performing a widening primitive conversion.

increment() (LongAdder only.) Equivalent to add(1).

intValue() Returns the sum() as an int value after performing a narrowing conversion.

longValue() Returns the sum() as a long value (after performing narrowing conversion on
DoubleAdder).

reset() Resets the variable’s values to zero.

sum() Returns the current summed value.

sumThenReset() Returns the current summed value and then resets the variable’s values to zero.

toString() Returns the String representation of the summed value.

 ■ Tip In the same family as DoubleAdder and LongAdder are the DoubleAccumulator and
LongAccumulator classes. These classes allow one or more variables that are being maintained across threads
to be updated using a supplied function. Both of these classes accept an accumulator function as the first
argument and an identity as the second argument. When updates are applied across the thread, the set of
variables used to perform the calculations may grow dynamically to reduce contention. For more information
regarding these classes, which are new to Java 8, refer to the online documentation: http://docs.oracle.
com/javase/9/docs/api/java/util/concurrent/atomic/package-summary.html.

http://docs.oracle.com/javase/9/docs/api/java/util/concurrent/atomic/package-summary.html
http://docs.oracle.com/javase/9/docs/api/java/util/concurrent/atomic/package-summary.html

CHapTer 10 ■ ConCurrenCy

264

10-12. Executing Multiple Tasks Asynchronously
Problem
Your application requires multiple tasks to be performed at the same time in an asynchronous manner, such
that none of the tasks block one another.

Solution
Utilize CompletableFuture objects to represent the state of each task that is currently being performed. Each
CompletableFuture object will run on a designated or application-determined background thread, issuing a
callback to the original calling method once completed.

In the following solution, two long-running tasks are invoked by a calling method, and they each utilize
the CompletableFuture to report status once the task has been completed.

public class Recipe10_12 {

 public static void main(String[] args) {
 try {
 CompletableFuture tasks = performWork()
 .thenApply(work -> {
 String newTask = work + " Second task complete!";
 System.out.println(newTask);
 return newTask;
 }).thenApply(finalTask -> finalTask + " Final Task Complete!");

 CompletableFuture future = performSecondWork("Java 9 is Great! ");
 while(!tasks.isDone()){
 System.out.println(future.get());
 }
 System.out.println(tasks.get());

 } catch (ExecutionException | InterruptedException ex) {

 }
 }

 /**
 * Returns a CompleableFuture object.
 * @return
 */
 public static CompletableFuture performWork() {
 CompletableFuture resultingWork = CompletableFuture.supplyAsync(
 () -> {
 String taskMessage = "First task complete!";
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ex) {
 System.out.println(ex);
 }

CHapTer 10 ■ ConCurrenCy

265

 System.out.println(taskMessage);
 return taskMessage;
 });
 return resultingWork;

 }

 /**
 * Accepts a String and returns a CompletableFuture.
 * @param message
 * @return
 */
 public static CompletableFuture performSecondWork(String message) {
 CompletableFuture resultingWork = CompletableFuture.supplyAsync(
 () -> {
 String taskMessage = message + " Another task complete!";
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ex) {
 System.out.println(ex);
 }

 return taskMessage;
 });
 return resultingWork;

 }
}

Results:

First task complete!
First task complete! Second task complete!
Java 9 is Great! Another task complete!
First task complete! Second task complete! Final Task Complete!

How It Works
CompletableFuture<T> was added in Java 8 to build out support for asynchronous tasks.
CompletableFuture<T> is an extension of Future<T>, which adds many methods to promote asynchronous,
event-driven programming models, and also allows for values to be set at any time. The latter functionality
means that a CompletableFuture can be created prior to when it is required, in the case that an application
will need to use it in the future.

There are a couple of options for creating a CompletableFuture object, either manually or via the
utilization of factory methods. Manual creation of a CompleteableFuture will can be done without binding
to any thread, and such a tactic can be useful in cases such as when an application requires a placeholder for
an event that will occur in the future. The following code demonstrates how to create a CompletableFuture
manually:

final <CompletableFutureString> completableFuture = new CompletableFuture<>();

CHapTer 10 ■ ConCurrenCy

266

One would utilize a factory to generate a CompletableFuture to return an object that is geared
toward a specific task or outcome. There are a number of different factory methods to call upon to
return such an object. Some of the factory methods accept arguments, and others do not. For instance,
the CompletableFuture.runAsync(Runnable) method returns a CompletableFuture that first executes
the provided Runnable, and then asynchronously completes by a task running in the ForkJoinPool.
commonPool(). Another variation of the runAsync() method accepts both a Runnable and an Executor,
which first executes the provided Runnable, then asynchronously completes by a task within the given
Executor.

The CompletableFuture object also contains a number of methods that are much like that of the
standard Future object. For instance, the isDone(), cancel(), and isCompletedExceptionally() methods
each return boolean to indicate a status on the object. It is also possible to stack asynchronous tasks with
a CompletableFuture by calling upon the thenApply() method, which accepts lambda expressions and
method references. The solution to this recipe demonstrates how to utilize the thenApply() method to
invoke an asynchronous task from another. First, a CompletableFuture object named performWork()
is executed, then a lambda is executed creating a concatenated String based upon the String that was
generated within performWork(). Once the second task has completed, another task is invoked to append
more text to the String. The future.get() method is then called within a loop in order to see the String
being transformed by the application over time. Lastly, the outcome of the fully completed task is printed.

Java 9 added some enhancements to the CompletableFuture. There is now better support for delays
and timeouts by maintaining a thread for triggering and canceling actions. It also maintains better support
for subclassing and some utility methods.

Summary
It is important to understand the fundamentals of concurrency when developing applications. There is
nothing worse than testing an application successfully, and then having it fail with a deadlock once it is
released into production. This chapter started with the basics, demonstrating how to spawn a background
task. It then went on to cover various techniques for handing concurrency, from creating threads to using the
Fork/Join framework to divide work into discrete tasks. Lastly, the chapter closed out with coverage of the
CompletableFuture and some of the new additions to the class in Java 9.

267© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_11

CHAPTER 11

Debugging and Unit Testing

Debugging is a big part of software development. To effectively debug, you must be able to “think” like a
computer and dive into the code, deconstructing every step that lead to the logic error that you’re working to
resolve. In the beginning of computer programming, there weren’t a lot of tools to help in debugging. Mostly,
debugging involved taking a look at your code and spotting inconsistencies; then resubmitting the code to
be compiled again. Today, every IDE offers the ability of using breakpoints and inspecting memory variables,
making it much easier to debug. Outside the IDE there are other tools that help in daily debugging, building,
and testing of your project; and these tools ensure that your code is being continually tested for errors that
may be introduced when programming. In this chapter, you explore the different tools that will help aid in
debugging, analyzing, and testing Java software.

This chapter covers some debugging and unit testing basics. You will learn how to perform unit testing
from the command line or terminal using Apache Ant, along with JUnit. You will also learn how to make use
of the NetBeans Profiler, among other tools, for profiling and monitoring your applications.

11-1. Understanding Exceptions
Problem
You caught and logged an exception, and you need to determine its cause.

Solution
Analyze the output from the exception’s printStackTrace() method:

public class Recipe11_1 {
 public static void main (String[] args) {
 Recipe11_1 recipe = new Recipe11_1();
 recipe.startProcess();
 }

 private void startProcess() {
 try {
 int a = 5/0;
 } catch (Exception e) {
 e.printStackTrace();
 }

 }
}

Chapter 11 ■ Debugging anD unit testing

268

Result:

java.lang.ArithmeticException: / by zero
 at org.java8recipes.chapter11.recipe11_01.Recipe11_1.start(Recipe11_1.java:18)
 at org.java8recipes.chapter11.recipe11_01.Recipe11_1.main(Recipe11_1.java:13)

How It Works
In programming lingo, a stack refers to the list of functions that were called to get to a point in your program,
usually starting from the immediate (System.out.println()) to the more general (public static void
main). Every program keeps track of which code was executed in order to reach a specific part of the code.
Stack trace’s output refers to the stack that was in memory when an error occurred. Exceptions thrown in
Java keep track of where they occurred and which code path was executed when the exception was thrown.
Stack trace shows from the most specific place where the exception occurred (the line where the exception
occurred) to the top-level invoker of the offending code (and everything in between). This information
then allows you to pinpoint which method calls were performed, and may help shed some light on why the
exception was thrown.

In this example, the divide-by-zero exception occurred on line 18 of Recipe11_1.java and was caused
by a call from the main() method (at line 13). Sometimes, when looking at the stack trace’s output, you
will see methods that don’t belong to the project. This happens naturally as sometimes method calls are
generated in other parts of a working system. It is, for example, very common to see Abstract Window Toolkit
(AWT) methods in Swing applications when an exception is raised (due to the nature of the EventQueue). If
you look at the more specific function calls (earliest), you will eventually run with the project’s own code and
can then try to determine why the exception was thrown.

 ■ Note the stack trace output will contain line number information if the program is compiled with “Debug”
info. by default, most iDes will include this information when running in a Debug configuration. Oftentimes, the
iDe will also make the line number of the error(s) easily accessible by generating a direct link that will take you
to the offending line of code. if using the command line, use the –g option to compile and generate debugging
information.

11-2. Locking Down Behavior of Your Classes
Problem
You need to lock down the behavior of your class and want to create unit tests that will be used to verify the
specific behavior in your application.

Chapter 11 ■ Debugging anD unit testing

269

Solution
Use JUnit to create unit tests that verify behavior in your classes. To use this solution, you need to include
the JUnit dependencies in your class path. JUnit can be downloaded from http://www.junit.org, or you
can simply add the Maven dependency to your project. If you choose to download it then you will need to
load both junit.jar and hamcrest.jar. At the time of this writing, the Maven dependency was as follows, please
change version accordingly:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
</dependency>

When JUnit becomes part of your project, you will be able to include the org.junit and junit.
framework namespaces. In this example two unit tests are created for the MathAdder class. The MathAdder
class contains two methods: addNumber (int, int) and substractNumber (int,int). These two methods
return the addition (or subtraction) of their passed parameters (a simple class). The unit tests (marked by
the @Test annotation) verify that the MathAdder class does, in fact, add and/or subtract two numbers.

package org.java8recipes.chapter11;

import junit.framework.Assert;
import org.junit.Test;

public class Recipe11_2_MathAdderTest {

 @Test
 public void testAddBehavior() {
 Recipe_11_2_MathAdder adder = new Recipe_11_2_MathAdder();
 for (int i =0;i < 100;i++) {
 for (int j =0;j < 100;j++) {
 Assert.assertEquals(i+j,adder.addNumbers(i,j));

 }
 }
 }

 @Test
 public void testSubstractBehavior() {
 Recipe_11_2_MathAdder adder = new Recipe_11_2_MathAdder();
 for (int i =0;i < 100;i++) {
 for (int j =0;j < 100;j++) {
 Assert.assertEquals(i-j,adder.substractNumber(i,j));

 }
 }
 }
}

http://www.junit.org/

Chapter 11 ■ Debugging anD unit testing

270

To execute this test, use your IDE to run the test class. For example, in NetBeans, you must refactor the
test class by right-clicking it and moving it into the “Test Packages” module within the NetBeans project.
Once you’ve moved the test class into the desired package within “Test Packages,” right-click and run the file
to perform the tests.

 ■ Note at the time of this writing, the Junit 5 library was in active development. it is the next generation of
Junit and includes many new pieces of functionality that take advantage of newer JVM language constructs,
such as lambdas. this recipe focuses on Junit 4, since it is a mature test suite. For more information on Junit 5,
please refer to the following website: http://junit.org/junit5/

How It Works
Unit tests are useful for testing your code to ensure that expected behaviors occur within your classes.
Including unit tests in your project makes it less likely to break functionality when adding or refactoring
code. When you create unit tests, you are specifying how an object should behave (what is referred to as its
contract). The unit tests ensure that the expected behavior occurs (they do this by verifying the result of a
method and using the different JUnit.Assert methods).

The first step to writing a unit test is to create a new class that describes the behavior you want to verify.
One of the general unit–test naming conventions is to create a class with the same name as the class being
tested with the postfix of Test; in this recipe’s example, the main class is called Recipe11_2_MathAdder,
while the testing class is called Recipe11_2_MathAdderTest.

The unit test class (MathAdderTest) will contain methods that check and verify the behavior of the class.
To do so, method names are annotated. Annotations are forms of metadata, and a developer can “annotate”
specified portions of code, thereby adding information to the annotated code. This extra information is not
used by the program, but by the compiler/builder (or external tools) to guide the compilation, building, and/
or testing of the code. For unit-testing purposes, you annotate the methods that are part of the unit test by
specifying @Test before each method name. Within each method, you use Assert.assertEquals (or any of
the other Assert static methods) to verify behavior.

The Assert.assertEquals method instructs the unit-testing framework to verify that the expected
value of the method call from the class that you are testing is the same as the actual value returned by its
method call. In the recipe example, Assert.assertEquals verifies that the MathAdder is correctly adding the
two integers. While the scope of this class is trivial, it shows the bare minimum requirements to have a fully
functional unit test.

If the Assert call succeeds, it gets reported in the unit test framework as a “passed” test; if the Assert
call fails, then the unit test framework will stop and display a message showing where the unit test failed.
Most modern IDEs have the capability of running unit test classes by simply right-clicking the name and
selecting Run/Debug (and that’s the intended way of running the Chapter_11_2_MathAdderTest recipe).

While it is true that IDEs can run unit tests while developing, they are created with the intention of
being run automatically (usually triggered by a scheduled build or by a version control system’s check-in),
which is what the Recipe 11-3 talks about.

11-3. Scripting Your Unit Tests
Problem
You want to automatically run your unit tests, rather than manually invoke them.

http://junit.org/junit5/

Chapter 11 ■ Debugging anD unit testing

271

Solution
Use and configure JUnit and Ant. To do so, follow these steps:

 1. Download Apache Ant (located at http://ant.apache.org/).

 2. Uncompress Apache Ant into a folder (for example, c:\ant for Windows systems
or /Development for OS X).

 3. Make sure that Apache Ant can be executed from the command line or terminal.
In Windows, this means adding the apache-ant/bin folder to the path as follows:

 a. Go to Control Panel ➤ System.

 b. Click Advanced system settings.

 c. Click Environment Variables.

 d. In the System Variables list, double-click the variable name PATH.

 e. At the end of the String, add ;C:\apache-ant-1.8.2\bin (or the folder that
you uncompressed Apache Ant into).

 f. Click OK (on each of the popup boxes that were opened before) to accept
the changes.

 ■ Note apache ant comes preinstalled on Os X, so you do not have to install or configure it. to verify this,
open a terminal window and type ant –version to see which version is installed on the system.

Make sure that the JAVA_HOME environment variable is defined. In Windows, this means adding a new
environment variable called JAVA_HOME. For example:

Go to Control Panel ➤ System.

 4. Click Advanced system settings.

 5. Click Environment Variables. In the System Variables list, check to see whether
there is variable named JAVA_HOME and that the value points to your JDK
distribution. If JAVA_HOME is not present, click New. Set the variable name to
JAVA_HOME and set the variable value to C:\Program Files\Java\jdk1.9.0 or
the root of your JDK 9 installation.

On OS X, environment variables are set up within the .bash profile file, which resides within the user
home directory. To add JAVA_HOME, add a line such as the following to the .bash_profile:

export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.9.0.jdk/Contents/Home

Test that you can reach Ant, and that Ant can find your JDK installation. To test that the changes took
effect, do the following:

 6. Open a command window or terminal.

 7. Type ant.

http://ant.apache.org/

Chapter 11 ■ Debugging anD unit testing

272

If you receive the message "Ant is not recognized as an internal or external command," redo
the first steps of setting up the PATH variable (the first set of instructions). If you receive the message "unable
to locate tools.jar," you need to create and/or update the JAVA_HOME path for your installation (the
second set of instructions).

The message "Buildfile: build.xml does not exist!" means that your setup is ready to be built
using Ant. Congratulations!

 ■ Note When changing environment variables in Microsoft Windows or Os X, it is necessary to close
previous command-line or terminal windows and reopen them because changes are only applied to new
command windows.

Create build.xml at the root of your project and put the following bare-bones Ant script as the contents
of the build.xml file. This particular build.xml file contains information that Ant will use to compile and
test this recipe.

<project default="test" name="Chapter11Project" basedir=".">
<property name="src" location="src"/>
<property name="build" location="build/"/>
<property name="src.tests" location="src/"/>
<property name="reports.tests" location="report/" />

<path id="build.path">
<fileset dir="dep">
<include name="**/*.jar" />
</fileset>
<pathelement path="build" />
</path>

<target name="build">
<mkdir dir="${build}" />
<javac srcdir="${src}" destdir="${build}">
<classpath refid="build.path" />
</javac>
</target>

<target name="test" depends="build">
<mkdir dir="${reports.tests}" />
<junit fork="yes" printsummary="yes" haltonfailure="yes">
<classpath refid="build.path" />
<formatter type="plain"/>

<batchtest fork="yes" todir="${reports.tests}">
<fileset dir="${src.tests}">
<include name="**/*Test*.java"/>
</fileset>
</batchtest>
</junit>
</target>
</project>

Chapter 11 ■ Debugging anD unit testing

273

 ■ Note to execute this recipe, open a command-line window or terminal, navigate to the Chapter 11 folder,
type ant, and press enter.

How It Works
Apache Ant (or simply Ant) is a program that allows you to script your project’s build and unit testing. By
configuring Ant, you can build, test, and deploy your application using the command line. (In turn, it can
be scheduled to be run automatically by the operating system.) Ant can automatically run unit tests and
report on the result of these tests. These results can then be analyzed after each run to pinpoint changes in
behavior.

Due to Ant’s complexity, it has a large learning curve, but it allows for a lot of flexibility on compiling,
building, and weaving code. By using Ant, it is possible to achieve the utmost configuration on how your
project is built.

 ■ Note Visit http://ant.apache.org/manual/index.html for a more in-depth tutorial of ant.

The build.xml file contains instructions on how to compile your project, which class path to use, and
what unit tests to run. Each build.xml contains a <project> tag that encapsulates the steps to build the
project. Within each <project> there are targets, which are “steps” in the build process. A <target> can
depend on other targets, allowing you to establish dependencies in your project (in this recipe’s example, the
target “test” depends on the target “build,” meaning that to run the test target, Ant will first run the build target).

Each target contains tasks. These tasks are extensible, and there is a core set of tasks that you can use
out of the box. The <javac>task will compile a set of Java files specified within the src attribute and write
the output to the dest attribute. As part of the <javac> task, you can specify which class path to use. In this
example, the class path is specified by referring to a previously defined path, known as build.path. Ant
provides ample support for creating class paths. In this recipe, the class path is defined as any file that has
the .jar extension located in the dep folder.

The other task in the build target is <junit>. This task will find a unit test specified in its task and run it.
The unit tests are defined within the <batchtest> property. By using the <fileset> property, it is possible
to tell JUnit to find any file that has the word Test in its name and ends with the .java extension. Once JUnit
runs each test, it will write out a summary to the console and write a report on the results of the unit tests to
the reports.tests folder.

 ■ Note You can define variables in a build.xml file by using the <property> tag. Once a property is
defined, it can be accessed as part of another task using the ${propertyName} syntax. this allows you to
quickly change a build script in response to structural changes (for example, switching target/source folders
around).

11-4. Finding Bugs Early
Problem
You want to ensure that you are able to find the maximum number of bugs at design time.

http://dx.doi.org/10.1007/978-1-4842-1976-8_11
http://ant.apache.org/manual/index.html

Chapter 11 ■ Debugging anD unit testing

274

Solution
Use FindBugs to scan your software for issues. Use an Ant build file that includes FindBugs for reporting
purposes.

The following is the new build.xml file that adds FindBugs reporting:

<project default="test" name="Chapter11Project" basedir=".">

<property name="src" location="src"/>
<property name="build" location="build/"/>
<property name="reports.tests" location="report/" />
<property name="classpath" location="dep/" />

<!-- Findbugs Static Analyzer Info -->
<property name="findbugs.dir" value="dep/findbugs" />
<property name="findbugs.report" value="findbugs" />

<path id="findbugs.lib" >
<fileset dir="${findbugs.dir}" includes="*.jar"/>
</path>
<taskdef name="findbugs" classpathref="findbugs.lib" classname="edu.umd.cs.findbugs.anttask.
FindBugsTask"/>

<path id="build.path">
<fileset dir="dep">
<include name="**/*.jar" />
</fileset>
</path>

<target name="clean">
<delete dir="${build}" />
<delete dir="${reports.tests}" />
<delete dir="${coverage.dir}" />
<delete dir="${instrumented}" />
<mkdir dir="${build}" />
<mkdir dir="${reports.tests}" />
<mkdir dir="${coverage.dir}" />

</target>

<target name="build">
<javac srcdir="${src}" destdir="${build}" debug="${debug}">
<classpath refid="build.path" />
</javac>
</target>

<target name="test" depends="clean,build">
<junit fork="yes" printsummary="yes" haltonfailure="yes">
<classpath refid="build.path" />
<formatter type="plain"/>

Chapter 11 ■ Debugging anD unit testing

275

<batchtest fork="yes" todir="${reports.tests}">
<fileset dir="${build}">
<include name="**/*Test*.class"/>
</fileset>
</batchtest>
<jvmarg value="-XX:-UseSplitVerifier" />
</junit>

</target>

<target name="findbugs" depends="clean">
<antcall target="build">
<param name="debug" value="true" />
</antcall>

<mkdir dir="${findbugs.report}" />
<findbugs home="${findbugs.dir}"
 output="html"
 outputFile="${findbugs.report}/index.html"
 reportLevel="low"
>
<class location="${build}/" />
<auxClasspath refid="build.path" />
<sourcePath path="${src}" />
</findbugs>
</target>
</project>

To run this recipe, download FindBugs (http://findbugs.sourceforge.net/downloads.html).
Uncompress into a folder in your computer, then copy the contents of the ./lib/ folder into your project’s
/dep/findbugs folder (create the /dep/findbugs folder if necessary). Make sure that /dep/findbugs/
findbugs.jar and /dep/findbugs/findbugs-ant.jar are present.

How It Works
FindBugs is a Static Code Analyzer (SCA). It will parse your program’s compiled file and spot commonly
found errors in coding (not syntax errors, but certain types of logic errors). As an example, one of the errors
that FindBugs will spot is comparing two Strings using == instead of String.equals(). The analysis is then
written as HTML (or text) that can be viewed with a browser. Catching errors from FindBugs is easy, and
adding it as part of your continuous integration process is extremely beneficial.

At the beginning of build.xml, you define the FindBugs tasks. This section specifies where the .jar files
are that define the new task (dep\findbugs), and also determines where to put the report when done.

The build.xml also has a new target project called “findbugs.” The findbugs target compiles the source
files with debug information (having debug information helps on the FindBugs report as it will include the line
number when reporting errors), and then proceeds to analyze the byte-code for errors. In the findbugs task, you
specify the location of the compiled .class files (this is the <class> property), the location of the dependencies
for your project (<auxClasspath> property), and the location of the source code (<sourcePath> property).

Within the findbugs target, there is an <antcall> task. The <antcall> task simply runs the target
specified within the <antcall> task. Just before the <antcall> task, you assign the debug <property> to
true. This in turn gets passed to the <javac> task as debug="${debug}". When the debug <property> is
set to true, the <javac> task will include debug information into the compilation of the Java source files.

http://findbugs.sourceforge.net/downloads.html

Chapter 11 ■ Debugging anD unit testing

276

Having debug information in the compiled files will help generate a more readable FindBugs report, as it
will include line numbers for where issues are found. The trick of assigning properties from within an Ant
target is used throughout build.xml files to selectively enable certain behavior when going through specific
build targets. If you were to build the regular build target, the results of the build would not contain debug
information. If instead, you were to build the findbugs target because the findbugs target replaces the debug
<property> to true, the result of the build would have debug information.

 ■ Tip to invoke ant to run the default “target” (as specified in the build.xml), just type ant. to specify another
.xml file (instead of build.xml), type ant –f nameofotherfile.xml. to change the default target to run, type
the name of the target at the end (for example, ant clean).to run this example, type ant –f findbugsbuild.xml
findbugs. this will ask ant to use the findbugsbuild.xml file and to run the findbugs target.

11-5. Monitoring Garbage Collection in Your Application
Problem
You notice that your application seems to be slowing down and suspect that there are garbage collections
happening.

Solution 1
Add -Xloggc:gc.log-XX:+PrintGCDetails-XX:+PrintGCTimeStamps as parameters when starting your Java
program. These parameters allow you to log garbage collection information to the gc.log file, including the
time garbage collections occur, along with the details (if it was a minor or major garbage collection and how
long it took).

Ant target that executes Recipe 11_5 with garbage logging on.

<target name="Recipe11_5" depends="build">
<java classname="org.java9recipes.chapter11.Recipe11_5" fork="true">
 <classpath refid="build.path" />
 <jvmarg value="-Xloggc:gc.log" />
 <jvmarg value="-XX:+PrintGCDetails" />
 <jvmarg value="-XX:+PrintGCTimeStamps" />
</java>
</target>

In this build.xml file, the Java task is being used to add the arguments for garbage collection logging to
the compiler before launching the application. To run this example throughout Ant, type ant Recipe11_5.

Solution 2
Analyze your program’s memory consumption and more by using the NetBeans “Profiler” tool. To run the
profiler, select the file or project that you want to perform the profiling against and choose the Profile Project
or Profile File command from within the NetBeans Profile menu. You can also right-click the project or file to
access the contextual menu Profile option.

Chapter 11 ■ Debugging anD unit testing

277

The Profiler dialog (Figure 11-1) will open, allowing you to select and configure options. In this solution,
simply select the Run button to perform the profiling with the default settings.

Once the profiler begins, it will run until you stop it using the Stop button on the Controls panel.
The generated output should resemble something like that shown in Figure 11-2.

Figure 11-1. NetBeans Profiler

Figure 11-2. NetBeans Profiler results

Chapter 11 ■ Debugging anD unit testing

278

How It Works
Adding the flag to log garbage collection in solution 1 will cause your Java application to write minor and
major garbage collections information into a log file. This allows you to “reconstruct” in time what happened
to the application and to spot probable memory leaks (or at least other memory-related issues). This is the
preferred troubleshooting method for production systems, as it is usually lightweight and can be analyzed
after the garbage collection has occurred.

Solution 2 instead involves using an open source tool that comes installed with NetBeans IDE. This
tool allows you to profile code while it is running. It is a great tool to understanding in situ what’s occurring
within your application, as you can see real-time CPU consumption, garbage collections, threads created,
and classes loaded.

This recipe barely scratches the surface of the NetBeans Profiler. See the online documentation at
https://profiler.netbeans.org/ for more information.

 ■ Note before you can use the netbeans profiler, you must calibrate the target JVM. to do so, open the
Manage Calibration Data dialog within netbeans and select the JVM that you want to calibrate. You can find the
Manage Calibration Data option by opening the profile menu, then choosing advanced Commands.

11-6. Obtaining a Thread Dump
Problem
Your program seems to “hang” without doing anything, and you suspect that there might be a deadlock.

Solution
Use JStack to get a thread dump, and then analyze the thread dump for deadlocks. The following JStack is
a thread dump from the class org.java9recipes.chapter11.recipe11_06.Recipe 11_6, which creates a
deadlock. The code of Recipe11_6.java is as follows:

public class Recipe11_6 {
 Lock firstLock = new ReentrantLock();
 Lock secondLock = new ReentrantLock();

 public static void main (String[] args) {
 Recipe11_6 recipe = new Recipe11_6();
 recipe.start();
 }

 private void start() {
 firstLock.lock();
 Thread secondThread = new Thread(() -> {
 secondLock.lock();
 firstLock.lock();
 });

https://profiler.netbeans.org/

Chapter 11 ■ Debugging anD unit testing

279

 secondThread.start();
 try {
 Thread.sleep(250);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 secondLock.lock();

 secondLock.unlock();
 firstLock.unlock();

 }

}

Execute the code from the command line or IDE, and then inspect the process ID using an operating
system utility such as the Task Manager. As can be seen from the following command, the example code is
running under process ID of 19705:

jstack -l 19705

Full thread dump Java HotSpot(TM) 64-Bit Server VM (25.66-b17 mixed mode):

"Attach Listener" #11 daemon prio=9 os_prio=31 tid=0x00007f95c5818000 nid=0x380b waiting on
condition [0x0000000000000000]
 java.lang.Thread.State: RUNNABLE

 Locked ownable synchronizers:
 - None

"Thread-0" #10 prio=5 os_prio=31 tid=0x00007f95c41ba000 nid=0x5503 waiting on condition
[0x000000012afba000]
 java.lang.Thread.State: WAITING (parking)
 at sun.misc.Unsafe.park(Native Method)
 - parking to wait for <0x000000076ab76698> (a java.util.concurrent.locks.

ReentrantLock$NonfairSync)
 at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt

(AbstractQueuedSynchronizer.java:836)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireQueued(AbstractQueue

dSynchronizer.java:870)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSync

hronizer.java:1199)
 at java.util.concurrent.locks.ReentrantLock$NonfairSync.lock(ReentrantLock.java:209)
 at java.util.concurrent.locks.ReentrantLock.lock(ReentrantLock.java:285)
 at org.java9recipes.chapter11.recipe11_06.Recipe11_6.lambda$start$0(Recipe11_6.

java:25)
 at org.java9recipes.chapter11.recipe11_06.Recipe11_6$$Lambda$1/1418481495.

run(Unknown Source)
 at java.lang.Thread.run(Thread.java:745)

Chapter 11 ■ Debugging anD unit testing

280

 Locked ownable synchronizers:
 - <0x000000076ab766c8> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)

"Service Thread" #9 daemon prio=9 os_prio=31 tid=0x00007f95c4051000 nid=0x5103 runnable
[0x0000000000000000]
 java.lang.Thread.State: RUNNABLE

 Locked ownable synchronizers:
 - None

"C1 CompilerThread3" #8 daemon prio=9 os_prio=31 tid=0x00007f95c4031800 nid=0x4f03 waiting
on condition [0x0000000000000000]
 java.lang.Thread.State: RUNNABLE

 Locked ownable synchronizers:
 - None

"C2 CompilerThread2" #7 daemon prio=9 os_prio=31 tid=0x00007f95c4031000 nid=0x4d03 waiting
on condition [0x0000000000000000]
 java.lang.Thread.State: RUNNABLE

 Locked ownable synchronizers:
 - None

"C2 CompilerThread1" #6 daemon prio=9 os_prio=31 tid=0x00007f95c4030000 nid=0x4b03 waiting
on condition [0x0000000000000000]
 java.lang.Thread.State: RUNNABLE

 Locked ownable synchronizers:
 - None

"C2 CompilerThread0" #5 daemon prio=9 os_prio=31 tid=0x00007f95c402e800 nid=0x4903 waiting
on condition [0x0000000000000000]
 java.lang.Thread.State: RUNNABLE

 Locked ownable synchronizers:
 - None

"Signal Dispatcher" #4 daemon prio=9 os_prio=31 tid=0x00007f95c401a000 nid=0x3c17 runnable
[0x0000000000000000]
 java.lang.Thread.State: RUNNABLE

 Locked ownable synchronizers:
 - None

"Finalizer" #3 daemon prio=8 os_prio=31 tid=0x00007f95c283a800 nid=0x3503 in Object.wait()
[0x0000000128e91000]
 java.lang.Thread.State: WAITING (on object monitor)
 at java.lang.Object.wait(Native Method)
 - waiting on <0x000000076ab070b8> (a java.lang.ref.ReferenceQueue$Lock)
 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:143)

Chapter 11 ■ Debugging anD unit testing

281

 - locked <0x000000076ab070b8> (a java.lang.ref.ReferenceQueue$Lock)
 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:164)
 at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:209)

 Locked ownable synchronizers:
 - None

"Reference Handler" #2 daemon prio=10 os_prio=31 tid=0x00007f95c4003800 nid=0x3303 in
Object.wait() [0x0000000128d8e000]
 java.lang.Thread.State: WAITING (on object monitor)
 at java.lang.Object.wait(Native Method)
 - waiting on <0x000000076ab06af8> (a java.lang.ref.Reference$Lock)
 at java.lang.Object.wait(Object.java:502)
 at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:157)
 - locked <0x000000076ab06af8> (a java.lang.ref.Reference$Lock)

 Locked ownable synchronizers:
 - None

"main" #1 prio=5 os_prio=31 tid=0x00007f95c280d800 nid=0x1303 waiting on condition
[0x000000010d286000]
 java.lang.Thread.State: WAITING (parking)
 at sun.misc.Unsafe.park(Native Method)
 - parking to wait for <0x000000076ab766c8> (a java.util.concurrent.locks.

ReentrantLock$NonfairSync)
 at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(Abstr

actQueuedSynchronizer.java:836)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireQueued(AbstractQueue

dSynchronizer.java:870)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSync

hronizer.java:1199)
 at java.util.concurrent.locks.ReentrantLock$NonfairSync.lock(ReentrantLock.java:209)
 at java.util.concurrent.locks.ReentrantLock.lock(ReentrantLock.java:285)
 at org.java9recipes.chapter11.recipe11_06.Recipe11_6.start(Recipe11_6.java:34)
 at org.java9recipes.chapter11.recipe11_06.Recipe11_6.main(Recipe11_6.java:18)

 Locked ownable synchronizers:
 - <0x000000076ab76698> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)

"VM Thread" os_prio=31 tid=0x00007f95c3830800 nid=0x3103 runnable

"GC task thread#0 (ParallelGC)" os_prio=31 tid=0x00007f95c3005000 nid=0x2103 runnable

"GC task thread#1 (ParallelGC)" os_prio=31 tid=0x00007f95c3005800 nid=0x2303 runnable

"GC task thread#2 (ParallelGC)" os_prio=31 tid=0x00007f95c3006000 nid=0x2503 runnable

"GC task thread#3 (ParallelGC)" os_prio=31 tid=0x00007f95c4000000 nid=0x2703 runnable

"GC task thread#4 (ParallelGC)" os_prio=31 tid=0x00007f95c4001000 nid=0x2903 runnable

Chapter 11 ■ Debugging anD unit testing

282

"GC task thread#5 (ParallelGC)" os_prio=31 tid=0x00007f95c3007000 nid=0x2b03 runnable

"GC task thread#6 (ParallelGC)" os_prio=31 tid=0x00007f95c3007800 nid=0x2d03 runnable

"GC task thread#7 (ParallelGC)" os_prio=31 tid=0x00007f95c3807000 nid=0x2f03 runnable

"VM Periodic Task Thread" os_prio=31 tid=0x00007f95c401b000 nid=0x5303 waiting on condition

JNI global references: 308

Found one Java-level deadlock:
=============================
"Thread-0":
 waiting for ownable synchronizer 0x000000076ab76698, (a java.util.concurrent.locks.
ReentrantLock$NonfairSync),

 which is held by "main"
"main":
 waiting for ownable synchronizer 0x000000076ab766c8, (a java.util.concurrent.locks.
ReentrantLock$NonfairSync),

 which is held by "Thread-0"

Java stack information for the preceding threads:
===
"Thread-0":
 at sun.misc.Unsafe.park(Native Method)
 - parking to wait for <0x000000076ab76698> (a java.util.concurrent.locks.

ReentrantLock$NonfairSync)
 at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(Abstr

actQueuedSynchronizer.java:836)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireQueued(AbstractQueue

dSynchronizer.java:870)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSync

hronizer.java:1199)
 at java.util.concurrent.locks.ReentrantLock$NonfairSync.lock(ReentrantLock.java:209)
 at java.util.concurrent.locks.ReentrantLock.lock(ReentrantLock.java:285)
 at org.java9recipes.chapter11.recipe11_06.Recipe11_6.lambda$start$0(Recipe11_6.

java:25)
 at org.java9recipes.chapter11.recipe11_06.Recipe11_6$$Lambda$1/1418481495.

run(Unknown Source)
 at java.lang.Thread.run(Thread.java:745)
"main":
 at sun.misc.Unsafe.park(Native Method)
 - parking to wait for <0x000000076ab766c8> (a java.util.concurrent.locks.

ReentrantLock$NonfairSync)
 at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(Abstr

actQueuedSynchronizer.java:836)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireQueued(AbstractQueue

dSynchronizer.java:870)

Chapter 11 ■ Debugging anD unit testing

283

 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSync
hronizer.java:1199)

 at java.util.concurrent.locks.ReentrantLock$NonfairSync.lock(ReentrantLock.java:209)
 at java.util.concurrent.locks.ReentrantLock.lock(ReentrantLock.java:285)
 at org.java9recipes.chapter11.recipe11_06.Recipe11_6.start(Recipe11_6.java:34)
 at org.java9recipes.chapter11.recipe11_06.Recipe11_6.main(Recipe11_6.java:18)

Found 1 deadlock.

For this recipe to function properly on Windows, you must have as part of your PATH environment
variable the JDK’s bin folder (For example C:\Program Files\java\jdk1.9.0\bin). If you have this path,
you can run the tools such as JStack and JPS. JStack comes preinstalled on OS X, so you should be able to run
it out of the box.

The JStack command uses as an argument –l (a dash and the letter L), which specifies a Long listing
(it does extra work to get more information about the threads running). The JStack also needs to know the PID
of the target VM. A quick way to list all running JVMs is to type JPS and press Enter. This will list the running
VMs and their PIDs. Figure 11-3 shows a screenshot of a JStack finding a deadlock in Recipe 11-6 from an OS
X machine.

 ■ Note For the purposes of this example, j.u.c.l represents java.util.concurrent.locks, and aqs
represents AbstractQueuedSynchronizer.

Figure 11-3. JStack results

Chapter 11 ■ Debugging anD unit testing

284

How It Works
JStack allows you to see all the stack traces that the current running threads have. JStack will also try to find
deadlocks (circular dependencies of locks) that might be stalling your system. JStack will not find other
problems such as livelock (when a thread is always spinning, such as with something like while(true)), or
starvation (when a thread cannot execute because it is too low of a priority or there are too many threads
competing for resources), but it will help you understand what each of the threads in your program is doing.

Deadlocks happen because one thread is waiting for a resource that another thread has, and the
second thread is waiting for a resource that the first thread has. In this situation, neither thread can continue
because both are waiting for each other to release the resource that each one owns. Deadlocks don’t only
happen between two threads, but can also involve a “String” of threads so that Thread A is waiting for
Thread B is waiting for Thread C is waiting for Thread D is waiting for the original Thread A. It is important to
understand the dump to find the culprit resource.

In this recipe’s example, Thread-0 wants to acquire the lock named 0x000000076ab76698; it’s described
in the thread dump as “waiting for ownable synchronizer.” Thread-0 cannot acquire the lock because it is
held by the main thread. The main thread, on the other hand, wants to acquire the lock 0x000000076ab766c8
(notice that they are different; the first lock ends in 98, while the second ends in c8), which is held by
Thread-0. This is a textbook definition of a deadlock on which each thread is forever waiting for each other
to release the lock the other thread has.

Aside from deadlock, looking at thread dumps gives you an idea about what your program is doing
in realtime. Especially in multithreaded systems, using thread dumps will help clarify where a thread is
sleeping or what condition it is waiting for.

 ■ Note Jstack is usually lightweight enough to be run in a live system, so if you need to troubleshoot live
problems, you can safely use Jstack.

Summary
In this chapter, we took a look at some of the most overlooked, yet most important pieces of software
development. Debugging, unit testing, and evaluation of application performance are key tasks that must
be performed in order to ensure that solid software is delivered. There are a number of useful utilities for
achieving these tasks, and this chapter briefly looked at a number of them.

285© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_12

CHAPTER 12

Unicode, Internationalization, and
Currency Codes

The Java platform provides a rich set of internationalization features to help you create applications that
can be used across the world. The platform provides the means to localize your applications, format dates
and numbers in a variety of culturally appropriate formats, and display characters used in dozens of writing
systems.

This chapter describes only some of the most frequent and common tasks that programmers must
perform when developing internationalized applications. Because new features have been added to the
Java language with regard to its abstraction of languages and regions, this chapter describes some of the
new ways you might use the Locale class. Other new features will be transparent to the developer, such as
the update to adhere to newer Unicode standards, but the updates provide compliance so that JDK 9 will
remain relevant for years to come. Java 9 includes support for Unicode 7.0, which adds 3000 characters, and
over 20 scripts.

 ■ Note The source code for this chapter’s examples is available in the org.java9recipes.chapter12 package.

12-1. Converting Unicode Characters to Digits
Problem
You want to convert a Unicode digit character to its respective integer value. For example, you have a String
containing the Thai digit for the value 8 and you want to generate an integer with that value.

Solution
The java.lang.Character class has several static methods to convert characters to integer digit values:

•	 public static intdigit(char ch, int radix)

•	 public static intdigit(intch, int radix)

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

286

The following code snippet iterates through the entire range of Unicode code points from 0x0000
through 0x10FFFF. For each code point that is also a digit, it displays the character and its digit value 0
through 9. You can find this example in the org.java9recipes.chapter12.recipe12_1.Recipe12_1 class.

int x = 0;
for (int c=0; c <= 0x10FFFF; c++) {
 if (Character.isDigit(c)) {
 ++x;
 System.out.printf("Codepoint: 0x%04X\tCharacter: %c\tDigit: %d\tName: %s\n", c, c,
 Character.digit(c, 10), Character.getName(c));
 }
}
System.out.printf("Total digits: %d\n", x);

Some of the output follows:

Codepoint: 0x0030 Character: 0 Digit: 0 Name: DIGIT ZERO
Codepoint: 0x0031 Character: 1 Digit: 1 Name: DIGIT ONE
Codepoint: 0x0032 Character: 2 Digit: 2 Name: DIGIT TWO
Codepoint: 0x0033 Character: 3 Digit: 3 Name: DIGIT THREE
Codepoint: 0x0034 Character: 4 Digit: 4 Name: DIGIT FOUR
Codepoint: 0x0035 Character: 5 Digit: 5 Name: DIGIT FIVE
Codepoint: 0x0036 Character: 6 Digit: 6 Name: DIGIT SIX
Codepoint: 0x0037 Character: 7 Digit: 7 Name: DIGIT SEVEN
Codepoint: 0x0038 Character: 8 Digit: 8 Name: DIGIT EIGHT
Codepoint: 0x0039 Character: 9 Digit: 9 Name: DIGIT NINE
Codepoint: 0x0660 Character: ٠ Digit: 0 Name: ARABIC-INDIC DIGIT ZERO
Codepoint: 0x0661 Character: ١ Digit: 1 Name: ARABIC-INDIC DIGIT ONE
Codepoint: 0x0662 Character: ٢ Digit: 2 Name: ARABIC-INDIC DIGIT TWO
Codepoint: 0x0663 Character: ٣ Digit: 3 Name: ARABIC-INDIC DIGIT THREE
Codepoint: 0x0664 Character: ٤ Digit: 4 Name: ARABIC-INDIC DIGIT FOUR
Codepoint: 0x0665 Character: ٥ Digit: 5 Name: ARABIC-INDIC DIGIT FIVE
Codepoint: 0x0666 Character: ٦ Digit: 6 Name: ARABIC-INDIC DIGIT SIX
Codepoint: 0x0667 Character: ٧ Digit: 7 Name: ARABIC-INDIC DIGIT SEVEN
Codepoint: 0x0668 Character: ٨ Digit: 8 Name: ARABIC-INDIC DIGIT EIGHT
Codepoint: 0x0669 Character: ٩ Digit: 9 Name: ARABIC-INDIC DIGIT NINE
...
Codepoint: 0x0E50 Character: ๐ Digit: 0 Name: THAI DIGIT ZERO
Codepoint: 0x0E51 Character: ๑ Digit: 1 Name: THAI DIGIT ONE
Codepoint: 0x0E52 Character: ๒ Digit: 2 Name: THAI DIGIT TWO
Codepoint: 0x0E53 Character: ๓ Digit: 3 Name: THAI DIGIT THREE
Codepoint: 0x0E54 Character: ๔ Digit: 4 Name: THAI DIGIT FOUR
Codepoint: 0x0E55 Character: ๕ Digit: 5 Name: THAI DIGIT FIVE
Codepoint: 0x0E56 Character: ๖ Digit: 6 Name: THAI DIGIT SIX
Codepoint: 0x0E57 Character: ๗ Digit: 7 Name: THAI DIGIT SEVEN
Codepoint: 0x0E58 Character: ๘ Digit: 8 Name: THAI DIGIT EIGHT
Codepoint: 0x0E59 Character: ๙ Digit: 9 Name: THAI DIGIT NINE
...

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

287

 ■ Note The sample code prints to the console. your console may not print all the character glyphs shown
in this example because of font or platform differences. however, the characters will be correctly converted to
integers.

How It Works
The Unicode character set is large, containing more than a million unique code points with integer values
ranging from 0x0000 through 0x10FFFF. Each character value has a set of properties. One of the properties
is isDigit. If this property is true, the character represents a numeric digit from 0 through 9. For example,
the characters with code point values 0x30 through 0x39 have the character glyphs 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9. If you simply convert these code values to their corresponding integer values, you would get the
hexadecimal values 0x30 through 0x39. The corresponding decimal values are 48 through 57. However,
these characters also represent numeric digits. When using them in calculations, these characters represent
the values 0 through 9.

When a character has the digit property, use the Character.digit() static method to convert it to
its corresponding integer digit value. Note that the digit() method is overloaded to accept either char or
int arguments. Additionally, the method requires a radix. Common values for the radix are 2, 10, and 16.
Interestingly, although the characters a–f and A–F do not have the digit property, they can be used as digits
using radix 16. For these characters, the digit() method returns the expected integer values 10 through 15.

A complete understanding of the Unicode character set and Java’s implementation requires familiarity
with several new terms: character, code point, char, encoding, serialization encoding, UTF-8, and UTF-
16. These terms are beyond the scope of this recipe, but you can learn more about these and other
Unicode concepts from the Unicode website at http://unicode.org or from the Character class Java API
documentation.

12-2. Creating and Working with Locales
Problem
You want to display numbers, dates, and time in a user-friendly way that conforms to the language and
cultural expectations of your customers.

Solution
The display format for numbers, dates, and time varies across the world and depends on your user’s
language and cultural region. Additionally, text collation rules vary by language. The java.util.Locale
class represents a specific language and region of the world. By determining and using your customer’s
locale, you can apply that locale to a variety of format classes, which can be used to create user-visible data
in expected forms. Classes that use Locale instances to modify their behavior for a particular language or
region are called locale-sensitive classes. You can learn more about locale-sensitive classes in Chapter 4. That
chapter shows you how to use Locale instances in the NumberFormat and DateFormat classes. In this recipe,
however, you learn different options for creating these Locale instances.

You can create a Locale instance in any of the following ways:

•	 Use the Locale.Builder class to configure and build a Locale object.

•	 Use the static Locale.forLanguageTag() method.

http://unicode.org/
http://dx.doi.org/10.1007/978-1-4842-1976-8_4

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

288

•	 Use the Locale constructors to create an object.

•	 Use preconfigured static Locale objects.

The Java Locale.Builder class has setter methods that allow you to create locales that can be
transformed into well-formed Best Common Practices (BCP) 47 language tags. The “How It Works” section
describes the BCP 47 standard in more detail. For now, you should simply understand that a Builder creates
Locale instances that comply with that standard.

The following code snippet from the org.java9recipes.chapter12.recipe12_2.Recipe12_2 class
demonstrates how to create Builder and Locale instances. You use the created locales in locale-sensitive
classes to produce culturally correct display formats:

private static final long number = 123456789L;
private static final Date now = new Date();

private void createFromBuilder() {
 System.out.printf("Creating from Builder...\n\n");
 String[][] langRegions = {{"fr", "FR"}, {"ja", "JP"}, {"en", "US"}};
 Builder builder = new Builder();
 Locale l = null;
 NumberFormat nf = null;
 DateFormat df = null;
 for (String[] lr: langRegions) {
 builder.clear();
 builder.setLanguage(lr[0]).setRegion(lr[1]);
 l = builder.build();
 nf = NumberFormat.getInstance(l);
 df = DateFormat.getDateTimeInstance(DateFormat.LONG, DateFormat.LONG, l);
 System.out.printf("Locale: %s\nNumber: %s\nDate: %s\n\n",
 l.getDisplayName(),
 nf.format(number),
 df.format(now));
 }

The previous code prints the following to the standard console:

Creating from Builder...

Locale: French (France)
Number: 123 456 789
Date: 14 septembre 2016 00:08:06 PDT

Locale: Japanese (Japan)
Number: 123,456,789
Date: 2016/09/14 0:08:06 PDT

Locale: English (United States)
Number: 123,456,789
Date: September 14, 2016 12:08:06 AM PDT

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

289

Another way to create Locale instances is by using the static Locale.forLanguageTag() method. This
method allows you to use BCP 47 language tag arguments. The following code uses the forLanguageTag()
method to create three locales from their corresponding language tags:

...
System.out.printf("Creating from BCP 47 language tags...\n\n");
String[] bcp47LangTags= {"fr-FR", "ja-JP", "en-US"};
Locale l = null;
NumberFormat nf = null;
DateFormat df = null;
for (String langTag: bcp47LangTags) {
 l = Locale.forLanguageTag(langTag);
 nf = NumberFormat.getInstance(l);
 df = DateFormat.getDateTimeInstance(DateFormat.LONG, DateFormat.LONG, l);
 System.out.printf("Locale: %s\nNumber: %s\nDate: %s\n\n",
 l.getDisplayName(),
 nf.format(number),
 df.format(now));
}
...

The output is similar to the results created from the Builder-generated Locale instance:

Creating from BCP 47 language tags...

Locale: French (France)
Number: 123 456 789
Date: 14 septembre 2016 01:07:22 PDT
...

You can also use constructors to create instances. The following code shows how to do this:

Locale l = new Locale("fr", "FR");

Other constructors allow you to pass fewer or more arguments. The argument parameters can include
language, region, and optional variant codes.

Finally, the Locale class has many predefined static instances for some commonly used cases. Because
the instances are predefined, your code needs to reference only the static instances. For example, the
following example shows how to reference existing static instances representing fr-FR, ja-JP, and en-US
locales:

Locale frenchInFrance = Locale.FRANCE;
Locale japaneseInJapan = Locale.JAPAN;
Locale englishInUS = Locale.US;

Refer to the locale Java API documentation for examples of other static instances.

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

290

How It Works
The Locale class gives locale-sensitive classes the context they need to perform culturally appropriate data
formatting and parsing. Some of the locale-sensitive classes include the following:

•	 java.text.NumberFormat

•	 java.text.DateFormat

•	 java.util.Calendar

A Locale instance identifies a specific language and can be finely tuned to identify languages written
in a particular script or spoken in a specific world region. Locale is an important and necessary element for
creating anything that depends on language or regional influences.

The Java Locale class is always being enhanced to provide better support for modern BCP 47 language
tags. BCP 47 defines Best Common Practices for using ISO standards for language, region, script, and variant
identifiers. Although the existing Locale constructors continue to be compatible with prior versions of the
Java platform, the constructors do not support the additional script tags. For example, only the more recently
added Locale.Builder class and Locale.forLanguageTag() method support the newer functionality
that identifies scripts. Because the Locale constructors do not enforce strict BCP 47 compliance, you
should avoid the constructors in any new code. Instead, developers should use the Builder class and the
forLanguageTag() method.

A Locale.Builder instance has a variety of setter methods that help you configure it to create a valid,
BCP 47–compliant Locale instance:

•	 public Locale.BuildersetLanguage(String language)

•	 public Locale.BuildersetRegion(String region)

•	 public Locale.BuildersetScript(String script)

Each of these methods throws a java.util.IllFormedLocaleException if its argument is not a well-
formed element of the BCP 47 standard. The language parameter must be a valid two- or three-letter ISO 639
language identifier. The region parameter must be a valid two-letter ISO 3166 region code or a three-digit
M.49 United Nations “area” code. Finally, the script parameter must be a valid four-letter ISO 15924 script
code.

The Builder lets you configure it to create a specific BCP 47–compliant locale. Once you set all the
configurations, the build() method creates and returns a Locale instance. Notice that all the setters can be
chained together for a single statement. The Builder pattern works by having each configuration method
return a reference to the current instance, on which further configuration methods may be called.

Locale aLocale = new Builder().setLanguage("fr").setRegion("FR").build();

The BCP 47 document and the standards that comprise it can be found at the following locations:

•	 BCP 47 (language tags): http://www.rfc-editor.org/rfc/bcp/bcp47.txt

•	 ISO 639 (language identifiers): http://www.loc.gov/standards/iso639-2/php/
code_list.php

•	 ISO 3166 (region identifiers): http://www.iso.org/iso/country_codes/iso_3166_
code_lists/country_names_and_code_elements.htm

•	 ISO 15924 (script identifiers): http://unicode.org/iso15924/

•	 United Nations M.49 (area identifiers): http://unstats.un.org/unsd/methods/
m49/m49.htm

http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm
http://unicode.org/iso15924/
http://unstats.un.org/unsd/methods/m49/m49.htm
http://unstats.un.org/unsd/methods/m49/m49.htm

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

291

12-3. Setting the Default Locale
Problem
You want to set the default locale for all locale-sensitive classes.

Solution
Use the Locale.setDefault() method to set a Locale instance that all locale-sensitive classes will use by
default. This method is overloaded with the following two forms:

•	 Locale.setDefault(Locale aLocale)

•	 Locale.setDefault(Locale.Category c, Locale aLocale)

This example code demonstrates how to set the default locale for all locale-sensitive classes:

Locale.setDefault(Locale.FRANCE);

You can also set the default for two additional locale categories, DISPLAY and FORMAT:

Locale.setDefault(Locale.Category.DISPLAY, Locale.US);
Locale.setDefault(Locale.Category.FORMAT, Locale.FR);

You can create code that uses these specific locale categories within your application to mix locale
choices for different purposes. For example, you may choose to use the DISPLAY locale for ResourceBundle
text while using the FORMAT locale for date and time formats. The example code from the org.java9recipes.
chapter12.recipe12_3.Recipe12_3 class demonstrates this more complex usage:

public class Recipe12_3 {

 private static final Date NOW = new Date();

 public void run() {
 // Set ALL locales to fr-FR
 Locale.setDefault(Locale.FRANCE);
 demoDefaultLocaleSettings();

 // System default is still fr-FR
 // DISPLAY default is es-MX
 // FORMAT default is en-US
 Locale.setDefault(Locale.Category.DISPLAY, Locale.forLanguageTag("es-MX"));
 Locale.setDefault(Locale.Category.FORMAT, Locale.US);
 demoDefaultLocaleSettings();

 // System default is still fr-FR
 // DISPLAY default is en-US
 // FORMAT default is es-MX
 Locale.setDefault(Locale.Category.DISPLAY, Locale.US);
 Locale.setDefault(Locale.Category.FORMAT, Locale.forLanguageTag("es-MX"));
 demoDefaultLocaleSettings();

 // System default is Locale.US
 // Resets both DISPLAY and FORMAT locales to en-US as well.
 Locale.setDefault(Locale.US);
 demoDefaultLocaleSettings();
 }

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

292

 public void demoDefaultLocaleSettings() {
 DateFormat df =
 DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.SHORT);
 ResourceBundle resource =
 ResourceBundle.getBundle("SimpleResources",
 Locale.getDefault(Locale.Category.DISPLAY));
 String greeting = resource.getString("GOOD_MORNING");
 String date = df.format(NOW);
 System.out.printf("DEFAULT LOCALE: %s\n", Locale.getDefault());
 System.out.printf("DISPLAY LOCALE: %s\n", Locale.getDefault(Locale.Category.DISPLAY));
 System.out.printf("FORMAT LOCALE: %s\n", Locale.getDefault(Locale.Category.FORMAT));
 System.out.printf("%s, %s\n\n", greeting, date);
 }

 public static void main(String[] args) {
 Recipe12_3 app = new Recipe12_3();
 app.run();
 }
}

This code produces the following output:

DEFAULT LOCALE: fr_FR
DISPLAY LOCALE: fr_FR
FORMAT LOCALE: fr_FR
Bonjour!, 19/09/16 20:31

DEFAULT LOCALE: fr_FR
DISPLAY LOCALE: es_MX
FORMAT LOCALE: en_US
¡Buenos días!, 9/19/16 8:31 PM

DEFAULT LOCALE: fr_FR
DISPLAY LOCALE: en_US
FORMAT LOCALE: es_MX
Good morning!, 19/09/16 08:31 PM

DEFAULT LOCALE: en_US
DISPLAY LOCALE: en_US
FORMAT LOCALE: en_US
Good morning!, 9/19/16 8:31 PM

How It Works
The Locale class allows you to set the default locale for two different categories. The categories are
represented by the Locale.Category enumeration:

•	 Locale.Category.DISPLAY

•	 Locale.Category.FORMAT

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

293

Use the DISPLAY category for your application’s user interface. Setting the default DISPLAY locale means
that the ResourceBundle class can load user interface resources for that particular locale independently
from the FORMAT locale. Setting the FORMAT default locale affects how the various Format subclasses behave.
For example, a default DateFormat instance will use the FORMAT default locale to create a locale-sensitive
output format. Again, these two categories are independent, so you can use different Locale instances for
different needs.

In this recipe’s sample code, the Locale.setDefault(Locale.FRANCE) method call sets the default
system, DISPLAY, and FORMAT locales to fr-FR (French in France). This method always resets both
the DISPLAY and FORMAT locales to match the system locale. When creating a new resource bundle,
the ResourceBundle class uses the system locale by default. However, by providing a Locale instance
argument, you tell the bundle to load resources for a specific locale. For example, even though the system
locale is Locale.FRANCE, you can specify a DISPLAY default locale and use that DISPLAY locale in your
ResourceBundle.getBundle() method call. For example, this code attempts to load a language bundle for
es-MX even though the system locale is still Locale.FRANCE:

Locale.setDefault(Locale.Category.DISPLAY, Locale.forLanguageTag("es-MX"));
Locale.setDefault(Locale.Category.FORMAT, Locale.US);
DateFormat df = DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.SHORT);
ResourceBundle resource =
 ResourceBundle.getBundle("org.java9recipes.chapter12.resource.SimpleResources",
 Locale.getDefault(Locale.Category.DISPLAY));
String greeting = resource.getString("GOOD_MORNING");

In this case, it finds a GOOD_MORNING resource with the “¡Buenos días!” value because the DISPLAY default
locale is an argument. The resource bundle is a file with translated property Strings for various locales. The
file named SimpleResources_en.properties (English) has a GOOD_MORNING property that is written “Good
morning!” Note that translations of each property in the resource bundle must exist in the locale-specific
resource files in order to be displayed. The Java code does not translate these Strings. Instead, it just selects
an appropriate translation of the desired property based on the selected locale.

 ■ Note although the dateFormat and numberFormat classes will automatically use the default ForMaT
locale if you do not provide a locale argument in their creation method, the resourceBundle.getBundle() method
always uses the system locale by default. To use the display default locale in a resourceBundle(), you must
explicitly provide it as an argument.

12-4. Matching and Filtering Locales
Problem
You would like to match against or filter a list of locales and return only those that meet the specified criteria.

Solution
Make use of the new locale matching and filtering methods that have been introduced in the java.util.
Locale class in Java 8. If you’re given a comma-separated list of locales in String format, you can apply a filter
or “priority list” to that String to return only those locales within the String that meet the filter.

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

294

In the following example, a list of language tags is filtered using the java.util.Locale filterTag method,
returning the matching tags in String format:

List<Locale.LanguageRange> list1 = Locale.LanguageRange.parse("ja-JP, en-US");
list1.stream().forEach((range) -> {
 System.out.println("Range:" + range.getRange());
});
ArrayList localeList = new ArrayList();
localeList.add("en-US");
localeList.add("en-JP");

List<String> tags1 = Locale.filterTags(list1, localeList);
System.out.println("The following is the filtered list of locales:");
tags1.stream().forEach((tag) -> {
 System.out.println(tag);
});

Results:

Range:ja-jp
Range:en-us
The following is the filtered list of Locales:
en-us

The filter() method of the Locale classes allows you to return a list of matching Locale instances. In
the following example, a list of locale language tags is used to filter Locale classes out of a list of locales.

String localeTags = Locale.ENGLISH.toLanguageTag() + "," +
 Locale.CANADA.toLanguageTag();
List<Locale.LanguageRange> list1 = Locale.LanguageRange.parse(localeTags);
list1.stream().forEach((range) -> {
 System.out.println("Range:" + range.getRange());
});
ArrayList<Locale> localeList = new ArrayList();
localeList.add(new Locale("en"));
localeList.add(new Locale("en-JP"));

List<Locale> tags1 = Locale.filter(list1, localeList);
System.out.println("The following is the matching list of Locales:");
tags1.stream().forEach((tag) -> {
 System.out.println(tag);
});

Here are the results:

Range:en
Range:en-ca
The following is the matching list of locales:
en

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

295

How It Works
Methods have been added to the java.util.Locale class in Java 8 that allow you to filter Locale instances
or language tags based on a supplied priority list in List<Locale.LanguageRange> format. The filtering
mechanism is based on RFC 4647. The following list contains a short summary of these filtering methods:

•	 filter(List<Locale.LanguageRange>, Collection<Locale>)

filter(List<Locale.LanguageRange>, Collection<Locale>, Locale.FilteringMode)

(Returns matching list of Locale instances)

•	 filterTags(List<Locale.LanguageRange>, Collection<String>)

filterTags(List<Locale.LanguageRange>, Collection<String>, Locale.FilteringMode)

(Returns matching list of language tags)

To work with each of the methods, a sorted priority order should be sent as the first parameter. This
priority order is a list of Locale.LanguageRange objects, and it should be sorted in descending order, based
on priority or weight. The second argument in the filter() methods is a collection of locales. This collection
contains the locales that will be filtered. The optional third argument contains a Locale.FilteringMode.
Table 12-1 lists the different filtering modes.

Table 12-1. Locale.FilteringMode Values

Mode Description

AUTOSELECT_FILTERING Specifies filtering mode that is based on the given priority list of languages.

EXTENDED_FILTERING Specifies extended filtering.

IGNORE_EXTENDED_RANGES Specifies basic filtering.

MAP_EXTENDED_RANGES Specifies basic filtering, and if any extended languages are included in the
language priority list, they are mapped to the basic language range.

REJECT_EXTENDED_RANGES Specifies basic filtering, and if any extended languages are included in the
language priority list, the list is rejected and IllegalArgumentException is
thrown.

12-5. Searching Unicode with Regular Expressions
Problem
You want to find or match Unicode characters in a String. You want to do that using regular expression syntax.

Solution 1
The easiest way to find or match characters is to use the String class itself. String instances store Unicode
character sequences and provide relatively simple operations for finding, replacing, and tokenizing
characters using regular expressions.

To determine whether a String matches a regular expression, use the matches() method. The matches()
method returns true if the entire String exactly matches the regular expression.

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

296

The following code from the org.java9recipes.chapter12.recipe12_4.Recipe12_4 class uses two
different expressions with two Strings. The regular expression matches simply confirm that the Strings match
a particular pattern as defined in the variables enRegEx and jaRegEx.

private String enText = "The fat cat sat on the mat with a brown rat.";
private String jaText = "Fight 文字化け!";

boolean found = false;
String enRegEx = "^The \\w+ cat.*";
String jaRegEx = ".*文字.*";
String jaRegExEscaped = ".*\u6587\u5B57.*";
found = enText.matches(enRegEx);
if (found) {
 System.out.printf("Matches %s.\n", enRegEx);
}
found = jaText.matches(jaRegEx);
if (found) {
 System.out.printf("Matches %s.\n", jaRegEx);
}
found = jaText.matches(jaRegExEscaped);
if (found) {
 System.out.printf("Matches %s.\n", jaRegExEscaped);
}

This code prints the following:

Matches ^The \w+ cat.*.
Matches .*文字.*.
Matches .*文字.*.

Use the replaceFirst() method to create a new String instance in which the first occurrence of the
regular expression in the target text is replaced with the replacement text. The code demonstrates how to use
this method:

String replaced = jaText.replaceFirst("文字化け", "mojibake");
System.out.printf("Replaced: %s\n", replaced);

The replacement text is shown in the output:

Replaced: Fight mojibake!

The replaceAll() method replaces all occurrences of the expression with the replacement text.
Finally, the split() method creates a String[] that contains text that is separated by the matched

expression. In other words, it returns text that is delimited by the expression. Optionally, you can provide
a limit argument that constrains the number of times the delimiter will be applied in the source text. The
following code demonstrates the split() method splitting on space characters:

String[] matches = enText.split("\\s", 3);
for(String match: matches) {
 System.out.printf("Split: %s\n",match);
}

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

297

The code’s output is as follows:

Split: The
Split: fat
Split: cat sat on the mat with a brown rat.

Solution 2
When the simple String methods aren’t sufficient, you can use the more powerful java.util.regex
package to work with regular expressions. Create a regular expression using the Pattern class. A Matcher
works on a String instance using the pattern. All Matcher operations perform their functions using Pattern
and String instances.

The following code demonstrates how to search for both ASCII and non-ASCII text in two separate
Strings. See the org.java9recipes.chapter12.recipe12_4.Recipe12_4 class for the complete source code.
The demoSimple() method finds text with any character followed by ".at". The demoComplex() method
finds two Japanese symbols in a String:

public void demoSimple() {
Pattern p = Pattern.compile(".at");
 Matcher m = p.matcher(enText);
 while(m.find()) {
 System.out.printf("%s\n", m.group());
 }
}

public void demoComplex() {
 Pattern p = Pattern.compile("文字");
 Matcher m = p.matcher(jaText);
 if (m.find()) {
 System.out.println(m.group());
 }
}

Running these two methods on the previously defined English and Japanese text shows the following:

fat
cat
sat
mat
rat
文字

How It Works
The String methods that work with regular expressions are the following:

•	 public boolean matches(String regex)

•	 public String replaceFirst(String regex, String replacement)

•	 public String replaceAll(String regex, String replacement)

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

298

•	 public String[] split(String regex, int limit)

•	 public String[] split(String regex)

The String methods are limited and relatively simple wrappers around the more powerful functionality
of the java.util.regex classes:

•	 java.util.regex.Pattern

•	 java.util.regex.Matcher

•	 java.util.regex.PatternSyntaxException

The Java regular expressions are similar to those used in the Perl language. Although there is a lot to
learn about Java regular expressions, probably the most important points to understand from this recipe are
these:

•	 Your regular expressions can definitely contain non-ASCII characters from the full
range of Unicode characters.

•	 Because of a peculiarity of how the Java language compiler understands the
backslash character, you will have to use two backslashes in your code instead of one
for the predefined character class expressions.

The most convenient and readable way to use non-ASCII characters in regular expressions is to type them
directly into your source files using your keyboard input methods. Operating systems and editors differ in how
they allow you to enter complex text outside of ASCII. Regardless of operating system, you should save the file
in the UTF-8 encoding if your editor allows. As an alternate but more difficult way to use non-ASCII regular
expressions, you can encode characters using the \uXXXX notation. Using this notation, instead of directly
typing the character using your keyboard, you enter \u or \U, followed by the hexadecimal representation of
the Unicode code point. This recipe’s code sample uses the Japanese word “文字” (pronounced mo-ji). As the
example shows, you can use the actual characters in the regular expression or you can look up the Unicode
code point values. For this particular Japanese word, the encoding will be \u6587\u5B57.

The Java language’s regular expression support includes special character classes. For example, \d
and \w are shortcut notations for the regular expressions [0-9] and [a-zA-Z_0-9], respectively. However,
because of the Java compiler’s special handling of the backslash character, you must use an extra backslash
when using predefined character classes such as \d (digits), \w (word characters), and \s (space characters).
To use them in source code, for example, you enter \\d, \\w, and \\s, respectively. The sample code used the
double backslash in Solution 1 to represent the \w character class:

String enRegEx = "^The \\w+ cat.*";

12-6. Overriding the Default Currency
Problem
You want to display a number value using a currency that is not associated with the default locale.

Solution
Take control of which currency is printed with a formatted currency value by explicitly setting the currency
used in a NumberFormat instance. The following example assumes that the default locale is Locale.JAPAN. It
changes the currency by calling the setCurrency(Currency c) method of its NumberFormat instance. This
example comes from the org.java9recipes.chapter12.recipe12_6.Recipe12_6 class.

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

299

BigDecimal value = new BigDecimal(12345);
System.out.printf("Default locale: %s\n", Locale.getDefault().getDisplayName());
NumberFormat nf = NumberFormat.getCurrencyInstance();
String formattedCurrency = nf.format(value);
System.out.printf("%s\n", formattedCurrency);
Currency c = Currency.getInstance(Locale.US);
nf.setCurrency(c);
formattedCurrency = nf.format(value);
System.out.printf("%s\n\n", formattedCurrency);

The previous code prints out the following:

Default locale: 日本語 (日本)
¥12,345
USD12,345

How It Works
You use a NumberFormat instance to format currency values. You should explicitly call the
getCurrencyInstance() method to create a formatter for currencies:

NumberFormat nf = NumberFormat.getCurrencyInstance();

The previous formatter will use your default locale’s preferences for formatting numbers as currency
values. Also, it will use a currency symbol that is associated with the locale’s region. However, one very
common use case involves formatting a value for a different region’s currency.

Use the setCurrency() method to explicitly set the currency in the number formatter:

nf.setCurrency(aCurrencyInstance); // requires a Currency instance

Note that the java.util.Currency class is a factory. It allows you to create currency objects in two ways:

•	 Currency.getInstance(Locale locale)

•	 Currency.getInstance(String currencyCode)

The first getInstance call uses a Locale instance to retrieve a currency object. The Java platform
associates a default currency with the locale’s region. In this case, the default currency currently associated
with the United States is the U.S. dollar:

Currency c1 = Currency.getInstance(Locale.US);

The second getInstance call uses a valid ISO 4217 currency code. The currency code for the U.S. dollar
is USD:

Currency c2 = Currency.getInstance("USD");

Once you have a currency instance, you simply have to use that instance in your formatter:

nf.setCurrency(c2);

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

300

This formatter now is configured to use the default locale’s number format symbols and patterns to
format the number value, but it will display the targeted currency code as part of the displayable text. This
allows you to mix the default number format patterns with other currency codes.

 ■ Note Currencies have both symbols and codes. a currency code always refers to the three-letter iso 4217
code. a currency symbol is often different from the code. For example, the Us dollar has the code USD and
the symbol $. a currency formatter will typically use a symbol when formatting a number in the default locale
using the currency of that locale’s region. however, when you explicitly change the currency of a formatter, the
formatter doesn’t always have knowledge of a localized symbol for the target currency. in that case, the format
instance will often use the currency code in the displayed text.

12-7. Converting Byte Arrays to and from Strings
Problem
You need to convert characters in a byte array from a legacy character set encoding to a Unicode String.

Solution
Convert legacy character encodings from a byte array to a Unicode String using the String class. The
following code snippet from the org.java9recipes.chapter12.recipe12_7.Recipe12_7 class demonstrates
how to convert a legacy Shift-JIS encoded byte array to a String. Later in this same example, the code
demonstrates how to convert from Unicode back to the Shift-JIS byte array.

byte[] legacySJIS = {(byte)0x82,(byte)0xB1,(byte)0x82,(byte)0xF1,
(byte)0x82,(byte)0xC9,(byte)0x82,(byte)0xBF,
(byte)0x82,(byte)0xCD,(byte)0x81,(byte)0x41,
(byte)0x90,(byte)0xA2,(byte)0x8A,(byte)0x45,
(byte)0x81,(byte)0x49};

// Convert a byte[] to a String
Charset cs =Charset.forName("SJIS");
String greeting = new String(legacySJIS, cs);
System.out.printf("Greeting: %s\n", greeting);

This code prints out the converted text, which is “Hello, world!” in Japanese:

Greeting: こんにちは、世界!

Use the getBytes() method to convert characters from a String to a byte array. Building on the
previous code, convert back to the original encoding with the following code and compare the results:

// Convert a String to a byte[]
byte[] toSJIS = greeting.getBytes(cs);

// Confirm that the original array and newly converted array are same
Boolean same = false;

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

301

if (legacySJIS.length == toSJIS.length) {
 for (int x=0; x< legacySJIS.length; x++) {
 if(legacySJIS[x] != toSJIS[x]) break;
 }
 same = true;
}
System.out.printf("Same: %s\n", same.toString());

As expected, the output indicates that the round-trip conversion back to the legacy encoding was
successful. The original byte array and the converted byte array contain the same bytes:

Same: true

How It Works
The Java platform provides conversion support for many legacy character set encodings. When you create a
String instance from a byte array, you must provide a charset argument to the String constructor so that
the platform knows how to perform the mapping from the legacy encoding to Unicode. All Java Strings use
Unicode as their native encoding.

The number of bytes in the original array does not usually equal the number of characters in the
result String. In this recipe’s example, the original array contains 18 bytes. The 18 bytes are needed by the
Shift-JIS encoding to represent the Japanese text. However, after conversion, the result String contains nine
characters. There is not a 1:1 relationship between bytes and characters. In this example, each character
requires two bytes in the original Shift-JIS encoding.

There are literally hundreds of different charset encodings. The number of encodings is dependent on
your Java platform implementation. However, you are guaranteed support of several of the most common
encodings, and your platform most likely contains many more than this minimal set:

•	 US-ASCII

•	 ISO-8859-1

•	 UTF-8

•	 UTF-16BE

•	 UTF-16LE

•	 UTF-16

When constructing a charset, you should be prepared to handle the possible exceptions that can occur
when the character set is not supported:

•	 java.nio.charset.IllegalCharsetNameException, thrown when the charset
name is illegal

•	 java.lang.IllegalArgumentException, thrown when the charset name is null

•	 java.nio.charset.UnsupportedCharsetException, thrown when your JVM doesn’t
support the targeted charset

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

302

12-8. Converting Character Streams and Buffers
Problem
You need to convert large blocks of Unicode character text to and from an arbitrary byte-oriented encoding.
Large blocks of text may come from streams or files.

Solution 1
Use java.io.InputStreamReader to decode a byte stream to Unicode characters. Use java.
io.OutputStreamWriter to encode Unicode characters to a byte stream.

The following code uses InputStreamReader to read and convert a potentially large block of text bytes
from a file in the class path. The org.java9recipes.chapter12.recipe12_8.StreamConversion class
provides the complete code for this example:

public String readStream() throws IOException {
 InputStream is = getClass().getResourceAsStream("resource/helloworld.sjis.txt");
 StringBuilder sb = new StringBuilder();
 if (is != null) {
 try (InputStreamReader reader =
 new InputStreamReader(is, Charset.forName("SJIS"))) {
 int ch = reader.read();
 while (ch != -1) {
 sb.append((char) ch);
 ch = reader.read();
 }
 }
 }
 return sb.toString();
}

Similarly, you can use an OutputStreamWriter to write text to a byte stream. The following code writes a
String to a UTF-8 encoded byte stream:

public void writeStream(String text) throws IOException {
 FileOutputStream fos = new FileOutputStream("helloworld.utf8.txt");
 try (OutputStreamWriter writer
 = new OutputStreamWriter(fos, Charset.forName("UTF-8"))) {
 writer.write(text);
 }
}

Solution 2
Use java.nio.charset.CharsetEncoder and java.nio.charset.CharsetDecoder to convert Unicode
character buffers to and from byte buffers. Retrieve an encoder or decoder from a charset instance with
the newEncoder() or newDecoder() method. Then use the encoder’s encode() method to create byte
buffers. Use the decoder’s decode() method to create character buffers. The following code from the
org.java9recipes.chapter12.recipe12_8.BufferConversion class encodes and decodes character
sets from buffers:

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

303

 public ByteBuffer encodeBuffer(String charsetName, CharBuffer charBuffer)
 throws CharacterCodingException {
 Charset charset = Charset.forName(charsetName);
CharsetEncoder encoder = charset.newEncoder();
 ByteBuffer targetBuffer = encoder.encode(charBuffer);
return targetBuffer;

 }
 public CharBuffer decodeBuffer(String charsetName, ByteBuffer srcBuffer)
 throws CharacterCodingException {
 Charset charset = Charset.forName(charsetName);
 CharsetDecoder decoder = charset.newDecoder();
 CharBuffer charBuffer = decoder.decode(srcBuffer);
 return charBuffer;
 }

How It Works
The java.io and java.nio.charset packages contain several classes that can help you perform encoding
conversions on large text streams or buffers. Streams are convenient abstractions that can assist you in
converting text using a variety of sources and targets. A stream can represent incoming or outgoing text in an
HTTP connection or even a file.

If you use an InputStream to represent the underlying source text, you will wrap that stream in
an InputStreamReader to perform conversions from a byte stream. The reader instance performs the
conversion from bytes to Unicode characters.

Using an OutputStream instance to represent the target text, wrap the stream in an OutputStreamWriter.
A writer will convert your Unicode text to a byte-oriented encoding in the target stream.

To effectively use either an OutputStreamWriter or an InputStreamReader, you must know the
character encoding of your target or source text. When you use an OutputStreamWriter, the source text is
always Unicode, and you must supply a charset argument to tell the writer how to convert to the target byte-
oriented text encoding. When you use an InputStreamReader, the target encoding is always Unicode. You
must supply the source text encoding as an argument so that the reader understands how to convert the text.

 ■ Note The Java platform’s String represents characters in the UTF-16 encoding of Unicode. Unicode can
have several encodings, including UTF-16, UTF-8, and even UTF-32. Converting to Unicode in this discussion
always means converting to UTF-16. Converting to a byte-oriented encoding usually means to a legacy non–
Unicode charset encoding. however, a common byte-oriented encoding is UTF-8, and it is entirely reasonable
to convert Java’s “native” UTF-16 Unicode characters to or from UTF-8 using the InputStreamReader or
OutputStreamWriter class.

Yet another way to perform encoding conversions is to use the CharsetEncoder and CharsetDecoder
classes. A CharsetEncoder will encode your Unicode CharBuffer instances to ByteBuffer instances.
A CharsetDecoder will decode ByteBuffer instances into CharBuffer instances. In either case, you must
provide a charset argument.

ChapTer 12 ■ UniCode, inTernaTionalizaTion, and CUrrenCy Codes

304

A charset represents a character set encoding defined in the Internet Signed Numbers Authority
(IANA) Charset Registry. When creating a charset instance, you should use the canonical or alias names of
the charset as defined by the Registry. You can find the Registry at http://www.iana.org/assignments/
character-sets.

Remember that your Java implementation will not necessarily support all the IANA charset names.
However, all implementations are required to support at least those shown in Recipe 12-7 of this chapter.

12-9. Setting the Search Order of Locale-Sensitive Services
Problem
You want to designate a specified search order for locale-sensitive services within the Java runtime
environment.

Solution
Specify the desired order for locale-sensitive services using the java.locale.providers property. In the
following example, the SPI and CLDR providers are specified within the property.

java.locale.providers=SPI,CLDR

How It Works
Setting the java.locale.providers property, since the release of Java 8, specifies the search order of locale-
sensitive services. This property is read upon Java runtime startup. To set the order of services, specify the
acronym(s), separated by commas. The following services are available for use:

•	 SPI: Locale-sensitive services represented by SPI (Service Provider Interface)
providers

•	 JRE: Locale-sensitive services in the Java runtime environment

•	 CLDR: Provider based on the Unicode Consortium’s CLDR project

•	 HOST: Provider that reflects the user’s custom settings in the underlying operating
system

Summary
Internationalization is a key to developing culturally responsive applications. It allows for application text
to be changed in an effort to adhere to the culture and language in which the application is being used. This
chapter provided some examples of how to make use of internationalization techniques to overcome the
nuances of cross-culture development. The chapter also covered topics regarding Unicode conversions.

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

305© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_13

CHAPTER 13

Working with Databases

Almost any nontrivial application contains a database of some sort. Some applications use in-memory
databases, while others use traditional relational database management systems (RDBMSs). Whatever the
case, it is essential that every Java developer have some skills working with databases. Over the years, the
Java Database Connectivity (JDBC) API has evolved quite a bit, and over the past couple of releases there
have been some major advancements.

This chapter covers the basics of using JDBC for working with databases. You will learn how to perform
all the standard database operations, as well as some advanced techniques for manipulating data. You’ll
also learn how you can create secure database applications and save time on development using some of
the latest advancements in the API. In the end, you will be able to develop Java applications that work with
traditional RDBMSs such as Oracle database, PostgreSQL, and MySQL.

 ■ Note To follow along with the examples in this chapter, run the create_user.sql script to create a
database user schema. Then, run the create_database.sql script within the database schema that you just
created.

The database examples in this book are tailored for use with an Apache Derby or Oracle database, but they can
be altered to work with any relational database.

13-1. Connecting to a Database
Problem
You want to create a connection to a database from within a desktop Java application.

Solution 1
Use a JDBC Connection object to obtain the connection. Do this by creating a new connection object, and
then load the driver that you need to use for your particular database vendor. Once the connection object is
ready, call its getConnection() method. The following code demonstrates how to obtain a connection to an
Oracle or Apache Derby database, depending on the specified driver.

ChApTer 13 ■ WOrking WiTh DATAbAses

306

public Connection getConnection() throws SQLException {
 Connection conn = null;
 String jdbcUrl;
 if(driver.equals("derby")){
 jdbcUrl = "jdbc:derby://" + this.hostname + ":" +
 this.port + "/" + this.database;
 } else {
 jdbcUrl = "jdbc:oracle:thin:@" + this.hostname + ":" +
 this.port + ":" + this.database;
 }
 System.out.println(jdbcUrl);
 conn = DriverManager.getConnection(jdbcUrl, username, password);
 System.out.println("Successfully connected");
 return conn;
}

The method portrayed in this example returns a Connection object that is ready to be used for
database access.

Solution 2
Use a DataSource to create a connection pool. The DataSource object must have been properly
implemented and deployed to an application server environment. After a DataSource object has been
implemented and deployed, it can be used by an application to obtain a connection to a database. The
following code shows code that you can use to obtain a database connection via a DataSource object:

public Connection getDSConnection() {
 Connection conn = null;
 try {
 Context ctx = new InitialContext();
 DataSource ds = (DataSource)ctx.lookup("jdbc/myOracleDS");
 conn = ds.getConnection();

 } catch (NamingException | SQLException ex) {
 ex.printStackTrace();
 }
 return conn;
}

Notice that the only information required in the DataSource implementation is the name of a valid
DataSource object. All the information that is required to obtain a connection with the database is managed
within the application server.

How It Works
There are a couple of different ways to create a connection to a database within a Java application. How you
do so depends on the type of application you are writing. Utilization of the DriverManager is often used
if an application will be stand-alone or if it is a desktop application. Web-based and intranet applications
commonly rely on the application server to provide the connection for the application via a DataSource
object.

ChApTer 13 ■ WOrking WiTh DATAbAses

307

Creating a JDBC connection involves a few steps. First, you need to determine which database driver
you will need. After you’ve determined which driver you will need, you download the JAR file containing
that driver and place it into your CLASSPATH. For this recipe, either an Oracle database or Apache Derby
connection is made. Each of the database vendors will provide different JDBC drivers packaged in JAR files
that have different names; consult the documentation for your particular database for more information.
Once you have obtained the appropriate JAR file for your database, include it in your application CLASSPATH.
Next, use a JDBC DriverManager to obtain a connection to the database. As of JDBC version 4.0, drivers that
are contained within the CLASSPATH are automatically loaded into the DriverManager object. If you are using
a JDBC version prior to 4.0, the driver will have to be manually loaded.

To obtain a connection to your database using the DriverManager, you need to pass a String containing
the JDBC URL to it. The JDBC URL consists of the database vendor name, along with the name of the server
that hosts the database, the name of the database, the database port number, and a valid database username
and password that has access to the schema or database objects that you want to work with. Many times, the
values used to create the JDBC URL are obtained from a Properties file so that they can be easily changed if
needed. To learn more about using a Properties file to store connection values, see Recipe 13-5. The code
that is used to create the Oracle database JDBC URL for Solution 1 looks like the following:

String jdbcUrl = "jdbc:oracle:thin:@" + this.hostname + ":" +
 this.port + ":" + this.database;

Once all the variables have been substituted into the String, it will look something like the following:

jdbc:oracle:thin:@hostname:1521:database

Similarly, the Apache Derby URL String would look like the following:

jdbc:derby://hostname:1521/database

Once the JDBC URL has been created, it can be passed to the DriverManager.getConnection() method
to obtain a java.sql.Connection object. If incorrect information has been passed to the getConnection()
method, a java.sql.SQLException will be thrown; otherwise, a valid Connection object will be returned.

The preferred way to obtain a database connection is to use a DataSource when running on an
application server or to have access to a Java Naming and Directory Interface (JNDI) service. To work with
a DataSource object, you need to have an application server deploy it to. Any compliant Java application
server such as GlassFish, Oracle Weblogic, Payara, or WildFly will work. Most of the application servers
contain a web interface that can be used to easily deploy a DataSource object. However, you can manually
deploy a DataSource object by using code that will look like the following:

org.java9recipes.chapter13.recipe13_01.FakeDataSourceDriver ds =
 new org.java9recipes.chapter13.recipe13_1.FakeDataSourceDriver();
ds.setServerName("my-server");
ds.setDatabaseName("JavaRecipes");
ds.setDescription("Database connection for Java 9 Recipes");

This code instantiates a new DataSource driver class and then sets properties based on the database
that you want to register. DataSource code such as that demonstrated here is typically used when registering
a DataSource in an application server or with access to a JNDI server. Application servers usually do this
work behind the scenes if you are using a web-based administration tool to deploy a DataSource. Most
database vendors will supply a DataSource driver along with their JDBC drivers, so if the correct JAR resides
within the application or server CLASSPATH, it should be recognized and available for use. Once a DataSource
has been instantiated and configured, the next step is to register the DataSource with a JNDI naming service.

ChApTer 13 ■ WOrking WiTh DATAbAses

308

The following code demonstrates the registration of a DataSource with JNDI:

try {
 Context ctx = new InitialContext();
 DataSource ds =
 (DataSource) ctx.bind("java9recipesDB");
} catch (NamingException ex) {
 ex.printStackTrace();
}

Once the DataSource has been deployed, any application that has been deployed to the same
application server will have access to it. The beauty of working with a DataSource object is that your
application code doesn’t need to know anything about the database; it only needs to know the name of the
DataSource. Usually the name of the DataSource begins with a jdbc/ prefix, followed by an identifier. To
look up the DataSource object, an InitialContext is used. The InitialContext looks at all the DataSources
available within the application server and returns a valid DataSource if it is found; otherwise, it will throw
a java.naming.NamingException exception. In Solution 2, you can see that the InitialContext returns an
object that must be casted as a DataSource.

Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/myOracleDS");

If the DataSource is a connection pool cache, it will send one of the available connections within
the pool when an application requests it. The following line of code returns a Connection object from the
DataSource:

conn = ds.getConnection();

Of course, if no valid connection can be obtained, a java.sql.SQLException is thrown. The DataSource
technique is preferred over the DriverManager because database connection information is stored in only
one place: the application server. Once a valid DataSource is deployed, it can be used by many applications.

After a valid connection has been obtained by your application, it can be used to work with the database.
To learn more about working with the database using a Connection object, see Recipes 13-2 and 13-4.

13-2. Handling Connection and SQL Exceptions
Problem
A database activity in your application has thrown an exception. You need to handle the SQL exception so
that your application does not crash.

Solution
Use a try-catch block in order to capture and handle any SQL exceptions that are thrown by your JDBC
connection or SQL queries. The following code demonstrates how to implement a try-catch block in order
to capture SQL exceptions:

try {
 // perform database tasks
} catch (java.sql.SQLException){
 // perform exception handling
}

ChApTer 13 ■ WOrking WiTh DATAbAses

309

How It Works
A standard try-catch block can be used to catch java.sql.Connection or java.sql.SQLException
exceptions. Your code will not compile if these exceptions are not handled, and it is a good idea to handle them
properly in order to prevent your application from crashing if one of these exceptions is thrown. Almost any
work that is performed against a java.sql.Connection object will need to contain error handling to ensure
that database exceptions are handled correctly. In fact, nested try-catch blocks are often required to handle
all the possible exceptions. You need to ensure that connections are closed once work has been performed and
the Connection object is no longer used. Similarly, it is a good idea to close java.sql.Statement objects for
memory allocation cleanup as well.

Because Statement and Connection objects need to be closed, it is common to see try-catch-finally
blocks used to ensure that all resources have been tended to as needed. It is not unlikely that you will see
older JDBC code that resembles the following style:

try {
 // perform database tasks
} catch (java.sql.SQLException ex) {
 // perform exception handling
} finally {
 try {
 // close Connection and Statement objects
 } catch (java.sql.SQLException ex){
 // perform exception handling
 }
}

Newer code should be written to take advantage of the try-with-resources statement, which allows
one to offload resource management to Java, rather than performing manual closes. The following code
demonstrates how to use try-with-resources to open a connection, create a statement, and then close
both the connection and statement when finished.

 ■ Note The createConn object in the examples abstracts away the details of obtaining a connection to the
database, which can be returned via a call to the getConnection() method.

try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 ResultSet rs = stmt.executeQuery(qry);
 while (rs.next()) {
 // PERFORM SOME WORK
 }
} catch (SQLException e) {
 e.printStackTrace();
}

As seen in the previous pseudocode, nested try-catch blocks are often required in order to clean
unused resources. Proper exception handling sometimes makes JDBC code rather laborious to write, but it
will also ensure that an application requiring database access will not fail, causing data to be lost.

ChApTer 13 ■ WOrking WiTh DATAbAses

310

13-3. Querying a Database and Retrieving Results
Problem
A process in your application needs to query a database table for data.

Solution
Obtain a JDBC connection using one of the techniques as described in Recipe 13-1, and then use the
java.sql.Connection object to create a Statement object. A java.sql.Statement object contains the
executeQuery() method, which parses a String of text and uses it to query a database. Once you’ve executed
the query, you can retrieve the results of the query into a ResultSet object. The following example queries a
database table named RECIPES and prints the results:

String qry = "select recipe_num, name, description from recipes";
try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 ResultSet rs = stmt.executeQuery(qry);
 while (rs.next()) {
 String recipe = rs.getString("RECIPE_NUM");
 String name = rs.getString("NAME");
 String desc = rs.getString("DESCRIPTION");

 System.out.println(recipe + "\t" + name + "\t" + desc);
 }
} catch (SQLException e) {
 e.printStackTrace();
}

If you execute this code using the database script that is included with this chapter, you will receive the
following results:

13-1 Connecting to a Database DriverManager and DataSource Implementations
13-2 Querying a Database and Retrieving Results Obtaining and Using Data from a DBMS
13-3 Handling SQL Exceptions Using SQLException

How It Works
One of the most commonly performed operations against a database is a query. Performing database
queries using JDBC is quite easy, although there is a bit of boilerplate code that needs to be used each time a
query is executed. First, you need to obtain a Connection object for the database and schema that you want
to run the query against. You can do this by using one of the solutions found in Recipe 13-1. Next, you need
to form a query and store it in String format. The Connection object is then used to create a Statement. Your
query String will be passed to the Statement object’s executeQuery() method in order to actually query
the database. Here, you can see what this looks like without the use of try-with-resources for resource
management.

String qry = "select recipe_num, name, description from recipes";
Connection conn;
Statement stmt = null;

ChApTer 13 ■ WOrking WiTh DATAbAses

311

try {
 conn = createConn.getConnection()
 stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);
...

The same code can be more efficiently written as follows:

try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 ResultSet rs = stmt.executeQuery(qry);
...

As you can see, the Statement object’s executeQuery() method accepts a String and returns a
ResultSet object. The ResultSet object makes it easy to work with the query results so that you can obtain
the information you need in any order. If you take a look at the next line of code in the example, a while loop
is created on the ResultSet object. This loop will continue to call the ResultSet object’s next() method,
obtaining the next row that is returned from the query with each iteration. In this case, the ResultSet object
is named rs, so while rs.next() returns true, the loop will continue to be processed. Once all the returned
rows have been processed, rs.next() will return a false to indicate that there are no more rows to be
processed.

Within the while loop, each returned row is processed. The ResultSet object is parsed to obtain the
values of the given column names with each pass. Notice that if the column is expected to return a String,
you must call the ResultSet getString() method, passing the column name in String format. Similarly,
if the column is expected to return an int, you’d call the ResultSet getInt() method, passing the
column name in String format. The same holds true for the other data types. These methods will return the
corresponding column values. In the example in the solution to this recipe, those values are stored into local
variables.

String recipe = rs.getString("RECIPE_NUM");
String name = rs.getString("NAME");
String desc = rs.getString("DESCRIPTION");

Once the column value has been obtained, you can do what you want to do with the values you have
stored within local variables. In this case, they are printed out using the System.out() method.

System.out.println(recipe + "\t" + name + "\t" + desc);

A java.sql.SQLException could be thrown when attempting to query a database (for instance, if the
Connection object has not been properly obtained or if the database tables that you are trying to query do
not exist). You must provide exception handling to handle errors in these situations. Therefore, all database-
processing code should be placed within a try block. The catch block then handles a SQLException, so if
one is thrown, the exception will be handled using the code within the catch block. Sounds easy enough,
right? It is, but you must do it each time you perform a database query. Lots of boilerplate code.

It is always a good idea to close statements and connections if they are open. Using the try-with-
resources construct is the most efficient solution to resource management. Closing resources when finished
will help ensure that the system can reallocate resources as needed, and act respectfully on the database. It is
important to close connections as soon as possible so that other processes can use them.

ChApTer 13 ■ WOrking WiTh DATAbAses

312

13-4. Performing CRUD Operations
Problem
You need to have the ability to perform standard database operations within your application. That is, you
need the ability to create, retrieve, update, and delete (CRUD) database records.

Solution
Create a Connection object and obtain a database connection using one of the solutions provided in
Recipe 13-1; then perform the CRUD operation using a java.sql.Statement object that is obtained from
the java.sql.Connection object. The database table that will be used for these operations has the following
format:

RECIPES (
 id int not null,
 recipe_number varchar(10) not null,
 recipe_name varchar(100) not null,
 description varchar(500),
 text clob,
 constraint recipes_pk primary key (id) enable
);

The following code excerpts demonstrate how to perform each of the CRUD operations using JDBC:

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import org.java9recipes.chapter13.recipe13_01.CreateConnection;

public class CrudOperations {

 static CreateConnection createConn;
 public static void main(String[] args) {

 createConn = new CreateConnection();
 performCreate();
 performRead();
 performUpdate();
 performDelete();
 System.out.println("-- Final State --");
 performRead();

 }

 private static void performCreate(){
 String sql = "INSERT INTO RECIPES VALUES(" +
 "next value for recipes_seq, " +
 "'13-4', " +

ChApTer 13 ■ WOrking WiTh DATAbAses

313

 "'Performing CRUD Operations', " +
 "'How to perform create, read, update, delete functions', " +
 "'Recipe Text')";

 try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 // Returns row-count or 0 if not successful
 int result = stmt.executeUpdate(sql);
 if (result == 1{
 System.out.println("-- Record created --");
 } else {
 System.err.println("!! Record NOT Created !!");
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }

 }

 private static void performRead(){
 String qry = "select recipe_number, recipe_name, description from recipes";

 try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 ResultSet rs = stmt.executeQuery(qry);
 while (rs.next()) {
 String recipe = rs.getString("RECIPE_NUMBER");
 String name = rs.getString("RECIPE_NAME");
 String desc = rs.getString("DESCRIPTION");

 System.out.println(recipe + "\t" + name + "\t" + desc);
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }

 }

 private static void performUpdate(){
 String sql = "UPDATE RECIPES " +
 "SET RECIPE_NUMBER = '13-5' " +
 "WHERE RECIPE_NUMBER = '13-4'";

 try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 int result = stmt.executeUpdate(sql);
 if (result > 0){
 System.out.println("-- Record Updated --");
 } else {
 System.out.println("!! Record NOT Updated !!");
 }

ChApTer 13 ■ WOrking WiTh DATAbAses

314

 } catch (SQLException e) {
 e.printStackTrace();
 }

 }

 private static void performDelete(){
 String sql = "DELETE FROM RECIPES WHERE RECIPE_NUMBER = '13-5'";

 try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 int result = stmt.executeUpdate(sql);
 if (result > 0){
 System.out.println("-- Record Deleted --");
 } else {
 System.out.println("!! Record NOT Deleted!!");
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

}

Here is the result of running the code:

Successfully connected
-- Record created --
13-1 Connecting to a Database―DriverManager and DataSource Implementations
13-2 Querying a Database and Retrieving Results Obtaining and Using Data from a DBMS
13-3 Handling SQL Exceptions Using SQLException
13-4 Performing CRUD Operations How to Perform Create, Read, Update, Delete Functions
-- Record Updated --
-- Record Deleted --
-- Final State --
13-1 Connecting to a Database DriverManager and DataSource Implementations
13-2 Querying a Database and Retrieving Results Obtaining and Using Data from a DBMS
13-3 Handling SQL Exceptions Using SQLException

How It Works
The same basic code format is used for performing just about every database task. The format is as follows:

 1. Obtain a connection to the database.

 2. Create a statement from the connection.

 3. Perform a database task with the statement.

 4. Do something with the results of the database task.

 5. Close the statement (and database connection if you’re finished using it).

ChApTer 13 ■ WOrking WiTh DATAbAses

315

The main difference between performing a query using JDBC and using data manipulation language
(DML) is that you will call different methods on the Statement object, depending on which operation you
want to perform. To perform a query, you need to call the Statement executeQuery() method. In order to
perform DML tasks such as insert, update, and delete, call the executeUpdate() method.

The performCreate() method in the solution to this recipe demonstrates the operation of inserting a
record into a database. To insert a record in the database, construct a SQL INSERT statement in String format.
To perform the insert, pass the SQL String to the Statement object’s executeUpdate() method. If the INSERT
is performed, an int value will be returned that specifies the number of rows that have been inserted. If the
INSERT operation is not performed successfully, either a zero will be returned or a SQLException will be
thrown, indicating a problem with the statement or database connection.

The performRead() method in the solution to this recipe demonstrates the operation of querying the
database. To execute a query, call the Statement object’s executeQuery() method, passing a SQL statement
in String format. The result will be a ResultSet object, which can then be used to work with the returned
data. For more information on performing queries, see Recipe 13-3.

The performUpdate() method in the solution to this recipe demonstrates the operation of updating
record(s) within a database table. First, construct a SQL UPDATE statement in String format. Next, to
perform the update operation pass the SQL String to the Statement object’s executeUpdate() method. If
the UPDATE is successfully performed, an int value will be returned, which specifies the number of records
that were updated. If the UPDATE operation is not performed successfully, either a zero will be returned or a
SQLException will be thrown, indicating a problem with the statement or database connection.

The last database operation that needs to be covered is the DELETE operation. The performDelete()
method in the solution to this recipe demonstrates the operation of deleting record(s) from the database.
First, construct a SQL DELETE statement in String format. Next, to execute the deletion, pass the SQL String
to the Statement object’s executeUpdate() method. If the deletion is successful, an int value specifying
the number of rows deleted will be returned. Otherwise, if the deletion fails, a zero will be returned or a
SQLException will be thrown, indicating a problem with the statement or database connection.

Almost every database application uses at least one of the CRUD operations at some point. This is
foundational JDBC that needs to be known if you are working with databases within Java applications. Even
if you will not work directly with the JDBC API, it is good to know these foundational basics.

13-5. Simplifying Connection Management
Problem
Your application requires the use of a database, and in order to work with the database, you need to open a
connection for each interaction. Rather than code the logic to open a database connection every time you
need to access the database, you want to use a single class to perform that task.

Solution
Write a class to handle all the connection management within your application. Doing so will allow you to
call that class in order to obtain a connection, rather than setting up a new Connection object each time you
need access to the database. Perform the following steps to set up a connection management environment
for your JDBC application:

 1. Create a class named CreateConnection.java that will encapsulate all the
connection logic for your application.

 2. Create a PROPERTIES file to store your connection information. Place the file
somewhere on your CLASSPATH so that the CreateConnection class can load it.

 3. Use the CreateConnection class to obtain your database connections.

ChApTer 13 ■ WOrking WiTh DATAbAses

316

The following code is a listing of the CreateConnection class that can be used for centralized
connection management:

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;

public class CreateConnection {

 static Properties props = new Properties();

 String hostname = null;
 String port = null;
 String database = null;
 String username = null;
 String password = null;
 String driver = null;
 String jndi = null;

 public CreateConnection() {
 // Looks for properties file in the root of the src directory in Netbeans project
 try (InputStream in = Files.newInputStream(FileSystems.getDefault().
 getPath(System.getProperty("user.dir") + File.separator + "db_props.

properties"));) {
 props.load(in);
 in.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 loadProperties();
 }

 public final void loadProperties() {
 hostname = props.getProperty("host_name");
 port = props.getProperty("port_number");
 database = props.getProperty("db_name");
 username = props.getProperty("username");
 password = props.getProperty("password");
 driver = props.getProperty("driver");
 jndi = props.getProperty("jndi");

 }

ChApTer 13 ■ WOrking WiTh DATAbAses

317

 /**
 * Demonstrates obtaining a connection via DriverManager
 *
 * @return
 * @throws SQLException
 */
 public Connection getConnection() throws SQLException {
 Connection conn = null;
 String jdbcUrl;
 if (driver.equals("derby")) {
 jdbcUrl = "jdbc:derby://" + this.hostname + ":"
 + this.port + "/" + this.database;
 } else {
 jdbcUrl = "jdbc:oracle:thin:@" + this.hostname + ":"
 + this.port + ":" + this.database;
 }
 conn = DriverManager.getConnection(jdbcUrl, username, password);
 System.out.println("Successfully connected");
 return conn;
 }

 /**
 * Demonstrates obtaining a connection via a DataSource object
 *
 * @return
 */
 public Connection getDSConnection() {
 Connection conn = null;
 try {
 Context ctx = new InitialContext();
 DataSource ds = (DataSource) ctx.lookup(this.jndi);
 conn = ds.getConnection();
 } catch (NamingException | SQLException ex) {
 ex.printStackTrace();
 }
 return conn;
 }
}

Next, the following lines of text are an example of what should be contained in the properties file that
is used for obtaining a connection to the database. For this example, the properties file is named db_props.
properties:

host_name=your_db_server_name
db_name=your_db_name
username=db_username
password=db_username_password
port_number=db_port_number
#driver = derby or oracle
driver=db_driver
jndi=jndi_connection_String

ChApTer 13 ■ WOrking WiTh DATAbAses

318

Finally, use the CreateConnection class to obtain connections for your application. The following code
demonstrates this concept:

CreateConnection createConn = new CreateConnection();
try(Connection conn = createConn.getConnection()) {
 performDbTask();
} catch (java.sql.SQLException ex) {
 ex.printStackTrace();
}

This code uses try-with-resources to automatically close the connection when it is finished
performing the database task.

How It Works
Obtaining a connection within a database application can be code-intensive. Moreover, the process can be
prone to error if you retype the code each time you need to obtain a connection. By encapsulating database
connection logic within a single class, you can reuse the same connection code each time you require a
connection to the database. This increases your productivity, reduces the chances of typing errors, and
also enhances manageability because if you have to make a change, it can occur in one place rather than in
several different locations.

Creating a strategic connection methodology is beneficial to you and others who might need to
maintain your code in the future. Although data sources are the preferred technique for managing database
connections when using an application server or JNDI, the solution to this recipe demonstrates the use
standard JDBC DriverManager connections. One of the security implications of using the DriverManager
is that you will need to store the database credentials somewhere for use by the application. It is not safe
to store those credentials in plain text anywhere, and it is also not safe to embed them in application code,
which might be decompiled at some point in the future. As seen in the solution, a properties file that on disk
is used to store the database credentials. Assume that this properties file will be encrypted at some point
before deployment to a server, and that the application will be able to handle decryption.

As seen in the solution, the code reads the database credentials, hostname, database name, and port
number from the properties file. That information is then pieced together to form a JDBC URL that can be used
by DriverManager to obtain a connection to the database. Once obtained, that connection can be used anywhere
and then closed. Similarly, if using a DataSource that has been deployed to an application server, the properties
file can be used to store the JNDI connection. That is the only piece of information that is needed to obtain a
connection to the database using the DataSource. To the developer using the connection class, the only difference
between the two types of connections is the method name that is called in order to obtain the Connection object.

You could develop a JDBC application so that the code used to obtain a connection needs to be hard-
coded throughout. Instead, this solution enables all the code for obtaining a connection to be encapsulated
by a single class so that the developer does not need to worry about it. Such a technique also allows the
code to become more maintainable. For instance, if the application were originally deployed using the
DriverManager, but then later had the ability to use a DataSource, very little code would need to be changed.

13-6. Guarding Against SQL Injection
Problem
Your application performs database tasks. To reduce the chances of a SQL injection attack, you need to
ensure that no unfiltered Strings of text are being appended to SQL statements and executed against the
database.

ChApTer 13 ■ WOrking WiTh DATAbAses

319

 ■ Tip Although prepared statements are the solution to this recipe, they can be used for more than just
protecting against sQL injection. They also provide a way to centralize and better control the sQL used in an
application. instead of creating multiple, possibly different, versions of the same query, for example, you can
create the query once as a prepared statement and invoke it from many different places throughout your code.
Any change to the query logic need happen only at the point where you prepare the statement.

Solution
Use PreparedStatements for performing the database tasks. PreparedStatements send a precompiled SQL
statement to the DBMS rather than a String. The following code demonstrates how to perform a database
query and a database update using a java.sql.PreparedStatement object.

In the following code example, a PreparedStatement is used to query a database for a given record.
Assume that the a String[] of recipe numbers is passed to this code as a variable.

private static void queryDbRecipe(String[] recipeNumbers) {
 String sql = "SELECT ID, RECIPE_NUMBER, RECIPE_NAME, DESCRIPTION "
 + "FROM RECIPES "
 + "WHERE RECIPE_NUMBER = ?";

 try (PreparedStatement pstmt = conn.prepareStatement(sql)) {
 for (String recipeNumber : recipeNumbers) {
 pstmt.setString(1, recipeNumber);
 ResultSet rs = pstmt.executeQuery();
 while (rs.next()) {
 System.out.println(rs.getString(2) + ": " + rs.getString(3)
 + " - " + rs.getString(4));
 }
 }
 } catch (SQLException ex) {
 ex.printStackTrace();
 }

}

The next example demonstrates the use of a PreparedStatement for inserting a record into the database.
Assume that the recipeNumber, title, description, and text Strings are passed to this code as variables.

String sql = "INSERT INTO RECIPES VALUES(" +
 "NEXT VALUE FOR RECIPES_SEQ, ?,?,?,?)";
try(PreparedStatement pstmt = conn.prepareStatement(sql);) {
 pstmt.setString(1, recipeNumber);
 pstmt.setString(2, title);
 pstmt.setString(3, description);
 pstmt.setString(4, text);
 pstmt.executeUpdate();
 System.out.println("Record successfully inserted.");
} catch (SQLException ex){
 ex.printStackTrace();
}

ChApTer 13 ■ WOrking WiTh DATAbAses

320

In this last example, a PreparedStatement is used to delete a record from the database. Again, assume
that the recipeNumber String is passed to this code as a variable.

String sql = "DELETE FROM RECIPES WHERE " +
 "RECIPE_NUMBER = ?";
try(PreparedStatement pstmt = conn.prepareStatement(sql);) {
 pstmt.setString(1, recipeNumber);
 pstmt.executeUpdate();
 System.out.println("Recipe " + recipeNumber + " successfully deleted.");
} catch (SQLException ex){
 ex.printStackTrace();
}

As you can see, a PreparedStatement is very much the same as a standard JDBC statement object, but
instead it sends precompiled SQL to the DBMS rather than Strings of text.

How It Works
While standard JDBC statements will get the job done, the harsh reality is that they can sometimes be
insecure and cumbersome to work with. For instance, bad things can occur if a dynamic SQL statement is
used to query a database, and a user-accepted String is assigned to a variable and concatenated with the
intended SQL String. In most ordinary cases, the user-accepted String would be concatenated, and the
SQL String would be used to query the database as expected. However, an attacker could decide to place
malicious code inside of the String (a.k.a. SQL Injection), which would then be inadvertently sent to the
database using a standard Statement object. The use of PreparedStatements prevents such malicious
Strings from being concatenated into a SQL String and passed to the DBMS because they use a different
approach. PreparedStatements use substitution variables rather than concatenation to make SQL Strings
dynamic. They are also precompiled, which means that a valid SQL String is formed prior to the SQL being
sent to the DBMS. Moreover, PreparedStatements can help your application perform better because if the
same SQL has to be run more than one time, it has to be compiled only once. After that, the substitution
variables are interchangeable, but the overall SQL can be executed by the PreparedStatement very quickly.

Let’s take a look at how a PreparedStatement works in practice. If you look at the first example in the
solution to this recipe, you can see that the database table RECIPES is being queried, passing a RECIPE_
NUMBER and retrieving the results for the matching record. The SQL String looks like the following:

String sql = "SELECT ID, RECIPE_NUMBER, RECIPE_NAME, DESCRIPTION " +
 "FROM RECIPES " +
 "WHERE RECIPE_NUM = ?";

Everything looks standard with the SQL text except for the question mark (?) at the end of the String.
Placing a question mark in a String of SQL signifies that a substitute variable will be used in place of that
question mark when the SQL is executed. The next step for using a PreparedStatement is to declare a
variable of type PreparedStatement. This can be seen with the following line of code:

PreparedStatement pstmt = null;

A PreparedStatement implements AutoCloseable, and therefore it can be utilized within the context
of a try-with-resources block. Once a PreparedStatement has been declared, it can be put to use.
However, use of a PreparedStatement might not cause an exception to be thrown. Therefore, in the event

ChApTer 13 ■ WOrking WiTh DATAbAses

321

that try-with-resources is not used, a PreparedStatement should occur within a try-catch block so that
any exceptions can be handled gracefully. For instance, exceptions can occur if the database connection
is unavailable for some reason or if the SQL String is invalid. Rather than crashing an application due to
such issues, it is best to handle the exceptions wisely within a catch block. The following try-catch block
includes the code that is necessary to send the SQL String to the database and retrieve results:

try(PreparedStatement pstmt = conn.prepareStatement(sql);) {
 pstmt.setString(1, recipeNumber);
 ResultSet rs = pstmt.executeQuery();
 while(rs.next()){
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 }
} catch (SQLException ex) {
 ex.printStackTrace();
}

First, you can see that the Connection object is used to instantiate a PreparedStatement object.
The SQL String is passed to the PreparedStatement object’s constructor on creation. Since the
PreparedStatement is instantiated within the try-with-resources construct, it will be automatically closed
when it is no longer in use. Next, the PreparedStatement object is used to set values for any substitution
variables that have been placed into the SQL String. As you can see, the PreparedStatement setString()
method is used in the example to set the substitution variable at position 1 equal to the contents of the
recipeNumber variable. The positioning of the substitution variable is associated with the placement of
the question mark (?) within the SQL String. The first question mark within the String is assigned to the
first position, the second one is assigned to the second position, and so forth. If there were more than one
substitution variable to be assigned, there would be more than one call against the PreparedStatement,
assigning each of the variables until each one has been accounted for. PreparedStatements can accept
substitution variables of many different data types. For instance, if an int value were being assigned to a
substitution variable, a call to the setInt(position, variable) method would be in order. See the online
documentation or your IDE’s code completion for a complete set of methods that can be used for assigning
substitution variables using PreparedStatement objects.

Once all the variables have been assigned, the SQL String can be executed. The PreparedStatement
object contains an executeQuery() method that is used to execute a SQL String that represents a query.
The executeQuery() method returns a ResultSet object, which contains the results that have been fetched
from the database for the particular SQL query. Next, the ResultSet can be traversed to obtain the values
retrieved from the database. Again, positional assignments are used to retrieve the results by calling the
ResultSet object’s corresponding getter methods and passing the position of the column value that you
want to obtain. The position is determined by the order in which the column names appear within the SQL
String. In the example, the first position corresponds to the RECIPE_NUMBER column, the second corresponds
to the RECIPE_NAME column, and so forth. If the recipeNumber String variable was equal to "13-1," the
results of executing the query in the example would look something like the following:

13-1: Connecting to a Database - DriverManager and DataSource Implementations

Of course, if the substitution variable is not set correctly or if there is an issue with the SQL String, an
exception will be thrown. This would cause the code that is contained within the catch block to be executed.
You should also be sure to clean up after using PreparedStatements by closing the statement when you
are finished using it. If you’re not using a try-with-resources construct, it is a good practice to put all the

ChApTer 13 ■ WOrking WiTh DATAbAses

322

cleanup code within a finally block to be sure that the PreparedStatement is closed properly even if an
exception is thrown. In the example, the finally block looks like the following:

finally {
 if (pstmt != null){
 try {
 pstmt.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
}

You can see that the PreparedStatement object that was instantiated, pstmt, is checked to see whether
it is NULL. If not, it is closed by calling the close() method.

Working through the code in the solution to this recipe, you can see that similar code is used to
process database INSERT, Update, and DELETE statements. The only difference in those cases is that the
PreparedStatement executeUpdate() method is called rather than the executeQuery() method. The
executeUpdate() method will return an int value representing the number of rows affected by the SQL
statement.

The use of PreparedStatement objects is preferred over JDBC Statement objects. This is due to the fact
that they are more secure and perform better. They can also make your code easier to follow and maintain.

13-7. Performing Transactions
Problem
The way in which your application is structured requires a sequential processing of tasks. One task depends
on another, and each process performs a different database action. If one of the tasks along the way fails, the
database processing that has already occurred needs to be reversed.

Solution
Set your Connection object autocommit to false and then perform the transactions you want to complete.
Once you’ve successfully performed each of the transactions, manually commit the Connection
object; otherwise, roll back each of the transactions that have taken place. The following code example
demonstrates transaction management. If you look at the main() method of the TransactionExample class,
you will see that the Connection object’s autoCommit() preference has been set to false, so that database
statements are grouped together to form one transaction. If all the statements within the transaction are
successful, the Connection object is manually committed by calling the commit() method; otherwise, all the
statements are rolled back by calling the rollback() method. By default, autoCommit is set to true, which
automatically treats every statement as a single transaction.

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import org.java9recipes.chapter13.recipe13_01.CreateConnection;

ChApTer 13 ■ WOrking WiTh DATAbAses

323

public class TransactionExample {
 public static Connection conn = null;

 public static void main(String[] args) {
 boolean successFlag = false;
 try {
 CreateConnection createConn = new CreateConnection();
 conn = createConn.getConnection();
 conn.setAutoCommit(false);
 queryDbRecipes();
 successFlag = insertRecord(
 "13-6",
 "Simplifying and Adding Security with Prepared Statements",
 "Working with Prepared Statements",
 "Recipe Text");

 if (successFlag == true){

 successFlag = insertRecord(
 "13-6B",
 "Simplifying and Adding Security with Prepared Statements",
 "Working with Prepared Statements",
 "Recipe Text");
 }

 // Commit Transactions
 if (successFlag == true)
 conn.commit();
 else
 conn.rollback();

 conn.setAutoCommit(true);
 queryDbRecipes();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }

 }

ChApTer 13 ■ WOrking WiTh DATAbAses

324

 private static void queryDbRecipes(){
 String sql = "SELECT ID, RECIPE_NUMBER, RECIPE_NAME, DESCRIPTION " +
 "FROM RECIPES";

 try(PreparedStatement pstmt = conn.prepareStatement(sql);) {
 ResultSet rs = pstmt.executeQuery();
 while(rs.next()){
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 }
 } catch (SQLException ex) {
 ex.printStackTrace();
 }

 }

 private static boolean insertRecord(String recipeNumber,
 String title,
 String description,
 String text){
 String sql = "INSERT INTO RECIPES VALUES(" +
 "NEXT VALUE FOR RECIPES_SEQ, ?,?,?,?)";
 boolean success = false;
 try(PreparedStatement pstmt = conn.prepareStatement(sql);) {
 pstmt.setString(1, recipeNumber);
 pstmt.setString(2, title);
 pstmt.setString(3, description);
 pstmt.setString(4, text);
 pstmt.executeUpdate();
 System.out.println("Record successfully inserted.");
 success = true;
 } catch (SQLException ex){
 success = false;
 ex.printStackTrace();
 }
 return success;

 }

}

In the end, if any of the statements fails, all transactions will be rolled back. However, if all the
statements execute properly, everything will be committed.

How It Works
Transaction management can play an important role in an application. This holds true especially for
applications that perform different tasks that depend on each other. In many cases, if one of the tasks
performed within a transaction fails, it is preferable for the entire transaction to fail rather than having it only
partially complete. For instance, imagine that you were adding database user records to your application
database. Now let’s say that adding a user for your application required a couple of different database tables

ChApTer 13 ■ WOrking WiTh DATAbAses

325

to be modified, maybe a table for roles, and so on. What would happen if your first table was modified
correctly and the second table modification failed? You would be left with a partially complete application
user addition, and your user would most likely not be able to access the application as expected. In such
a situation, it would be nicer to roll back all the already-completed database modifications if one of the
updates failed so that the database was left in a clean state and the transaction could be attempted once
again.

By default, a Connection object is set up so that autocommit is turned on. That means that each
database INSERT, UPDATE, or DELETE statement is committed right away. Usually, this is the way that you will
want your applications to function. However, in circumstances where you have many database statements
that rely on one another, it is important to turn off autocommit so that all the statements can be committed
at once. To do so, call the Connection object’s setAutoCommit() method and pass a false value. As you can
see in the solution to this recipe, the setAutoCommit() method is called passing a false value, the database
statements are executed. Doing so will cause all the database statement changes to be temporary until the
Connection object’s commit() method is called. This provides you with the ability to ensure that all the
statements execute properly before issuing commit(). Take a look at this transaction management code that
is contained within the main() method of the TransactionExample class within the solution to this recipe:

boolean successFlag = false;
...
CreateConnection createConn = new CreateConnection();
conn = createConn.getConnection();
conn.setAutoCommit(false);
queryDbRecipes();
successFlag = insertRecord(
 "13-6",
 "Simplifying and Adding Security with Prepared Statements",
 "Working with Prepared Statements",
 "Recipe Text");

if (successFlag == true){

 successFlag = insertRecord(
 null,
 "Simplifying and Adding Security with Prepared Statements",
 "Working with Prepared Statements",
 "Recipe Text");
}
// Commit Transactions
if (successFlag == true)
 conn.commit();
else
 conn.rollback();

conn.setAutoCommit(true);

Note that the commit() method is called only if all transaction statements were processed successfully.
If any of them fail, the successFlag is equal to false, which would cause the rollback() method to be
called instead. In the solution to this recipe, the second call to insertRecord() attempts to insert a NULL
value into the RECIPE.ID column, which is not allowed. Therefore, that insert fails and everything, including
the previous insert, gets rolled back.

ChApTer 13 ■ WOrking WiTh DATAbAses

326

13-8. Creating a Scrollable ResultSet
Problem
You have queried the database and obtained some results. You want to store those results in an object that
will allow you to traverse forward and backward through the results, updating values as needed.

Solution
Create a scrollable ResultSet object and then you will have the ability to read the next, first record, last, and
previous record. Using a scrollable ResultSet allows the results of a query to be fetched in any direction
so that the data can be retrieved as needed. The following example method demonstrates the creation of a
scrollable ResultSet object:

private static void queryDbRecipes(){
 String sql = "SELECT ID, RECIPE_NUMBER, RECIPE_NAME, DESCRIPTION " +
 "FROM RECIPES";

 try(PreparedStatement pstmt =conn.prepareStatement(sql,
 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
 ResultSet rs = pstmt.executeQuery()) {

 rs.first();
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 rs.next();
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 rs.previous();
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 rs.last();
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 } catch (SQLException ex) {
 ex.printStackTrace();
 }

}

Executing this method will result in the following output using the data that was originally loaded for
this chapter:

Successfully connected
13-1: Connecting to a Database - DriverManager and DataSource Implementations - More to Come
13-2: Querying a Database and Retrieving Results - Obtaining and Using Data from a DBMS
13-1: Connecting to a Database - DriverManager and DataSource Implementations - More to Come
13-3: Handling SQL Exceptions - Using SQLException

ChApTer 13 ■ WOrking WiTh DATAbAses

327

How It Works
Ordinary ResultSet objects allow results to be fetched in a forward direction. That is, an application can
process a default ResultSet object from the first record retrieved forward to the last. Sometimes an application
requires more functionality when it comes to traversing a ResultSet. For instance, let’s say you want to write
an application that allows for someone to display the first or last record that was retrieved, or perhaps page
forward or backward through results. You could not do this very easily using a standard ResultSet. However,
by creating a scrollable ResultSet, you can easily move backward and forward through the results.

To create a scrollable ResultSet, you must first create an instance of a Statement or PreparedStatement
that has the ability to create a scrollable ResultSet. That is, when creating the Statement, you must pass the
ResultSet scroll type constant value to the Connection object’s createStatement() method. Likewise, you
must pass the scroll type constant value to the Connection object’s prepareStatement() method when using
a PreparedStatement. There are three scroll type constants that can be used. Table 13-1 displays those three
constants.

You must also pass a ResultSet concurrency constant to advise whether the ResultSet is intended
to be updatable. The default is ResultSet.CONCUR_READ_ONLY, which means that the ResultSet is not
updatable. The other concurrency type is ResultSet.CONCUR_UPDATABLE, which signifies an updatable
ResultSet object.

In the solution to this recipe, a PreparedStatement object is used, and the code to create a
PreparedStatement object that has the ability to generate a scrollable ResultSet looks like the following
line:

pstmt = conn.prepareStatement(sql, ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

Once the PreparedStatement has been created as such, a scrollable ResultSet is returned. You can
traverse in several directions using a scrollable ResultSet by calling the ResultSet methods indicating the
direction you want to move or the placement that you want to be. The following line of code will retrieve the
first record within the ResultSet:

ResultSet rs = pstmt.executeQuery();
rs.first();

The solution to this recipe demonstrates a few different scroll directions. Specifically, you can see that
the ResultSet first(), next(), last(), and previous() methods are called in order to move to different
positions within the ResultSet. For a complete reference to the ResultSet object, see the online documentation
that can be found at http://docs.oracle.com/javase/8/docs/api/java/sql/ResultSet.html.

Scrollable ResultSet objects have a niche in application development. They are one of those niceties
that are there when you need them, but they are also something that you might not need very often.

Table 13-1. ResultSet Scroll Type Constants

Constant Description

ResultSet.TYPE_FORWARD_ONLY Default type, allows forward movement only.

ResultSet.TYPE_SCROLL_INSENSITIVE Allows forward and backward movement. Not sensitive to
ResultSet updates.

ResultSet.TYPE_SCROLL_SENSITIVE Allows forward and backward movement. Sensitive to
ResultSet updates.

http://docs.oracle.com/javase/8/docs/api/java/sql/ResultSet.html

ChApTer 13 ■ WOrking WiTh DATAbAses

328

13-9. Creating an Updatable ResultSet
Problem
An application task has queried the database and obtained results. You have stored those results into a
ResultSet object, and you want to update some of those values in the ResultSet and commit them back to
the database.

Solution
Make your ResultSet object updatable, and then update the rows as needed while iterating through the
results. The following example method demonstrates how to make ResultSet updatable and then how to
update content within that ResultSet, eventually persisting it in the database:

private static void queryAndUpdateDbRecipes(String recipeNumber){
 String sql = "SELECT ID, RECIPE_NUMBER, RECIPE_NAME, DESCRIPTION " +
 "FROM RECIPES " +
 "WHERE RECIPE_NUMBER = ?";
 ResultSet rs = null;
 try (PreparedStatement pstmt =
 conn.prepareStatement(sql, ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.

CONCUR_UPDATABLE);){

 pstmt.setString(1, recipeNumber);
 rs = pstmt.executeQuery();
 while(rs.next()){
 String desc = rs.getString(4);
 System.out.println("Updating row" + desc);

 rs.updateString(4, desc + " -- More to come");
 rs.updateRow();
 }

 } catch (SQLException ex) {
 ex.printStackTrace();
 } finally {
 if (rs != null){
 try {
 rs.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }

This method could be called passing a String value containing a recipe number. Suppose that the recipe
number "13-1" was passed to this method; the following output would be the result:

ChApTer 13 ■ WOrking WiTh DATAbAses

329

Successfully connected
13-1: Connecting to a Database - DriverManager and DataSource Implementations
13-2: Querying a Database and Retrieving Results - Obtaining and Using Data from a DBMS
13-3: Handling SQL Exceptions - Using SQLException
Updating rowDriverManager and DataSource Implementations
13-1: Connecting to a Database - DriverManager and DataSource Implementations - More to come
13-2: Querying a Database and Retrieving Results - Obtaining and Using Data from a DBMS
13-3: Handling SQL Exceptions - Using SQLException

How It Works
Sometimes you need to update data as you are parsing it. Usually this technique involves testing the
values that are being returned from the database and updating them after comparison with another value.
The easiest way to do this is to make the ResultSet object updatable by passing the ResultSet.CONCUR_
UPDATABLE constant to the Connection object’s createStatement() or prepareStatement() method. Doing
so causes the Statement or PreparedStatement to produce an updatable ResultSet.

 ■ Note some database JDbC drivers do not support updatable ResultSets. see the documentation of
your JDbC driver for more information. This code was run using Oracle’s ojdbc6.jar JDbC driver on Oracle
database 11.2 release.

The format for creating a Statement that will produce an updatable ResultSet is to pass the ResultSet
type as the first argument and the ResultSet concurrency as the second argument. The scroll type must be
TYPE_SCROLL_SENSITIVE to ensure that the ResultSet will be sensitive to any updates that are made. The
following code demonstrates this technique by creating a Statement object that will produce a scrollable
and updatable ResultSet object:

Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

The format for creating a PreparedStatement that will produce an updatable ResultSet is to pass
the SQL String as the first argument, the ResultSet type as the second argument, and the ResultSet
concurrency as the third argument. The solution to this recipe demonstrates this technique using the
following line of code:

pstmt = conn.prepareStatement(sql, ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);

Both of the lines of code discussed in this section will produce scrollable and updatable ResultSet
objects. Once you have obtained an updatable ResultSet, you can use it just like an ordinary ResultSet for
fetching values that are retrieved from the database. In addition, you can call one of the ResultSet object’s
updateXXX() methods to update any value within the ResultSet. In the solution to this recipe, the
updateString() method is called, passing the position of the value from the query as the first argument and
the updated text as the second argument. In this case, the fourth element column listed in the SQL query will
be updated.

rs.updateString(4, desc + " -- More to come");

ChApTer 13 ■ WOrking WiTh DATAbAses

330

Finally, to persist the values that you have changed, call the ResultSet updateRow() method, as seen in
the solution to this recipe:

rs.updateRow();

Creating an updatable ResultSet is not something that you will need to do every day. In fact, you might
never need to create an updatable ResultSet. However, for the cases in which such a strategy is needed, this
technique can come in very handy.

13-10. Caching Data for Use When Disconnected
Problem
You want to work with data from a DBMS when you are in a disconnected state. That is, you are working on
a device that is not connected to the database, and you still want to have the ability to work with a set of data
as though you are connected. For instance, you are working with data on a portable device, and you are away
from the office without a connection. You want to have the ability to query, insert, update, and delete data,
even though there is no connection. Once a connection becomes available, you want to have your device
synchronize any database changes that have been made while you were disconnected.

Solution
Use a CachedRowSet object to store the data that you want to work with while offline. This will afford your
application the ability to work with data as though it were connected to a database. Once your connection
is restored or you connect back to the database, synchronize the data that has been changed within
the CachedRowSet with the database repository. The following example class demonstrates the use of a
CachedRowSet. In this scenario, the main() method executes the example. Suppose that there were no
main() method, though, and that another application on a portable device were to invoke the methods of
this class. Follow the code in the example and consider the possibility of working with the results that are
stored within the CachedRowSet while not connected to the database. For instance, suppose that you began
some work in the office while connected to the network and are now outside of the office, where the network
is spotty and you cannot maintain a constant connection to the database:

package org.java9recipes.chapter13.recipe13_10;

import java.sql.Connection;
import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.RowSetProvider;
import javax.sql.rowset.spi.SyncProviderException;
import org.java9recipes.chapter13.recipe13_01.CreateConnection;

public class CachedRowSetExample {

 public static Connection conn = null;
 public static CreateConnection createConn;
 public static CachedRowSet crs = null;

ChApTer 13 ■ WOrking WiTh DATAbAses

331

 public static void main(String[] args) {
 boolean successFlag = false;
 try {
 createConn = new CreateConnection();
 conn = createConn.getConnection();
 // Perform Scrollable Query
 queryWithRowSet();

 // Update the CachedRowSet
 updateData();

 // Synchronize changes
 syncWithDatabase();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {

 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }

 }

 /**
 * Call this method to synchronize the data that has been used in the
 * CachedRowSet with the database
 */
 public static void syncWithDatabase() {
 try {
 crs.acceptChanges(conn);
 } catch (SyncProviderException ex) {
 // If there is a conflict while synchronizing, this exception
 // will be thrown.
 ex.printStackTrace();
 } finally {
 // Clean up resources by closing CachedRowSet
 if (crs != null) {
 try {
 crs.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }
 }

ChApTer 13 ■ WOrking WiTh DATAbAses

332

 public static void queryWithRowSet() {
 RowSetFactory factory;

 try {

 // Create a new RowSetFactory
 factory = RowSetProvider.newFactory();

 // Create a CachedRowSet object using the factory
 crs = factory.createCachedRowSet();

 // Alternatively populate the CachedRowSet connection settings
 // crs.setUsername(createConn.getUsername());
 // crs.setPassword(createConn.getPassword());
 // crs.setUrl(createConn.getJdbcUrl());

 // Populate a query that will obtain the data that will be used
 crs.setCommand("select id, recipe_number, recipe_name, description from recipes");
 // Set key columns
 int[] keys = {1};
 crs.setKeyColumns(keys);
 crs.execute(conn);

 // You can now work with the object contents in a disconnected state
 while (crs.next()) {
 System.out.println(crs.getString(2) + ": " + crs.getString(3)
 + " - " + crs.getString(4));
 }

 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 public static boolean updateData() {
 boolean returnValue = false;
 try {
 // Move to the position before the first row in the result set
 crs.beforeFirst();

 // traverse result set
 while (crs.next()) {
 // If the recipe_num equals 11-2 then update
 if (crs.getString("RECIPE_NUMBER").equals("13-2")) {
 System.out.println("updating recipe 13-2");
 crs.updateString("description", "Subject to change");
 crs.updateRow();
 }

 }
 returnValue = true;

ChApTer 13 ■ WOrking WiTh DATAbAses

333

 // Move to the position before the first row in the result set
 crs.beforeFirst();

 // traverse result set to see changes
 while (crs.next()) {

 System.out.println(crs.getString(2) + ": " + crs.getString(3)
 + " - " + crs.getString(4));

 }

 } catch (SQLException ex) {
 returnValue = false;
 ex.printStackTrace();
 }
 return returnValue;
 }
}

Running this example code will display output that looks similar to the following code, although the text
might vary depending on the values in the database. Notice that the database record for Recipe 13-2 has a
changed description after the update of the CachedRowSet.

Successfully connected
13-1: Connecting to a Database - DriverManager and DataSource Implementations - More to Come
13-2: Querying a Database and Retrieving Results - Subject to Change
13-3: Handling SQL Exceptions - Using SQLException
Updating Recipe 13-2
13-1: Connecting to a Database - DriverManager and DataSource Implementations - More to Come
13-2: Querying a Database and Retrieving Results - Obtaining and Using Data from a DBMS
13-3: Handling SQL Exceptions - Using SQLException

How It Works
It is not possible to remain connected to the Internet all the time if you are working on a mobile device and
traveling. Nowadays there are devices that allow you to perform substantial work while you are on the go,
even when you are not connected directly to a database. In such cases, solutions like the CachedRowSet
object can come into play. The CachedRowSet is the same as a regular ResultSet object, except it does not
have to maintain a connection to a database in order to remain usable. You can query the database, obtain
the results, and place them into a CachedRowSet object; and then work with them while not connected to the
database. If changes are made to the data at any point, those changes can be synchronized with the database
at a later time.

There are a couple of ways to create a CachedRowSet. The solution to this recipe uses a RowSetFactory
to instantiate a CachedRowSet. However, you can also use the CachedRowSet default constructor to create a
new instance. Doing so would look like the following line of code:

CachedRowSet crs = new CachedRowSetImpl();

Once instantiated, you need to set up a connection to the database. There are also a couple of ways
to do this. Properties could be set for the connection that will be used, and the solution to this recipe
demonstrates this technique within comments. The following excerpt from the solution sets the connection

ChApTer 13 ■ WOrking WiTh DATAbAses

334

properties using the CachedRowSet object’s setUsername(), setPassword(), and setUrl() methods. Each
of them accepts a String value, and in the example that String is obtained from the CreateConnection class:

// Alternatively populate the CachedRowSet connection settings
// crs.setUsername(createConn.getUsername());
// crs.setPassword(createConn.getPassword());
// crs.setUrl(createConn.getJdbcUrl());

Another way to set up the connection is to wait until the query is executed and pass a Connection object
to the executeQuery() method. This is the technique that is used in the solution to this recipe. But before
you can execute the query, it must be set using the setCommand() method, which accepts a String value. In
this case, the String is the SQL query that you need to execute:

crs.setCommand("select id, recipe_number, recipe_name, description from recipes");

Next, if a CachedRowSet will be used for updates, the primary key values should be noted using the
setKeys() method. This method accepts an int array that includes the positional indices of the key
columns. These keys are used to identify unique columns. In this case, the first column listed in the query,
ID, is the primary key:

int[] keys = {1};
crs.setKeyColumns(keys);

Finally, execute the query and populate the CachedRowSet using the execute() method. As mentioned
previously, the execute() method optionally accepts a Connection object, which allows the CachedRowSet
to obtain a database connection.

crs.execute(conn);

Once the query has been executed and the CachedRowSet has been populated, it can be used just like
any other ResultSet. You can use it to fetch records forward and backward, or by specifying the absolute
position of the row you’d like to retrieve. The solution to this recipe demonstrates only a couple of these
fetching methods, but the most often used ones are listed in Table 13-2.

It is possible to insert and update rows within a CachedRowSet. To insert rows, use the
moveToInsertRow() method to move to a new row position. Then populate a row by using the various
methods [CachedRowSet, updateString(), updateInt(), and so on] that correspond to the data type of the
column you are populating within the row. Once you have populated each of the required columns within

Table 13-2. CachedRowSet Fetching Methods

Method Description

first() Moves to the first row in the set.

beforeFirst() Moves to the position before the first row in the set.

afterLast Moves to the position after the last row in the set.

next() Moves to the next position in the set.

last() Moves to the last position in the set.

ChApTer 13 ■ WOrking WiTh DATAbAses

335

the row, call the insertRow() method, followed by the moveToCurrentRow() method. The following lines of
code demonstrate inserting a record into the RECIPES table:

crs.moveToInsertRow();
crs.updateInt(1, sequenceValue); // obtain current sequence values with a prior query
crs.updateString(2, “13-x”);
crs.updateString(3, “This is a new recipe title”);
crs.insertRow();
crs.moveToCurrentRow();

Updating rows is similar to using an updatable ResultSet. Simply update the values using the
CachedRowSet object’s methods [updateString(), updateInt(), and so on] that correspond to the data type
of the column that you are updating within the row. Once you have updated the column or columns within
the row, call the updateRow() method. This technique is demonstrated in the solution to this recipe.

crs.updateString("description", "Subject to change");
crs.updateRow();

To propagate any updates or inserts to the database, the acceptChanges() method must be called. This
method can accept an optional Connection argument in order to connect to the database. Once called, all
changes are flushed to the database. Unfortunately, because time might have elapsed since the data was last
retrieved for the CachedRowSet, there could be conflicts. If such a conflict arises, a SyncProviderException
will be thrown. You can catch these exceptions and handle the conflicts manually using a SyncResolver
object. However, resolving conflicts is out of the scope of this recipe, so for more information, see the online
documentation that can be found at http://download.oracle.com/javase/tutorial/jdbc/basics/
cachedrowset.html.

CachedRowSet objects provide great flexibility for working with data, especially when you are using a
device that is not always connected to the database. However, they can also be overkill in situations where
you can simply use a standard ResultSet or even a scrollable ResultSet.

13-11. Joining RowSet Objects When Not Connected to the
Data Source
Problem
You want to join two or more RowSets while not connected to a database. Perhaps your application is loaded
on a mobile device that is not always connected to the database. In such a case, you are looking for a solution
that will allow you to join the results of two or more queries.

Solution
Use a JoinRowSet to take data from two relational database tables and join them. The data from each table
that will be joined should be fetched into a RowSet and then the JoinRowSet can be used to join each of
those RowSet objects based on related elements contained within them. For instance, suppose that there
were two related tables within a database. One of the tables stores a list of authors, and the other table
contains a list of chapters that are written by those authors. The two tables can be joined using SQL by the
primary and foreign key relationship.

http://download.oracle.com/javase/tutorial/jdbc/basics/cachedrowset.html
http://download.oracle.com/javase/tutorial/jdbc/basics/cachedrowset.html

ChApTer 13 ■ WOrking WiTh DATAbAses

336

 ■ Note A primary key is a unique identifier within each record of a database table, and a foreign key is a
referential constraint between two tables.

However, the application will not be connected to the database to make the JOIN query, so it must be
done using a JoinRowSet. The following class listing demonstrates one strategy that can be used. In this
scenario, the database table BOOK_AUTHOR and is set up as follows:

BOOK_AUTHOR(
id int primary key,
last varchar(30),
first varchar(30));

author_work(
id int primary key,
author_id int not null,
chapter_number int not null,
chapter_title varchar(100) not null,
constraint author_work_fk
foreign key(author_id) references book_author(id));

book(
id int primary key,
title varchar(150),
image varchar(150),
description clob);

The Java code to work with this table is as follows:

package org.java9recipes.chapter13.recipe13_11;

import com.sun.rowset.JoinRowSetImpl;
import java.sql.Connection;
import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.JoinRowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.RowSetProvider;
import org.java9recipes.chapter13.recipe13_01.CreateConnection;

public class JoinRowSetExample {

 public static Connection conn = null;
 public static CreateConnection createConn;
 public static CachedRowSet bookAuthors = null;
 public static CachedRowSet authorWork = null;
 public static JoinRowSet jrs = null;

ChApTer 13 ■ WOrking WiTh DATAbAses

337

 public static void main(String[] args) {
 boolean successFlag = false;
 try {
 createConn = new CreateConnection();
 conn = createConn.getConnection();
 // Perform Scrollable Query
 queryBookAuthor();
 queryAuthorWork();

 joinRowQuery();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {

 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 if (bookAuthors != null) {
 try {
 bookAuthors.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 if (authorWork != null) {
 try {
 authorWork.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 if (jrs != null) {
 try {
 jrs.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }

 }

 public static void queryBookAuthor() {
 RowSetFactory factory;

 try {
 // Create a new RowSetFactory
 factory = RowSetProvider.newFactory();

ChApTer 13 ■ WOrking WiTh DATAbAses

338

 // Create a CachedRowSet object using the factory
 bookAuthors = factory.createCachedRowSet();

 // Alternatively populate the CachedRowSet connection settings
 // crs.setUsername(createConn.getUsername());
 // crs.setPassword(createConn.getPassword());
 // crs.setUrl(createConn.getJdbcUrl());

 // Populate a query that will obtain the data that will be used
 bookAuthors.setCommand("SELECT ID, LASTNAME, FIRSTNAME FROM BOOK_AUTHOR");

 bookAuthors.execute(conn);

 // You can now work with the object contents in a disconnected state
 while (bookAuthors.next()) {
 System.out.println(bookAuthors.getString(1) + ": " + bookAuthors.getString(2)
 + ", " + bookAuthors.getString(3));
 }

 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 public static void queryAuthorWork() {
 RowSetFactory factory;

 try {
 // Create a new RowSetFactory
 factory = RowSetProvider.newFactory();

 // Create a CachedRowSet object using the factory
 authorWork = factory.createCachedRowSet();

 // Alternatively populate the CachedRowSet connection settings
 // crs.setUsername(createConn.getUsername());
 // crs.setPassword(createConn.getPassword());
 // crs.setUrl(createConn.getJdbcUrl());

 // Populate a query that will obtain the data that will be used
 authorWork.setCommand("SELECT AW.ID, AUTHOR_ID, B.TITLE FROM AUTHOR_WORK AW, " +
 "BOOK B " +
 "WHERE B.ID = AW.BOOK_ID");

 authorWork.execute(conn);

 // You can now work with the object contents in a disconnected state
 while (authorWork.next()) {
 System.out.println(authorWork.getString(1) + ": " + authorWork.getString(2)
 + " - " + authorWork.getString(3));
 }

ChApTer 13 ■ WOrking WiTh DATAbAses

339

 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 public static void joinRowQuery() {
 try {
 // Create JoinRowSet
 jrs = new JoinRowSetImpl();

 // Add RowSet & Corresponding Keys
 jrs.addRowSet(bookAuthors, 1);
 jrs.addRowSet(authorWork, 2);
 // Alternatively use join-column name
 // jrs.addRowSet(authorWork, "AUTHOR_ID");

 // Traverse Results
 while(jrs.next()){
 System.out.println(jrs.getInt("ID") + ": " +
 jrs.getString("TITLE") + " - " +
 jrs.getString("FIRSTNAME") + " " +
 jrs.getString("LASTNAME"));
 }

 } catch (SQLException ex) {
 ex.printStackTrace();
 }

 }
}

Running this class will result in output that resembles the following:

Successfully connected
100: JUNEAU, JOSH
101: DEA, CARL
102: BEATY, MARK
103: GUIME, FREDDY
104: JOHN, OCONNER
105: TESTER, JOE
110: TESTER, JOE
111: OCONNER, JOHN
1: 100 - Java 8 Recipes
2: 100 - Java 7 Recipes
3: 100 - Java EE 7 Recipes
4: 100 - Introducing Java EE 7
5: 103 - Java 7 Recipes
6: 101 - Java 7 Recipes
7: 111 - Java 7 Recipes
8: 102 - Java 7 Recipes
9: 101 - Java FX 2.0 - Introduction by Example
111: Java 7 Recipes - JOHN OCONNER

ChApTer 13 ■ WOrking WiTh DATAbAses

340

103: Java 7 Recipes - FREDDY GUIME
102: Java 7 Recipes - MARK BEATY
101: Java FX 2.0 - Introduction by Example - CARL DEA
101: Java 7 Recipes - CARL DEA
100: Introducing Java EE 7 - JOSH JUNEAU
100: Java EE 7 Recipes - JOSH JUNEAU
100: Java 7 Recipes - JOSH JUNEAU
100: Java 8 Recipes - JOSH JUNEAU

How It Works
A JoinRowSet is a combination of two or more populated RowSet objects. It can be used to join two RowSet
objects based on key/value relationships, just as if it were a SQL JOIN query. In order to create a JoinRowSet,
you must first populate two or more RowSet objects with related data, and then they can each be added to
the JoinRowSet to create the combined result.

In the solution to this recipe, the tables that are queried are named BOOK_AUTHOR, BOOK, and AUTHOR_WORK.
The BOOK_AUTHOR table contains a list of author names, while the AUTHOR_WORK table contains the list of books
along with the corresponding AUTHOR_ID. The BOOK table contains book specifics. Following along with the
main() method, first the BOOK_AUTHOR table is queried, and its results are fetched into a CachedRowSet using the
queryBookAuthor() method. For more details regarding the use of CachedRowSet objects, see Recipe 13-10.

Next, another CachedRowSet is populated with the results of querying the AUTHOR_WORK and BOOK tables,
as the queryAuthorBook() method is called. At this point, there are two populated CacheRowSet objects,
and they can now be combined using a JoinRowSet. In order to do so, each query must contain one or more
columns that relate to the other table. In this case, the BOOK_AUTHOR.ID column relates to the AUTHOR_WORK.
AUTHOR_ID column, so the RowSet objects must be joined on those column values.

The final method that is invoked within the main() is joinRowQuery(). This method is where all the
JoinRowSet work takes place. First, a new JoinRowSet is created by instantiating a JoinRowSetImpl() object:

jrs = new JoinRowSetImpl();

 ■ Note You will receive a compile-time warning when using JoinRowSetImpl because it is an internal sUn
proprietary Api. however, the Oracle version is OracleJoinRowSet, which is not as versatile.

Next, the two CachedRowSet objects are added to the newly created JoinRowSet by calling its
addRowSet() method. The addRowSet() method accepts a couple of arguments. The first is the name of
the RowSet object that you want to add to the JoinRowSet, and the second is an int value indicating the
position within the CachedRowSet, which contains the key value that will be used to implement the join. In
the solution to this recipe, the first call to addRowSet() passes the bookAuthors CachedRowSet, along with
the number 1 because the element in the first position of the bookAuthors CachedRowSet corresponds to the
BOOK_AUTHOR.ID column. The second call to addRowSet() passes the authorWork CachedRowSet, along with
number 2 because the element in the second position of the authorWork CachedRowSet corresponds to the
AUTHOR_WORK.AUTHOR_ID column.

// Add RowSet & Corresponding Keys
jrs.addRowSet(bookAuthors, 1);
jrs.addRowSet(authorWork, 2);
// Alternatively specify the join-column name
jrs.addRowSet(authorWork, "AUTHOR_ID");

ChApTer 13 ■ WOrking WiTh DATAbAses

341

The JoinRowSet can now be used to fetch the results of the join, just as if it were a normal RowSet. When
calling the corresponding methods [getString(), getInt(), and so on] of the JoinRowSet, pass the name of
the database column corresponding to the data you want to store:

while(jrs.next()){
System.out.println(jrs.getInt("ID") + ": " +
 jrs.getString("TITLE") + " - " +
 jrs.getString("FIRSTNAME") + " " +
 jrs.getString("LASTNAME"));
}

Although a JoinRowSet is not needed every day, it can be handy when performing work against two
related sets of data. This holds true especially when the application is not connected to a database all the
time, or if you are trying to use as few Connection objects as possible.

13-12. Filtering Data in a RowSet
Problem
Your application queries the database and returns a large number of rows. The number of rows within the
cached ResultSet is too large for the user to work with at one time. You would like to limit the number of
rows that are visible so that you can perform different activities with different sets of data that have been
queried from the table.

Solution
Use a FilteredRowSet to query the database and store the contents. The FilteredRowSet can be configured
to filter the results that are returned from the query so that the only contents visible are the rows that you
want to see. In the following example, a filter class is created that will later be used to filter the results that are
returned from a database query. The filter in the example is used to limit the number of rows that are visible
based on an author’s last name. The following class contains the implementation of the filter:

package org.java9recipes.chapter13.recipe13_12;

import java.sql.SQLException;
import javax.sql.RowSet;
import javax.sql.rowset.Predicate;

public class AuthorFilter implements Predicate {

 private String[] authors;
 private String colName = null;
 private int colNumber = -1;

 public AuthorFilter(String[] authors, String colName) {
 this.authors = authors;
 this.colNumber = -1;
 this.colName = colName;
 }

ChApTer 13 ■ WOrking WiTh DATAbAses

342

 public AuthorFilter(String[] authors, int colNumber) {
 this.authors = authors;
 this.colNumber = colNumber;
 this.colName = null;
 }

 @Override
 public boolean evaluate(Object value, String colName) {

 if (colName.equalsIgnoreCase(this.colName)) {
 for (String author : this.authors) {
 if (author.equalsIgnoreCase((String)value)) {
 return true;
 }
 }
 }
 return false;
 }

 @Override
 public boolean evaluate(Object value, int colNumber) {

 if (colNumber == this.colNumber) {
 for (String author : this.authors) {
 if (author.equalsIgnoreCase((String)value)) {
 return true;
 }
 }
 }
 return false;
 }

 @Override
 public boolean evaluate(RowSet rs) {

 if (rs == null)
 return false;

 try {
 for (int i = 0; i < this.authors.length; i++) {

 String authorLast = null;

 if (this.colNumber > 0) {
 authorLast = (String)rs.getObject(this.colNumber);
 } else if (this.colName != null) {
 authorLast = (String)rs.getObject(this.colName);
 } else {
 return false;
 }

ChApTer 13 ■ WOrking WiTh DATAbAses

343

 if (authorLast.equalsIgnoreCase(authors[i])) {
 return true;
 }
 }
 } catch (SQLException e) {
 return false;
 }
 return false;
 }

}

The filter is used by a FilteredRowSet to limit the visible results from a query. As you will see, utilizing
a FilteredRowSet provides the capability of filtering data in an object-oriented manner at the application
level, rather than doing so at the SQL database level. The benefit is that you can implement a series of filters
and apply them to the same result set, returning the desired result. Using such an option eliminates the
requirement to perform multiple database queries returning different data sets.

The following class demonstrates how to implement a FilteredRowSet. The main() method calls a
method that is appropriately named implementFilteredRowSet(), and it contains the code that is used to
filter the results of a query on the BOOK_AUTHOR and AUTHOR_WORK tables so that only results from the authors
with the last name of DEA and JUNEAU are returned:

package org.java9recipes.chapter13.recipe13_12;

import com.sun.rowset.FilteredRowSetImpl;
import java.sql.Connection;
import java.sql.SQLException;
import javax.sql.RowSet;
import javax.sql.rowset.FilteredRowSet;
import org.java9recipes.chapter13.recipe13_01.CreateConnection;

public class FilteredRowSetExample {

 public static Connection conn = null;
 public static CreateConnection createConn;
 public static FilteredRowSet frs = null;

 public static void main(String[] args) {
 boolean successFlag = false;
 try {
 createConn = new CreateConnection();
 conn = createConn.getConnection();
 implementFilteredRowSet();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {

 if (conn != null) {
 try {
 conn.close();

ChApTer 13 ■ WOrking WiTh DATAbAses

344

 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 if (frs != null) {
 try {
 frs.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }
 }

 public static void implementFilteredRowSet() {

 String[] authorArray = {"DEA", "JUNEAU"};

 AuthorFilter authorFilter = new AuthorFilter(authorArray, 2);

 try {
 frs = new FilteredRowSetImpl();

 frs.setCommand("SELECT TITLE, LASTNAME "
 + "FROM BOOK_AUTHOR BA, "
 + " AUTHOR_WORK AW, "
 + " BOOK B "
 + "WHERE AW.AUTHOR_ID = BA.ID "
 + "AND B.ID = AW.BOOK_ID");

 frs.execute(conn);

 System.out.println("Prior to adding filter:");
 viewRowSet(frs);
 System.out.println("Adding author filter:");
 frs.beforeFirst();
 frs.setFilter(authorFilter);
 viewRowSet(frs);
 } catch (SQLException e) {
 e.printStackTrace();
 }

 }

 public static void viewRowSet(RowSet rs) {
 try {
 while (rs.next()) {
 System.out.println(rs.getString(1) + " - "
 + rs.getString(2));
 }

ChApTer 13 ■ WOrking WiTh DATAbAses

345

 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
}

The results of running this code would look similar to the following lines. Notice that only the rows of
data corresponding to the authors listed in the filter are returned with the FilteredRowSet.

Successfully connected
Prior to adding filter:
Java 7 Recipes - JUNEAU
Java 7 Recipes - BEATY
Java 7 Recipes - DEA
Java 7 Recipes - GUIME
Java 7 Recipes - OCONNER
Java EE 7 Recipes - JUNEAU
Java FX 2.0 - Introduction by Example - DEA
Adding author filter:
Java 7 Recipes - JUNEAU
Java 7 Recipes - DEA
Java EE 7 Recipes - JUNEAU
Java FX 2.0 - Introduction by Example – DEA

How It Works
Often, the results that are returned from a database query contain a large number of rows. As you probably
know, too many rows can create issues when it comes to visually working with data. It usually helps to limit
the number of rows that are returned from a query by using a WHERE clause on a SQL statement so that only
relevant data is returned. However, if an application retrieves data into an in-memory RowSet and then
needs to filter the data by various criteria without additional database requests, an approach other than a
query needs to be used. A FilteredRowSet can be used to filter data that is displayed within a populated
RowSet so that it can be more manageable to work with.

There are two parts to working with a FilteredRowSet. First, a filter needs to be created which will be
used to specify how the data should be filtered. The filter class should implement the Predicate interface.
There may be multiple constructors, each accepting a different set of arguments, and the filter may contain
multiple evaluate() methods that each accept different arguments and contain different implementations.
The constructors should accept an array of contents that can be used to filter the RowSet. They should also
accept a second argument, either the column name that the filter should be used against or the position
of the column that the filter should be used against. In the solution to this recipe, the filter class is named
AuthorFilter, and it is used to filter data per an array of author names. Its constructors each accept an
array containing the author names to filter, along with either the column name or position. Each of the
evaluate() methods has the task of determining whether a given row of data matches the specified filter;
in this case, the author names that have been passed in via an array. The first evaluate() method is called
if a column name is passed to the filter rather than a position, and the second evaluate() method is called
if a column position is passed. The final evaluate() method accepts the RowSet itself, and it does the work
of going through the data and returning a Boolean to indicate whether the corresponding column name/
position values match the filter data.

ChApTer 13 ■ WOrking WiTh DATAbAses

346

The second part of the FilteredRowSet implementation is the work of the FilteredRowSet. This
can be seen within the implementFilteredRowSet() method of the FilteredRowSetExample class. The
FilteredRowSet will actually use the filter class that you’ve written to determine which rows to display. You
can see that the array of values that will be passed to the filter class is the first declaration within the method.
The second declaration is the instantiation of the filter class AuthorFilter. Of course, the array of filter
values and the column position that corresponds to the filter values is passed into the filter constructor.

String[] authorArray = {"DEA", "JUNEAU"};

// Creates a filter using the array of authors
AuthorFilter authorFilter = new AuthorFilter(authorArray, 2);

To instantiate a FilteredRowSet, create a new instance of the FilteredRowSetImpl class. After it is
instantiated, simply set the SQL query that will be used to obtain the results using the setCommand() method
and then execute it by calling the executeQuery() method.

// Instantiate a new FilteredRowSet
frs = new FilteredRowSetImpl();
// Set the query
frs.setCommand("SELECT TITLE, LASTNAME "
 + "FROM BOOK_AUTHOR BA, "
 + " AUTHOR_WORK AW, "
 + " BOOK B "
 + "WHERE AW.AUTHOR_ID = BA.ID "
 + "AND B.ID = AW.BOOK_ID");
// Execute the query
frs.execute(conn);

 ■ Note You will receive a compile-time warning when using FilteredRowSetImpl because it is an older
internal proprietary Api produced by sun Microsystems.

Notice that the filter has not yet been applied. Actually, at this point what you have is a scrollable RowSet
that is populated with all the results from the query. The example displays those results before applying the
filter. To apply the filter, use the setFilter() method, passing the filter as an argument. Once that has been
done, the FilteredResultSet will display only those rows that match the criteria specified by the filter.

Again, the FilteredRowSet technique has its place, especially when you are working with an
application that might not always be connected to a database. It is a powerful tool to use for filtering data,
working with it, and then applying different filters and working on the new results. It is similar to applying
WHERE clauses to a query without querying the database.

13-13. Querying and Storing Large Objects
Problem
The application that you are developing requires the storage of Strings of text that can include an unlimited
number of characters.

ChApTer 13 ■ WOrking WiTh DATAbAses

347

Solution
It is best to use a character large object (CLOB) data type to store text when the size of the Strings that need to
be stored is very large. The database diagram for the RECIPE_TEXT table is as follows:

RECIPE_TEXT (
id int primary key,
recipe_id int not null,
text clob,
constraint recipe_text_fk
foreign key (recipe_id)
references recipes(id))

The code in the following example demonstrates how to load a CLOB into the database and how to
query it:

package org.java9recipes.chapter13.recipe13_13;

import java.sql.Clob;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import org.java9recipes.chapter13.recipe13_01.CreateConnection;

public class LobExamples {

 public static Connection conn = null;
 public static CreateConnection createConn;

 public static void main(String[] args) {
 boolean successFlag = false;
 try {
 createConn = new CreateConnection();
 conn = createConn.getConnection();
 loadClob();
 readClob();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {

 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 }
 }

ChApTer 13 ■ WOrking WiTh DATAbAses

348

 public static void loadClob() {
 Clob textClob = null;
 String sql = "INSERT INTO RECIPE_TEXT VALUES("
 + "next value for recipe_text_seq, "
 + "(select id from recipes where recipe_number = '13-1'), "
 + "?)";
 try (PreparedStatement pstmt = conn.prepareStatement(sql);) {
 textClob = conn.createClob();
 textClob.setString(1, "This will be the recipe text in clob format");
 // obtain the sequence number in real world
 // set the clob value
 pstmt.setClob(1, textClob);
 pstmt.executeUpdate();

 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 public static void readClob() {
 String qry = "select text from recipe_text";
 Clob theClob = null;
 try(PreparedStatement pstmt = conn.prepareStatement(qry);
 ResultSet rs = pstmt.executeQuery();) {

 while (rs.next()) {
 theClob = rs.getClob(1);
 System.out.println("Clob length: " + theClob.length());
 System.out.println(theClob.toString());
 }
 System.out.println(theClob.toString());

 } catch (SQLException ex) {

 ex.printStackTrace();
 }
 }
}

How It Works
If your application requires the storage of String values, you need to know how large those Strings might
possibly become. Most databases have an upper boundary when it comes to the storage size of VARCHAR
fields. For instance, the Oracle database has an upper boundary of 2,000 characters and anything exceeding
that length will be cut off. If you have large amounts of text that need to be stored, use a CLOB field in the
database.

A CLOB is handled a bit differently from a String within Java code. In fact, it is actually a bit odd to work
with the first couple of times you use it because you have to create a CLOB from a Connection.

ChApTer 13 ■ WOrking WiTh DATAbAses

349

 ■ Note in reality, CLOBs and BLOBs (binary large objects) are not stored in the Oracle table where they
are defined. instead, a large object (LOB) locator is stored in the table column. Oracle might place the CLOB
in a separate file on the database server. When Java creates the Clob object, it can be used to hold data for
update to a specific LOB location in the database or to retrieve the data from a specific LOB location within the
database.

Let’s take a look at the loadClob() method contained in the solution to this recipe. As you can see, a
Clob object is created using the Connection createClob() method. Once the Clob has been created, you set
its contents using the setString() method by passing the position indicating where to place the String and
the String of text itself:

textClob = conn.createClob();
textClob.setString(1, "This will be the recipe text in clob format");

Once you have created and populated the Clob, you simply pass it to the database using the
PreparedStatement setClob() method. In the case of this example, the PreparedStatement performs a
database insert into the RECIPE_TEXT table by calling the executeUpdate() method as usual.

Querying a Clob is fairly straightforward as well. As you can see in the readClob() method that is
contained within the solution to this recipe, a PreparedStatement query is set up and the results are
retrieved into a ResultSet. The only difference between using a Clob and a String is that you must load the
Clob into a Clob type.

 ■ Note Calling the Clob getString() method will pass a funny-looking string of text that denotes a Clob
object. Therefore, calling the Clob object’s getAsciiStream() method will return the actual data that is stored
in the Clob.

Although Clobs are fairly easy to use, they take a couple of extra steps to prepare. It is best to plan your
applications accordingly and try to estimate whether the database fields you are using might need to be
CLOBs due to size restrictions. Proper planning will prevent you from going back and changing standard
String-based code to work with Clobs later.

13-14. Invoking Stored Procedures
Problem
Some logic that is required for your application is written as a database-stored procedure. You require the
ability to invoke the stored procedure from within your application.

ChApTer 13 ■ WOrking WiTh DATAbAses

350

Solution
The following block of code shows the PL/SQL that is required to create the stored procedure that will be
called by Java. The functionality of this stored procedure is very minor; it simply accepts a value and assigns
that value to an OUT parameter so that the program can display it:

create or replace procedure dummy_proc (text IN VARCHAR2,
 msg OUT VARCHAR2) as
begin
 -- Do something, in this case the IN parameter value is assigned to the OUT parameter
 msg :=text;
end;

The CallableStatement in the following code executes this stored procedure that is contained within
the database, passing the necessary parameters. The results of the OUT parameter are then displayed back to
the user.

try(CallableStatement cs = conn.prepareCall("{call DUMMY_PROC(?,?)}");) {
 cs.setString(1, "This is a test");
 cs.registerOutParameter(2, Types.VARCHAR);
 cs.executeQuery();

 System.out.println(cs.getString(2));

} catch (SQLException ex){
 ex.printStackTrace();
}

Running the example class for this recipe will display the following output, which is the same as the
input. This is because the DUMMY_PROC procedure simply assigns the contents if the IN parameter to the OUT
parameter.

Successfully connected
This is a test

How It Works
It is not uncommon for an application to use database-stored procedures for logic that can be executed
directly within the database. In order to call a database-stored procedure from Java, you must
create a CallableStatement object, rather than use a PreparedStatement. In the solution to this recipe, a
 CallableStatement invokes a stored procedure named DUMMY_PROC. The syntax for instantiating
the CallableStatement is similar to that of using a PreparedStatement. Use the Connection object’s
prepareCall() method, passing the call to the stored procedure. The stored procedure call must be
enclosed in curly braces {} or the application will throw an exception.

cs = conn.prepareCall("{call DUMMY_PROC(?,?)}");

Once the CallableStatement has been instantiated, it can be used just like a PreparedStatement for
setting the values of parameters. However, if a parameter is registered within the database-stored procedure
as an OUT parameter, you must call a special method, registerOutParameter(), passing the parameter

ChApTer 13 ■ WOrking WiTh DATAbAses

351

position and database type of the OUT parameter that you want to register. In the solution to this recipe, the
OUT parameter is in the second position and it has a VARCHAR type.

cs.registerOutParameter(2, Types.VARCHAR);

To execute the stored procedure, call the executeQuery() method on the CallableStatement. Once
this has been done, you can see the value of the OUT parameter by making a call to the CallableStatement
getXXX() method that corresponds to the data type:

 System.out.println(cs.getString(2));

A NOTE REGARDING STORED FUNCTIONS

Calling a stored database function is essentially the same as calling a stored procedure. however, the
syntax to prepareCall() is slightly modified. To call a stored function, change the call within the curly
braces to entail a returned value using a ? character. For instance, suppose that a function named
DUMMY_FUNC accepted one parameter and returned a value. The following code would be used to make
the call and return the value:

cs = conn.prepareCall("{? = call DUMMY_FUNC(?)}");
cs.registerOutParameter(1, Types.VARCHAR);
cs.setString(2, "This is a test");
cs.execute();

A call to cs.getString(1) would then retrieve the returned value.

13-15. Obtaining Dates for Database Use
Problem
You want to convert a LocalDate properly, in order to insert it into a database record.

Solution
Utilize the static java.sql.Date.valueOf(LocalDate) method to convert a LocalDate object to a java.
sql.Date object, which can be utilized by JDBC for insertion or querying of the database. In the following
example, the current date is inserted into a database column of type Date.

private static void insertRecord(
 String title,
 String publisher) {
 String sql = "INSERT INTO PUBLICATION VALUES("
 + "NEXT VALUE FOR PUBLICATION_SEQ, ?,?,?,?)";
 LocalDate pubDate = LocalDate.now();

ChApTer 13 ■ WOrking WiTh DATAbAses

352

 try (Connection conn = createConn.getConnection();
 PreparedStatement pstmt = conn.prepareStatement(sql);) {
 pstmt.setInt(1, 100);
 pstmt.setString(2, title);
 pstmt.setDate(3, java.sql.Date.valueOf(pubDate));
 pstmt.setString(4, publisher);
 pstmt.executeUpdate();
 System.out.println("Record successfully inserted.");
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
}

How It Works
In Java 8, the new Date-Time API (Chapter 4) is the preferred API for working with dates and times.
Therefore, when working with date values and databases, the JDBC API must convert between SQL dates
and new Date-Time LocalDate objects. The solution to this recipe demonstrates that to obtain an instance
of java.sql.Date from a LocalDate object, you simply invoke the static java.sql.Date.valueOf() method,
passing the pertinent LocalDate object.

13-16. Closing Resources Automatically
Problem
Rather than manually opening and closing resources with each database call, you would prefer to have the
application handle such boilerplate code for you.

Solution
Use the try-with-resources syntax to automatically close the resources that you open. The following block
of code uses this tactic to automatically close the Connection, Statement, and ResultSet resources when it
is finished using them:

String qry = "select recipe_number, recipename, description from recipes";

try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {

 while (rs.next()) {
 String recipe = rs.getString("RECIPE_NUMBER");
 String name = rs.getString("RECIPE_NAME");
 String desc = rs.getString("DESCRIPTION");

 System.out.println(recipe + "\t" + name + "\t" + desc);
 }
} catch (SQLException e) {
 e.printStackTrace();
}

http://dx.doi.org/10.1007/978-1-4842-1976-8_4

ChApTer 13 ■ WOrking WiTh DATAbAses

353

The resulting output from running this code should look similar to the following:

Successfully connected
13-1 Connecting to a Database DriverManager and DataSource Implementations - More to Come
13-2 Querying a Database and Retrieving Results Subject to Change
13-3 Handling SQL Exceptions Using SQLException

How It Works
Handling JDBC resources has always been a pain in the neck. There is a lot of boilerplate code that is
required for closing resources when they are no longer needed. Since the release of Java SE 7, this has not
been the case. Java 7 introduced automatic resource management using try-with-resources. Through the
use of this technique, the developer no longer needs to close each resource manually, which is a change that
can cut down on many lines of code.

In order to use this technique, you must instantiate all the resources for which you want to have
automatic handling enabled within a set of parentheses after a try clause. In the solution to this recipe, the
resources that are declared are Connection, Statement, and ResultSet.

try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {

Once those resources are out of scope, they are automatically closed. This means there is no longer
a requirement to code a finally block to ensure that resources are closed. The automatic resource
handling is available not only to database work, but to any resource that complies with the new java.
lang.Autocloseable API. Other operations such as file I/O adhere to the new API as well. There is a single
close() method within java.lang.Autoclosable that manages the closing of the resource. Classes that
implement the java.io.Closeable interface can adhere to the API.

Summary
In many applications, databases have become essential for storing important information. As such, it
is important to have a good understanding of how to utilize databases for use within applications. This
chapter started from the beginning, covering recipes on getting started with database access. It then covered
important topics such as how to securely access and modify data, transaction management, and data access
when not connected to a network. You should now have a sound understanding of some techniques for
working with data for your Java solutions. Do keep in mind that there are many data access solutions, and
the recipes in this chapter cover just some of the ways to tackle the beast of information management.

355© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_14

CHAPTER 14

JavaFX Fundamentals

The JavaFX 8 API is Java’s rich client GUI toolkit for developers to build cross-platform applications. JavaFX 8
was an update from JavaFX 2.2 that’s based on a scene graph paradigm (retained mode) as opposed to the
traditional immediate mode style rendering. JavaFX’s scene graph is a tree-like data structure that maintains
vector-based graphic nodes. The goal of JavaFX is to be used across many types of devices such as mobile
devices, smartphones, TVs, tablet computers, and desktops. In the early days of JavaFX, applets were used
to make JavaFX available via the web, and use on mobile devices was not yet possible, but nowadays these
limitations are a thing of the past and JavaFX has much more traction across devices.

Before the creation of JavaFX, the development of rich Internet applications involved the gathering of
many separate libraries and APIs to achieve highly functional applications. These separate libraries include
Media, UI controls, Web, 3D, and 2D APIs. Because integrating these APIs can be rather difficult, the talented
engineers at Sun Microsystems (now Oracle) created a new set of JavaFX libraries that combine all the same
capabilities under one roof. JavaFX is the Swiss Army Knife of GUIs. JavaFX 8 is a pure Java (language) API
that allows developers to leverage existing Java libraries and tools to develop applications that can be used
just about everywhere.

Depending on who you talk to, you will likely encounter different definitions of “user experience” (or in
the UI world, UX). But one fact still remains: users will always demand better content and increased usability
from GUI applications. In light of this fact, developers and designers often work together to craft applications
to fulfill this demand. JavaFX provides a toolkit that enables both the developer and designer (in many
cases, they are the same person) to create functional yet aesthetically pleasing applications. Another thing to
acknowledge is that if you are developing a game, media player, or the usual enterprise application, JavaFX
will not only assist in developing richer UIs but you’ll also find that the APIs are extremely well designed to
greatly improve developer productivity.

There are entire books written on JavaFX, and it would be impossible to cover all the capabilities of
the toolkit in just a few chapters. Hopefully, the recipes in this book can steer you in the right direction by
providing practical and real-world examples. I encourage you to explore other resources to gain further
insight into JavaFX. I highly recommend the following books: Pro JavaFX Platform (Apress, 2009), Pro
JavaFX 2.0 Platform (Apress, 2012), Pro JavaFX 8 (Apress, 2014), and JavaFX 8: Introduction by Example
(Apress, 2014). These books go in depth to help you create professional grade applications. In this chapter
you will learn the fundamentals of JavaFX to rapidly develop Rich Internet applications. It provides you with
a solid foundation for working with JavaFX.

Chapter 14 ■ JavaFX Fundamentals

356

 ■ Note For releases of JavaFX prior to JavaFX 8, the sdK was a separate download from the standard JdK.
that is, the JavaFX 1.x and 2.x sdKs had to be downloaded and installed separately. JavaFX 8 changes that
requirement, as it comes as part of JdK 8. this book covers JavaFX 8 only, although many of the solutions may
function properly on JavaFX 2.x. If you need to install JavaFX 2.x, refer to the online documentation (http://
docs.oracle.com/javafx/) or a book that covers JavaFX 2.x, such as JavaFX 2.0: Introduction by Example,
which was written by Carl dea and published by apress. to see the online JavaFX 8 documentation, visit
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm.

14-1. Creating a Simple User Interface
Problem
You want to create, code, compile, and run a simple JavaFX Hello World application.

Solution 1
Develop a JavaFX Hello World application using the JavaFX project-creation wizard in the NetBeans IDE.

Creating a JavaFX Hello World Application in NetBeans
To quickly get started with creating, coding, compiling, and running a simple JavaFX Hello World application
using the NetBeans IDE, follow these steps:

 1. Launch NetBeans IDE.

 2. From the File menu, select New Project.

 3. Under Choose Project and Categories, select the JavaFX folder.

 4. Under Projects, select the JavaFX Application and click Next.

 ■ Note If this is your first JavaFX project in netBeans, the JavaFX module may automatically activate at this
time.

 5. Specify HelloWorldMain for your project name.

 6. Change or accept the defaults for the Project Location and Project Folder fields.

 7. Ensure that the JavaFX Platform is set to JDK 1.9. Leave the Create a Custom
Preloader box checked, as it automatically generates the code that is required to
load and run your application.

 8. Make sure the Create Application Class option is selected. Click Finish.

http://docs.oracle.com/javafx/
http://docs.oracle.com/javafx/
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm

Chapter 14 ■ JavaFX Fundamentals

357

 9. In the NetBeans IDE on the Projects tab, select the newly created project. Open
the Project Properties dialog box to verify that the Source/Binary format
settings are JDK 9. Click Sources under Categories.

 10. After closing the Java Platform Manager window, click OK to close the Project
Properties window.

To run and test your JavaFX Hello World application, access the Run menu and select Run Main Project.
You could also right-click the project directory and choose Run from the contextual menu.

Figure 14-1 shows a simple JavaFX Hello World application launched from the NetBeans IDE.

Figure 14-1. JavaFX Hello World launched from the NetBeans IDE

Solution 2
Use your favorite editor to code your JavaFX Hello World application. Once the Java file is created, you will
use the command-line prompt to compile and run your JavaFX application. Following are the steps to create
a JavaFX Hello World application to be compiled and run on the command-line prompt.

Creating a JavaFX Hello World Application in a Text Editor
To quickly get started:

 1. Copy and paste the following code into your favorite editor and save the file as
HelloWorldMain.java.

The following source code is for the JavaFX Hello World application:

package org.java9recipes.chapter14.recipe14_01;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;

Chapter 14 ■ JavaFX Fundamentals

358

import javafx.scene.Group;
public class HelloWorldMain extends Application {

 final Group root = new Group();
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Hello World");
 Scene scene = new Scene(root, 300, 250);
 Button btn = new Button();
 btn.setLayoutX(100);
 btn.setLayoutY(80);
 btn.setText("Hello World");
 btn.setOnAction((event) -> {
 System.out.println("Hello World");
 });
 root.getChildren().add(btn);
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

 2. After saving the file named HelloWorldMain.java, use the command-line
prompt to navigate to the file.

 3. Compile the source code file HelloWorldMain.java using the Java compiler
javac:

javac -d . HelloWorldMain.java

 4. Run and test your JavaFX Hello World application. Assuming you are located
in the same directory as the HelloWorldMain.java file, type the following
command to run your JavaFX Hello World application from the command-line
prompt:

java org.java9recipes.chapter14.recipe14_01.HelloWorldMain

 ■ Note this class can also be created within an existing JdK 8 or JdK 9 application. For instance, the project
that contains the sources for this book contains all of the JavaFX recipes in the org.java9recipes.chapter14
source package. this is possible since JavaFX no longer requires additional configuration; it is already part of
any JdK 8 or JdK 9 project.

http://dx.doi.org/10.1007/978-1-4842-1976-8_14

Chapter 14 ■ JavaFX Fundamentals

359

How It Works
Following are descriptions of the two solutions. Both solutions require JavaFX 8 (or JavaFX 2.x along with
JDK 7). Solution 1 demonstrates how to build a JavaFX application using the NetBeans IDE. Solution 2 covers
the development of a simple JavaFX application via your favorite text editor, and use of the command-line or
terminal to compile and execute JavaFX programs.

The NetBeans IDE makes it very easy to develop a JavaFX application via a JavaFX project. In fact,
NetBeans provides a template Hello World application after following the JavaFX project-creation wizard.
This is a great solution for beginning any JavaFX application, as it provides a great starting point for building
more sophisticated solutions.

To create a simple JavaFX Hello World application using your favorite text editor, follow Solution 2,
Steps 1 and 2. To compile and run your Hello World program on the command line, follow Solution 2, Steps
3 and 4. Once you enter the source code into your favorite editor and save the source file, compile and run
the JavaFX program. Open the command-line or terminal window and navigate to the directory location of
the Java file named HelloWorldMain.java.

Next, we review a way to compile the file using the command javac -d . HelloWorldMain.java. You
will notice the -d . before the file name. This lets the Java compiler know where to put class files based on
their package name. In this scenario, the HelloWorldMain package statement is helloworldmain, which will
create a subdirectory under the current directory. The following commands will compile and run the JavaFX
Hello World application:

cd \<path to project>\org\java9recipes\chapter14\recipe14_01

javac –d . HelloWorldMain.java

java helloworldmain.HelloWorldMain

 ■ Note there are many ways to package and deploy JavaFX applications. to learn more, see “learning
how to deploy and package JavaFX applications” at http://docs.oracle.com/javafx/2/deployment/
jfxpub-deployment.htm. For in-depth JavaFX deployment strategies, see Oracle’s “deployment Guide” at
http://docs.oracle.com/javase/9/docs/technotes/guides/deploy/.

In both solutions you’ll notice in the source code that JavaFX applications extend the javafx.
application.Application class. The Application class provides application lifecycle functions such as
launching and stopping during runtime. This also provides a mechanism for Java applications to launch
JavaFX GUI components in a thread safe manner. Keep in mind that synonymous to Java Swing’s event
dispatch thread (EDT), JavaFX has its own JavaFX application thread. New in JavaFX 8, it is possible for the
EDT and the JavaFX application thread to be merged (see Recipe 14-18).

Taking a look at the code, in the main() method’s entry point you launch the JavaFX application
by simply passing in the command-line arguments to the Application.launch() method. Once the
application is in a ready state, the framework internals will invoke the start() method to begin. When the
start() method is invoked, a JavaFX javafx.stage.Stage object is available for the developer to use and
manipulate.

You’ll notice that some objects are oddly named, such as Stage and Scene. The designers of the API
have modeled things similar to a theater or a play in which actors perform in front of an audience. With this
same analogy, in order to show a play, there are basically one-to-many scenes that actors perform in. And,
of course, all scenes are performed on a stage. In JavaFX the Stage is equivalent to an application window
similar to Java Swing API JFrame or JDialog. You may think of a Scene object as a content pane capable

http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm
http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm
http://docs.oracle.com/javase/9/docs/technotes/guides/deploy/

Chapter 14 ■ JavaFX Fundamentals

360

of holding zero-to-many Node objects. A Node is a fundamental base class for all scene graph nodes to be
rendered. A scene graph is a tree data structure that maintains an internal model of all nodes or graphical
objects that are part of an application. Commonly used nodes are UI controls and Shape objects. Similar to
a tree data structure, a scene graph will contain children nodes by using a container class Group. You’ll learn
more about the Group class later when you look at the ObservableList, but for now think of them as Java
Lists or Collections that are capable of holding Nodes.

Once the child nodes have been added, you set the primaryStage’s (Stage) scene and call the show()
method on the Stage object to show the JavaFX window.

One last thing: in this chapter most of the example applications are structured the same as this example,
in which recipe code solutions will reside inside the start() method. Most of the recipes in this chapter
follow the same pattern. For the sake of brevity, much of the boilerplate code is not shown. To see the full
source listings of all the recipes, download the source code from the book’s website.

14-2. Drawing Text
Problem
You want to draw custom text within a JavaFX application.

Solution
Create Text nodes to be placed on the JavaFX scene graph by utilizing the javafx.scene.text.Text class.
As Text nodes are to be placed on the scene graph, you decide you want to create randomly positioned Text
nodes rotated around their (x, y) positions scattered about the scene area.

The following code implements a JavaFX application that displays Text nodes scattered about the scene
graph with random positions and colors:

primaryStage.setTitle("Chapter 14-2 Drawing Text");
Group root = new Group();
Scene scene = new Scene(root, 300, 250, Color.WHITE);
Random rand = new Random(System.currentTimeMillis());
for (int i = 0; i < 100; i++) {
 int x = rand.nextInt((int) scene.getWidth());
 int y = rand.nextInt((int) scene.getHeight());
 int red = rand.nextInt(255);
 int green = rand.nextInt(255);
 int blue = rand.nextInt(255);

 Text text = new Text(x, y, "Java 9 Recipes");

 int rot = rand.nextInt(360);
 text.setFill(Color.rgb(red, green, blue, .99));
 text.setRotate(rot);
 root.getChildren().add(text);
}

primaryStage.setScene(scene);
primaryStage.show();

Chapter 14 ■ JavaFX Fundamentals

361

How It Works
To draw text in JavaFX, you create a javafx.scene.text.Text node to be placed on the scene graph
(javafx.scene.Scene). In this example you’ll notice text objects with random colors and positions scattered
about the Scene area.

First, you create a loop to generate random (x,y) coordinates to position Text nodes. Second, you create
random color components between (0–255 RGB) to be applied to the Text nodes. Third, the rotation angle
(in degrees) is a randomly generated value between (0–360 degrees) to cause the text to be slanted. The
following code creates random values that will be assigned to a Text node’s position, color, and rotation:

int x = rand.nextInt((int) scene.getWidth());
int y = rand.nextInt((int) scene.getHeight());
int red = rand.nextInt(255);
int green = rand.nextInt(255);
int blue = rand.nextInt(255);
int rot = rand.nextInt(360);

Once the random values are generated, they will be applied to the Text nodes, which will be drawn
onto the scene graph. The following code snippet applies position (x, y), color (RGB), and rotation (angle in
degrees) onto the Text node:

Text text = new Text(x, y, "Java 9 Recipes");
text.setFill(Color.rgb(red, green, blue, .99));
text.setRotate(rot);

root.getChildren().add(text);

Figure 14-2. Drawing text in random places

Figure 14-2 shows random Text nodes scattered about the JavaFX scene graph.

Chapter 14 ■ JavaFX Fundamentals

362

You will begin to see the power of the scene graph API by its ease of use. Text nodes can be easily
manipulated as if they were Shapes. Well, actually they are Shapes. Defined in the inheritance hierarchy,
Text nodes extend from the javafx.scene.shape.Shape class and are therefore capable of doing interesting
things such as being filled with colors or rotated about an angle. Although the text is colorized, this still tends
to be somewhat boring. However, in the next recipe you will learn how to change a text’s font.

14-3. Changing Text Fonts
Problem
You want to change text fonts and add special effects to the Text nodes.

Solution 1
Create a JavaFX application that uses the following classes to set the text font and apply embedded effects to
Text nodes:

javafx.scene.text.Font
javafx.scene.effect.DropShadow
javafx.scene.effect.Reflection

The code that follows sets the font and applies effects to Text nodes. It uses the Serif, SanSerif, Dialog,
and Monospaced fonts along with the drop shadow and reflection effects:

primaryStage.setTitle("Chapter 14-3 Changing Text Fonts");
Group root = new Group();
Scene scene = new Scene(root, 330, 250, Color.WHITE);

// Serif with drop shadow
Text java9recipes2 = new Text(50, 50, "Java 9 Recipes");
Font serif = Font.font("Serif", 30);
java9recipes2.setFont(serif);
java9recipes2.setFill(Color.RED);
DropShadow dropShadow = new DropShadow();
dropShadow.setOffsetX(2.0f);
dropShadow.setOffsetY(2.0f);
dropShadow.setColor(Color.rgb(50, 50, 50, .588));
java9recipes2.setEffect(dropShadow);
root.getChildren().add(java9recipes2);

// SanSerif
Text java9recipes3 = new Text(50, 100, "Java 8 Recipes");
Font sanSerif = Font.font("SanSerif", 30);
java9recipes3.setFont(sanSerif);
java9recipes3.setFill(Color.BLUE);
root.getChildren().add(java9recipes3);

// Dialog
Text java9recipes4 = new Text(50, 150, "Java 8 Recipes");
Font dialogFont = Font.font("Dialog", 30);

Chapter 14 ■ JavaFX Fundamentals

363

java9recipes4.setFont(dialogFont);
java9recipes4.setFill(Color.rgb(0, 255, 0));
root.getChildren().add(java9recipes4);

// Monospaced
Text java9recipes5 = new Text(50, 200, "Java 8 Recipes");
Font monoFont = Font.font("Monospaced", 30);
java9recipes5.setFont(monoFont);
java9recipes5.setFill(Color.BLACK);
root.getChildren().add(java9recipes5);

Reflection refl = new Reflection();
refl.setFraction(0.8f);
java9recipes5.setEffect(refl);

primaryStage.setScene(scene);
primaryStage.show();

Figure 14-3 shows the JavaFX application with various font styles and effects (drop shadow and
reflection) applied to the Text nodes.

Figure 14-3. Changing text fonts

Solution 2
Make use of the new TextFlow node to assist in stringing rich text together. Use an FXML file to construct an
object graph, and then apply Cascading Style Sheet (CSS) styles to the nodes of the graph within the FXML.
This solution provides a better path for those who are more comfortable working in a markup language than
in Java code. It also demonstrates how to use a style sheet to declare the styles for your application.

Chapter 14 ■ JavaFX Fundamentals

364

First, let’s take a look at the FXML that’s used to construct the layout. The following lines of markup
construct a scene graph that contains a Pane enclosing a TextFlow. The TextFlow contains a series of Text
nodes, each of which has different styles applied. The following listing contains the sources for textfonts.fxml.

<?xml version="1.0" encoding="UTF-8"?>

<?import java.net.*?>
<?import javafx.geometry.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.text.*?>

<Scene width="200" height="75" fill="white" xmlns:fx="http://javafx.com/fxml">
 <stylesheets>
 <URL value="@textfonts.css"/>
 </stylesheets>
 <Pane fx:id="pane">

 <TextFlow styleClass="mainmessage">
 <Text styleClass="span1">Hello </Text>
 <Text text=" "/>
 <Text styleClass="span2, large">Java</Text>
 <Text styleClass="span3, slant">FX</Text>
 <Text text=" "/>
 <Text styleClass="cool">8</Text>

 </TextFlow>
 </Pane>
</Scene>

Within the FXML, a CSS named textfonts.css is imported. The following listing contains the styles,
which reside in textfonts.css.

.mainmessage {
 -fx-font-family: "Helvetica";
 -fx-font-size: 30px;
}

.span1 {
 -fx-color: "red";
}

.span2 {
 -fx-font-family: "Serif";
 -fx-font-size: 30px;
 -fx-color: "red";
}

.span3 {
 -fx-font-family: "Serif";
 -fx-font-size: 30px;

Chapter 14 ■ JavaFX Fundamentals

365

 -fx-fill: "orange";
 -fx-font-style: italic;
}

.cool {
 -fx-effect: dropshadow(gaussian, gray, 8, 0.5, 8, 8);
}

Lastly, a standard JavaFX application class is used to instantiate the example. The following sources are
taken from ChangingTextFontsSolution2.java, and they demonstrate how to load the FXML and construct
the stage.

@Override
public void start(Stage stage) throws Exception {
 stage.setTitle("Chapter 14-3 Changing Text Fonts Using TextFlow and FXML");
 stage.setScene((Scene) FXMLLoader.load(getClass().getResource("textfonts.fxml")));
 stage.show();
}

The resulting application will render a scene that resembles the result shown in Figure 14-4.

Figure 14-4. TextFlow and FXML

How It Works
Solution 1 demonstrates how to apply fonts to text using standard Java code. Vector-based graphics allow
you to scale shapes and apply effects without issues of pixilation (jaggies). JavaFX nodes use vector-based
graphics. In each Text node, you can create and set the font to be rendered onto the scene graph. Here is the
code to create and set the font on a Text node:

Text java9recipes2 = new Text(50, 50, "Java 9 Recipes");
Font serif = Font.font("Serif", 30);
Java9recipes2.setFont(serif);

Chapter 14 ■ JavaFX Fundamentals

366

In solution 1, the drop shadow is a real effect (DropShadow) object and is actually applied to a single
Text node instance. The DropShadow object is set to be positioned based on an x and y offset in relation to
the Text node. You also can set the color of the shadow; here we set it to gray with a .588 opacity. Following is
an example of setting a Text node’s effect property with a drop shadow effect (DropShadow):

DropShadow dropShadow = new DropShadow();
dropShadow.setOffsetX(2.0f);
dropShadow.setOffsetY(2.0f);
dropShadow.setColor(Color.rgb(50, 50, 50, .588));
java9recipes2.setEffect(dropShadow);

Although this recipe is about setting text fonts, it also applied effects to Text nodes. Another effect
has been added (just kicking it up a notch). While creating the last Text node using the monospaced font,
the popular reflection effect is applied. The code following code is set so that .8 or 80% of the reflection is
shown. The reflection values range from zero (0%) to one (100%). The following code snippet implements a
reflection of 80% with a float value of 0.8f:

Reflection refl = new Reflection();
refl.setFraction(0.8f);
java9recipes5.setEffect(refl);

Solution 2 demonstrates how to construct a user interface using FXML, CSS, and Java. While this recipe
focuses on text and fonts, it is important to note that FXML solutions clearly follow a model-view-controller
standard, separating UI code from business logic. It is also important to note that if the UI in this example
were to contain buttons or other nodes that contained actions, a controller class would need to be created as
well to embody the action logic.

In the second example, an FXML file contains the structured layout for the user interface, which
consists of a Scene, Pane, TextFlow, and a series of Text nodes. The scene contains a <stylesheets>
element, which is used to specify which style sheets to apply to the elements within the XML. The Pane node
is used as a base for the layout, and it contains each of the other nodes within the UI. The TextFlow node was
introduced in JavaFX 8, and it is a special layout that is designed to lay out rich text. The TextFlow can lay
many different Text nodes into a single flow.

As you can see from the FXML, each of the Text nodes within the TextFlow have different styles
associated with them, based on those styles that have been defined within the attached style sheet. The
properties for styles in JavaFX style sheets are preceded by –fx-, and property names and values are
separated by a colon and terminated by a semicolon (;). For the most part, JavaFX style properties align
nicely with standard CSS properties. For a complete summary, refer to the documentation at http://docs.
oracle.com/javafx/2/css_tutorial/jfxpub-css_tutorial.htm.

The TextFlow uses the text and font of each node that is embedded within, as well as its own width and
text alignment, to determine the placement of the text. Nodes other than Text can also be embedded within
a TextFlow. When adding Text nodes to a TextFlow, you can set word wrap by specifying a maximum width
of the TextFlow via the setMaxWidth() method. It is also possible to include a \n at the end of any Strings
within a Text node to initiate a line break. The following code performs the same solution as 1, but uses
TextFlow to lay out the Text nodes, rather than adding each to the scene graph separately.

primaryStage.setTitle("Chapter 14-3 Changing Text Fonts");
Group root = new Group();
Scene scene = new Scene(root, 330, 250, Color.WHITE);

// Serif with drop shadow
Text java9recipes2 = new Text(50, 50, "Java 9 Recipes");
Font serif = Font.font("Serif", 30);

http://docs.oracle.com/javafx/2/css_tutorial/jfxpub-css_tutorial.htm
http://docs.oracle.com/javafx/2/css_tutorial/jfxpub-css_tutorial.htm

Chapter 14 ■ JavaFX Fundamentals

367

java9recipes2.setFont(serif);
java9recipes2.setFill(Color.RED);
DropShadow dropShadow = new DropShadow();
dropShadow.setOffsetX(2.0f);
dropShadow.setOffsetY(2.0f);
dropShadow.setColor(Color.rgb(50, 50, 50, .588));
java9recipes2.setEffect(dropShadow);

// SanSerif
Text java9recipes3 = new Text(50, 100, "Java 8 Recipes\n");
Font sanSerif = Font.font("SanSerif", 30);
java9recipes3.setFont(sanSerif);
java9recipes3.setFill(Color.BLUE);

// Dialog
Text java9recipes4 = new Text(50, 150, "Java 8 Recipes\n");
Font dialogFont = Font.font("Dialog", 30);
java9recipes4.setFont(dialogFont);
java9recipes4.setFill(Color.rgb(0, 255, 0));

// Monospaced
Text java9recipes5 = new Text(50, 200, "Java 8 Recipes");
Font monoFont = Font.font("Monospaced", 30);
java9recipes5.setFont(monoFont);
java9recipes5.setFill(Color.BLACK);

Reflection refl = new Reflection();
refl.setFraction(0.8f);
java9recipes5.setEffect(refl);
TextFlow flow = new TextFlow(java9recipes2, java9recipes3, java9recipes4, java9recipes5);

root.getChildren().add(flow);

There were a lot of concepts introduced within this recipe. You will learn more about FXML in a later
recipe, or for more information you can see the online documentation at http://docs.oracle.com/
javafx/2/get_started/fxml:tutorial.htm. You an learn more about the TextFlow layout reading the
documentation at http://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/TextFlow.html.

14-4. Creating Shapes
Problem
You want to create shapes to be placed on the scene graph.

Solution
Use JavaFX’s Arc, Circle, CubicCurve, Ellipse, Line, Path, Polygon, Polyline, QuadCurve, Rectangle,
SVGPath, and Text classes in the javafx.scene.shape.* package. The following code draws various
complex shapes. The first complex shape involves a cubic curve drawn in the shape of a sine wave. The next

http://docs.oracle.com/javafx/2/get_started/fxml:tutorial.htm
http://docs.oracle.com/javafx/2/get_started/fxml:tutorial.htm
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/TextFlow.html

Chapter 14 ■ JavaFX Fundamentals

368

shape, called the ice cream cone, uses the path class that contains path elements (javafx.scene.shape.
PathElement). The third shape is a Quadratic Bézier curve (QuadCurve) and it forms a smile. The final shape is
a delectable donut. You can create this donut shape by subtracting two ellipses (one smaller and one larger):

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-4 Creating Shapes");
 Group root = new Group();
 Scene scene = new Scene(root, 306, 550, Color.WHITE);

 // CubicCurve
 CubicCurve cubicCurve = new CubicCurve();
 cubicCurve.setStartX(50);
 cubicCurve.setStartY(75); // start pt (x1,y1)
 cubicCurve.setControlX1(80);
 cubicCurve.setControlY1(-25);// control pt1
 cubicCurve.setControlX2(110);
 cubicCurve.setControlY2(175); // control pt2
 cubicCurve.setEndX(140);
 cubicCurve.setEndY(75);
 cubicCurve.setStrokeType(StrokeType.CENTERED);
 cubicCurve.setStrokeWidth(1);
 cubicCurve.setStroke(Color.BLACK);
 cubicCurve.setStrokeWidth(3);
 cubicCurve.setFill(Color.WHITE);

 root.getChildren().add(cubicCurve);

 // Ice cream
 Path path = new Path();

 MoveTo moveTo = new MoveTo();
 moveTo.setX(50);
 moveTo.setY(150);

 QuadCurveTo quadCurveTo = new QuadCurveTo();
 quadCurveTo.setX(150);
 quadCurveTo.setY(150);
 quadCurveTo.setControlX(100);
 quadCurveTo.setControlY(50);

 LineTo lineTo1 = new LineTo();
 lineTo1.setX(50);
 lineTo1.setY(150);

 LineTo lineTo2 = new LineTo();
 lineTo2.setX(100);
 lineTo2.setY(275);

 LineTo lineTo3 = new LineTo();
 lineTo3.setX(150);
 lineTo3.setY(150);

Chapter 14 ■ JavaFX Fundamentals

369

 path.getElements().add(moveTo);
 path.getElements().add(quadCurveTo);
 path.getElements().add(lineTo1);
 path.getElements().add(lineTo2);
 path.getElements().add(lineTo3);
 path.setTranslateY(30);
 path.setStrokeWidth(3);
 path.setStroke(Color.BLACK);

 root.getChildren().add(path);

 // QuadCurve create a smile
 QuadCurve quad = new QuadCurve();
 quad.setStartX(50);
 quad.setStartY(50);
 quad.setEndX(150);
 quad.setEndY(50);
 quad.setControlX(125);
 quad.setControlY(150);
 quad.setTranslateY(path.getBoundsInParent().getMaxY());
 quad.setStrokeWidth(3);
 quad.setStroke(Color.BLACK);
 quad.setFill(Color.WHITE);

 root.getChildren().add(quad);

 // outer donut
 Ellipse bigCircle = new Ellipse(100, 100, 50, 75/2);
 //bigCircle.setTranslateY(quad.getBoundsInParent().getMaxY());
 bigCircle.setStrokeWidth(3);
 bigCircle.setStroke(Color.BLACK);
 bigCircle.setFill(Color.WHITE);

 // donut hole
 Ellipse smallCircle = new Ellipse(100, 100, 35/2, 25/2);

 // make a donut
 Shape donut = Path.subtract(bigCircle, smallCircle);
 donut.setStrokeWidth(1);
 donut.setStroke(Color.BLACK);
 // orange glaze
 donut.setFill(Color.rgb(255, 200, 0));

 // add drop shadow
 DropShadow dropShadow = new DropShadow();
 dropShadow.setOffsetX(2.0f);
 dropShadow.setOffsetY(2.0f);
 dropShadow.setColor(Color.rgb(50, 50, 50, .588));

 donut.setEffect(dropShadow);

Chapter 14 ■ JavaFX Fundamentals

370

 // move slightly down for spacing
 donut.setTranslateY(quad.getBoundsInParent().getMinY() + 10);

 root.getChildren().add(donut);

 primaryStage.setScene(scene);
 primaryStage.show();
}

Figure 14-5 displays the sine wave, ice cream cone, smile, and donut shapes created using JavaFX.

Figure 14-5. Creating shapes

How It Works
In this solution, you generated some basic 2D shapes. The first shape is a javafx.scene.shape.CubicCurve
class, which allows you to construct a cubic curve (a “squiggly line”) effect. To create a cubic curve, simply
look for the appropriate constructor to be instantiated. The following code snippet is used to create a
javafx.scene.shape.CubicCurve instance:

CubicCurve cubicCurve = new CubicCurve();
cubicCurve.setStartX(50);
cubicCurve.setStartY(75); // start pt (x1,y1)

Chapter 14 ■ JavaFX Fundamentals

371

cubicCurve.setControlX1(80);
cubicCurve.setControlY1(-25);// control pt1
cubicCurve.setControlX2(110);
cubicCurve.setControlY2(175); // control pt2
cubicCurve.setEndX(140);
cubicCurve.setEndY(75);
cubicCurve.setStrokeType(StrokeType.CENTERED);
cubicCurve.setStrokeWidth(1);
cubicCurve.setStroke(Color.BLACK);
cubicCurve.setStrokeWidth(3);
cubicCurve.setFill(Color.WHITE);

You begin by instantiating a CubicCurve() instance. Next, the curve’s attributes are specified in any
order by utilizing the object’s setter methods and passing a single value to each. Once you’re finished
specifying values on the CubicCurve() object, you can add it to the scene graph using the following notation:

root.getChildren().add(cubicCurve);

The ice cream cone shape is created using the javafx.scene.shape.Path class. As each path element
is created and added to the Path object, each element is not considered a graph node (javafx.scene.Node).
This means they do not extend from the javafx.scene.shape.Shape class and cannot be a child node in a
scene graph to be displayed. When looking at the Javadoc (see http://docs.oracle.com/javase/8/javafx/
api/javafx/scene/shape/Path.html), you will notice that a Path class extends from the Shape class that
extends from the (javafx.scene.Node) class, and therefore a Path is a graph node, but Path elements do
not extend from the Shape class. Path elements actually extend from the javafx.scene.shape.PathElement
class, which is only used in the context of a Path object. So you won’t be able to instantiate a LineTo class to
be put in the scene graph. Just remember that the classes with To as a suffix are path elements, not real Shape
nodes. For example, the MoveTo and LineTo object instances are Path elements added to a Path object, not
shapes that can be added to the scene. The following are Path elements added to a Path object to draw an ice
cream cone:

// Ice cream
Path path = new Path();

MoveTo moveTo = new MoveTo();
moveTo.setX(50);
moveTo.setY(150);

...// Additional Path Elements created.
LineTo lineTo1 = new LineTo();
lineTo1.setX(50);
lineTo1.setY(150);

...// Additional Path Elements created.

path.getElements().add(moveTo);
path.getElements().add(quadCurveTo);
path.getElements().add(lineTo1);

Rendering the QuadCurve (smile) object, you instantiate a new QuadCurve object and set each of the
attributes accordingly. Again, each of the attributes accepts a single value.

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Path.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Path.html

Chapter 14 ■ JavaFX Fundamentals

372

Last is the tasty donut shape with a drop shadow effect, which is actually created by two circular
ellipses. By subtracting the smaller ellipse (donut hole) from the larger ellipse area, a newly derived shape
is created and returned using the Path.subtract() method. Following is the code snippet that creates the
donut shape using the Path.subtract() method:

// outer donut
Ellipse bigCircle = ...//Outer shape area

// donut hole
Ellipse smallCircle = ...// Inner shape area

// make a donut
Shape donut = Path.subtract(bigCircle, smallCircle);

Next, a drop shadow effect is added to the donut. This time instead of drawing the shape twice,
similar to a prior recipe, you draw it once and use the setEffect() method to apply a DropShadow object
instance to the donut Shape object. Similar to the prior technique, you set the offset of the shadow by calling
setOffsetX() and setOffsetY().

 ■ Note In previous releases, builder objects could be used to create shapes a bit more easily. however, the
builder classes were removed from JavaFX 8+ due to performance and bloating issues. If you’re maintaining
code that utilizes builder classes, it is recommended that you to migrate away from them and make use of the
standard objects, as demonstrated in this recipe.

14-5. Assigning Colors to Objects
Problem
You want to fill your shapes with simple colors and gradient colors.

Solution
In JavaFX, all shapes can be filled with simple colors and gradient colors. The following are the main classes
used to fill shape nodes:

javafx.scene.paint.Color
javafx.scene.paint.LinearGradient
javafx.scene.paint.Stop
javafx.scene.paint.RadialGradient

The following code uses the preceding classes to add radial and linear gradient colors as well as
transparent (alpha channel level) colors to shapes. This recipe uses an ellipse, a rectangle, and a rounded
rectangle. A solid black line (as depicted in Figure 14-5) also appears in the recipe to demonstrate the
transparency of the shape’s color.

Chapter 14 ■ JavaFX Fundamentals

373

public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-5 Assigning Colors To Objects");
 Group root = new Group();
 Scene scene = new Scene(root, 350, 300, Color.WHITE);

 Ellipse ellipse = new Ellipse(100, 50 + 70/2, 50, 70/2);
 RadialGradient gradient1 = new RadialGradient(0,
 .1, // focus angle
 80, // focus distance
 45, // centerX
 120, // centerY
 false, // proportional
 CycleMethod.NO_CYCLE,
 new Stop(0, Color.RED), new Stop(1, Color.

BLACK));

 ellipse.setFill(gradient1);
 root.getChildren().add(ellipse);

 // Create line
 Line blackLine = new Line();
 blackLine.setStartX(170);
 blackLine.setStartY(30);
 blackLine.setEndX(20);
 blackLine.setEndY(140);
 blackLine.setFill(Color.BLACK);
 blackLine.setStrokeWidth(10.0f);
 blackLine.setTranslateY(ellipse.prefHeight(-1) + ellipse.getLayoutY() + 10);

 root.getChildren().add(blackLine);

 // Create rectangle
 Rectangle rectangle = new Rectangle();
 rectangle.setX(50);
 rectangle.setY(50);
 rectangle.setWidth(100);
 rectangle.setHeight(70);
 rectangle.setTranslateY(ellipse.prefHeight(-1) + ellipse.getLayoutY() + 10);

 // Create linear gradient
 LinearGradient linearGrad = new LinearGradient(
 50, //startX
 50, //startY
 50, //endX
 50 + rectangle.prefHeight(-1) + 25, //endY
 false, //proportional
 CycleMethod.NO_CYCLE,
 new Stop(0.1f, Color.rgb(255, 200, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784)));

 rectangle.setFill(linearGrad);
 root.getChildren().add(rectangle);

Chapter 14 ■ JavaFX Fundamentals

374

 // Create rectangle with rounded corners
 Rectangle roundRect = new Rectangle();
 roundRect.setX(50);
 roundRect.setY(50);
 roundRect.setWidth(100);
 roundRect.setHeight(70);
 roundRect.setArcWidth(20);
 roundRect.setArcHeight(20);
 roundRect.setTranslateY(ellipse.prefHeight(-1) +
 ellipse.getLayoutY() +
 10 +
 roundRect.prefHeight(-1) +
 roundRect.getLayoutY() + 10);

 LinearGradient cycleGrad = new LinearGradient(50,
 50,
 70,
 70,
 false,
 CycleMethod.REFLECT,
 new Stop(0f, Color.rgb(0, 255, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784)));

 roundRect.setFill(cycleGrad);
 root.getChildren().add(roundRect);

 primaryStage.setScene(scene);
 primaryStage.show();
}

Figure 14-6 displays the various types of colorized fills that can be applied to shapes.

Figure 14-6. Color shapes

Chapter 14 ■ JavaFX Fundamentals

375

How It Works
Figure 14-5 shows shapes displayed from top to bottom starting with an ellipse, rectangle, and a rounded
rectangle having colored gradient fills. When drawing the eclipse shape, you will be using a radial gradient
that appears as if it were a 3D spherical object. Next, a rectangle filled with a yellow semitransparent linear
gradient is created. A thick black line shape was drawn behind the yellow rectangle to demonstrate the
rectangle’s semitransparent color. Lastly, a rounded rectangle filled with a green-and-black reflective linear
gradient resembling 3D tubes in a diagonal direction is generated.

The amazing thing about colors with gradients is that they can often make shapes appear three-
dimensional. Gradient paint allows you to interpolate between two or more colors, which gives the shape
depth. JavaFX provides two types of gradients: a radial (RadialGradient) and a linear (LinearGradient)
gradient. A radial gradient (RadialGradient) is applied to the ellipse shape in the example.

Table 14-1 is taken from the JavaFX 8 Javadoc definitions found for the RadialGradient class
(http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/RadialGradient.html).

Table 14-1. RadialGradient Properties

Property Data Type Description

focusAngle double Angle in degrees from the center of the gradient to the focus
point to which the first color is mapped

focusDistance double Distance from the center of the gradient to the focus point
to which the first color is mapped

centerX double X coordinate of the center point of the gradient's circle

centerY double Y coordinate of the center point of the gradient's circle

Radius double Radius of the circle defining the extents of the color gradient

Proportional boolean Coordinates and sizes are proportional to the shape that
this gradient fills

cycleMethod CycleMethod Cycle method applied to the gradient

opaque stops boolean List<Stop> Whether the paint is completely opaque Gradient’s color
specification

In this recipe, the focus angle is set to zero, the distance is set to .1, the center X and Y are set to
(80,45), the radius is set to 120 pixels, the proportional is set to false, the cycle method is set to the no cycle
(CycleMethod.NO_CYCLE), and the two color stop values are set to red (Color.RED) and black (Color.BLACK).
These settings create a radial gradient by starting with the color red at a center position of (80, 45) (upper left
of the ellipse) and then interpolating it to the color black with a distance of 120 pixels (radius).

Next, a rectangle having a yellow semitransparent linear gradient is created. A linear gradient
(LinearGradient) paint is used for the yellow rectangle.

Table 14-2 is taken from the JavaFX 8 Javadoc definitions found for the LinearGradient class (see
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/LinearGradient.html).

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/RadialGradient.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/LinearGradient.html

Chapter 14 ■ JavaFX Fundamentals

376

To create a linear gradient paint, you specify the startX, startY, endX, and endY for the start\end points.
The start and end point coordinates denote where the gradient pattern starts and stops.

To create the second shape (yellow rectangle), set the start X and Y to (50, 50), the end X and Y to (50,
75), the proportional to false, the cycle method to no cycle (CycleMethod.NO_CYCLE), and the two color stop
values to yellow (Color.YELLOW) and black (Color.BLACK), with an alpha transparency of .784. These settings
provide a linear gradient for the rectangle from top to bottom, with a starting point of (50, 50) (top left of the
rectangle). It then interpolates to the color black (bottom left of the rectangle).

Finally, you’ll notice a rounded rectangle with a repeating pattern of a gradient using green and black
in a diagonal direction. This is a simple linear gradient paint that is the same as the linear gradient paint
(LinearGradient), except that the start X, Y and the end X, Y are set in a diagonal position, and the cycle
method is set to reflect (CycleMethod.REFLECT). When specifying the cycle method to reflect (CycleMethod.
REFLECT), the gradient pattern will repeat or cycle between the colors. The following code snippet
implements the rounded rectangle having a cycle method of reflect (CycleMethod.REFLECT):

LinearGradient cycleGrad = new LinearGradient(50,
 50,
 70,
 70,
 false,
 CycleMethod.REFLECT,
 new Stop(0f, Color.rgb(0, 255, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784)));

14-6. Creating Menus
Problem
You want to create standard menus in your JavaFX applications.

Solution
Employ JavaFX’s menu controls to provide standardized menu capabilities such as check box menus, radio
menus, submenus, and separators. The following are the main classes used to create menus.

Table 14-2. LinearGradient Properties

Property Data Type Description

startX double X coordinate of the gradient axis start point

startY double Y coordinate of the gradient axis start point

endX double X coordinate of the gradient axis end point

endY double Y coordinate of the gradient axis end point

proportional boolean Whether the coordinates are proportional to the shape
that this gradient fills

cycleMethod opaque CycleMethod boolean Cycle method applied to the gradient Whether this
paint is completely opaque

stops List<Stop> Gradient's color specification

Chapter 14 ■ JavaFX Fundamentals

377

javafx.scene.control.MenuBar
javafx.scene.control.Menu
javafx.scene.control.MenuItem

The following code calls into play all the menu capabilities listed previously. The example code
simulates a building security application containing menu options to turn on cameras, sound an alarm, and
select contingency plans.

public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-6 Creating Menus");
 Group root = new Group();
 Scene scene = new Scene(root, 300, 250, Color.WHITE);

 MenuBar menuBar = new MenuBar();

 // File menu - new, save, exit
 Menu menu = new Menu("File");
 menu.getItems().add(new MenuItem("New"));
 menu.getItems().add(new MenuItem("Save"));
 menu.getItems().add(new SeparatorMenuItem());
 menu.getItems().add(new MenuItem("Exit"));

 menuBar.getMenus().add(menu);

 // Cameras menu - camera 1, camera 2
 Menu tools = new Menu("Cameras");
 CheckMenuItem item1 = new CheckMenuItem();
 item1.setText("Show Camera 1");
 item1.setSelected(true);
 tools.getItems().add(item1);

 CheckMenuItem item2 = new CheckMenuItem();
 item2.setText("Show Camera 2");
 item2.setSelected(true);
 tools.getItems().add(item2);

 menuBar.getMenus().add(tools);

 // Alarm
 Menu alarm = new Menu("Alarm");
 ToggleGroup tGroup = new ToggleGroup();

 RadioMenuItem soundAlarmItem = new RadioMenuItem();
 soundAlarmItem.setToggleGroup(tGroup);
 soundAlarmItem.setText("Sound Alarm");

 RadioMenuItem stopAlarmItem = new RadioMenuItem();
 stopAlarmItem.setToggleGroup(tGroup);
 stopAlarmItem.setText("Alarm Off");
 stopAlarmItem.setSelected(true);

Chapter 14 ■ JavaFX Fundamentals

378

 alarm.getItems().add(soundAlarmItem);
 alarm.getItems().add(stopAlarmItem);

 Menu contingencyPlans = new Menu("Contingent Plans");
 contingencyPlans.getItems().add(new CheckMenuItem("Self Destruct in T minus 50"));
 contingencyPlans.getItems().add(new CheckMenuItem("Turn off the coffee machine "));
 contingencyPlans.getItems().add(new CheckMenuItem("Run for your lives! "));

 alarm.getItems().add(contingencyPlans);
 menuBar.getMenus().add(alarm);

 menuBar.prefWidthProperty().bind(primaryStage.widthProperty());

 root.getChildren().add(menuBar);
 primaryStage.setScene(scene);
 primaryStage.show();
}

Figure 14-7 shows a simulated building security application containing checked, and submenu items.

Figure 14-7. Creating menus

How It Works
Menus provide standard ways to allow users to select options from windowed platform applications. Menus
should also have hot keys or keyboard equivalents. Users will often want to use the keyboard instead of the
mouse to navigate the menu. This recipe parallels Recipe 14-8, and you’ll notice lots of similarities.

To create a menu, first create an instance of a MenuBar that will contain one-to-many menu (MenuItem)
objects. Creating a menu bar:

MenuBar menuBar = new MenuBar();

Chapter 14 ■ JavaFX Fundamentals

379

Secondly, create menu (Menu) objects that contain one-to-many menu item (MenuItem) objects and
other Menu objects making submenus. To create a menu:

Menu menu = new Menu("File");

Third, create menu items to be added to Menu objects, such as menu (MenuItem), check
(CheckMenuItem), and radio menu items (RadioMenuItem). Menu items can have icons in them. We don’t
showcase this in the recipe, but we encourage you to explore the various constructors for all menu items
(MenuItem). When creating a radio menu item (RadioMenuItem), you should be aware of the ToggleGroup
class. The ToggleGroup class is also used on regular radio buttons (RadioButtons) to allow only one selected
option at any one time. The following code creates radio menu items (RadioMenuItems) to be added to a
Menu object:

// Alarm
Menu alarm = new Menu("Alarm");
ToggleGroup tGroup = new ToggleGroup();

RadioMenuItem soundAlarmItem = new RadioMenuItem();
soundAlarmItem.setToggleGroup(tGroup);
soundAlarmItem.setText("Sound Alarm");

RadioMenuItem stopAlarmItem = new RadioMenuItem();
stopAlarmItem.setToggleGroup(tGroup);
stopAlarmItem.setText("Alarm Off");
stopAlarmItem.setSelected(true);

alarm.getItems().add(soundAlarmItem);
alarm.getItems().add(stopAlarmItem);

At times you may want to separate menu items with a visual line separator. To create a visual separator,
create an instance of a SeparatorMenuItem class to be added to a menu via the getItems() method. The
method getItems() returns an observable list of MenuItem objects (ObservableList<MenuItem>). As you will
see in Recipe 14-10, you can be notified when items in a collection are altered. The following code line adds
a visual line separator (SeparatorMenuItem) to the menu:

menu.getItems().add(new SeparatorMenuItem());

Other menu items used are the check menu item (CheckMenuItem) and the radio menu item
(RadioMenuItem), and they are similar to their counterparts in JavaFX UI controls check box (CheckBox) and
radio button (RadioButton), respectively.

Prior to adding the menu bar to the scene, you will notice the bound property between the preferred
width of the menu bar and the width of the Stage object via the bind() method. When binding these
properties you will see the menu bar’s width stretch when the user resizes the screen. You will see how
binding works in Recipe 14-9. This code snippet shows the binding between the menu bar’s width property
and the stage’s width property.

menuBar.prefWidthProperty().bind(primaryStage.widthProperty());
root.getChildren().add(menuBar);

Chapter 14 ■ JavaFX Fundamentals

380

14-7. Adding Components to a Layout
Problem
You want to add UI components to a layout similar to a grid type layout for easy placement.

Solution
Use JavaFX’s javafx.scene.layout.GridPane class. This source code implements a simple UI form containing
first and last name field controls and using the grid pane layout node (javafx.scene.layout.GridPane):

GridPane gridpane = new GridPane();
gridpane.setPadding(new Insets(5));
gridpane.setHgap(5);
gridpane.setVgap(5);

Label fNameLbl = new Label("First Name");
TextField fNameFld = new TextField();
Label lNameLbl = new Label("First Name");
TextField lNameFld = new TextField();
Button saveButt = new Button("Save");

// First name label
GridPane.setHalignment(fNameLbl, HPos.RIGHT);
gridpane.add(fNameLbl, 0, 0);

// Last name label
GridPane.setHalignment(lNameLbl, HPos.RIGHT);
gridpane.add(lNameLbl, 0, 1);

// First name field
GridPane.setHalignment(fNameFld, HPos.LEFT);
gridpane.add(fNameFld, 1, 0);

// Last name field
GridPane.setHalignment(lNameFld, HPos.LEFT);
gridpane.add(lNameFld, 1, 1);

// Save button
GridPane.setHalignment(saveButt, HPos.RIGHT);
gridpane.add(saveButt, 1, 2);

root.getChildren().add(gridpane);

Chapter 14 ■ JavaFX Fundamentals

381

How It Works
One of the greatest challenges in building user interfaces is how controls can be placed onto the display area.
When developing GUI applications, it is ideal for an application to allow the users to move and adjust the
size of their viewable area while maintaining a pleasant user experience. Similar to Java Swing, JavaFX layout
has stock layouts that provide the most common ways to display UI controls on the scene graph. This recipe
demonstrates the GridPane class.

Recall Recipe 14-4, in which you implemented a custom layout to display components in a grid-like
manner. You may notice similarities, but we left a lot of implementation features out, such as adjusting min/
max sizes, padding, and vertical alignments. Amazingly, the JavaFX team has created a robust grid-like
layout called the GridPane.

First you create an instance of a GridPane. Next, you set the padding by using an instance of an Inset
object. After setting the padding, you simply set the horizontal and vertical gap. The following code snippet
instantiates a grid pane (GridPane) with padding, horizontal, and vertical gaps set to 5 (pixels):

GridPane gridpane = new GridPane();
gridpane.setPadding(new Insets(5));
gridpane.setHgap(5);
gridpane.setVgap(5);

The padding is the top, right, bottom, and left spacing around the region’s content in pixels. When
obtaining the preferred size, the padding will be included in the calculation. Setting the horizontal and
vertical gaps relate to the spacing between UI controls within the cells.

Next, simply place each UI control into its respective cell location. All cells are zero relative. Following is
a code snippet that adds a Save button UI control into a grid pane layout node (GridPane) at cell (1, 2):

gridpane.add(saveButt, 1, 2);

The layout also allows you to horizontally or vertically align controls in the cell. The following code
statement right-aligns the Save button:

GridPane.setHalignment(saveButt, HPos.RIGHT);

Figure 14-8. Adding controls to a layout

Figure 14-8 depicts a small form containing UI controls laid out using a grid pane layout node.

Chapter 14 ■ JavaFX Fundamentals

382

14-8. Generating Borders
Problem
You want to create and customize borders around an image.

Solution
Create an application to dynamically customize border regions using JavaFX’s CSS styling API.

The following code creates an application that has a CSS editor text area and a border view region
surrounding an image. By default, the editor’s text area will contain JavaFX styling selectors that create a
dashed blue line surrounding the image. You will have the opportunity to modify styling selector values in
the CSS Editor by clicking the Bling! button to apply border settings.

primaryStage.setTitle("Chapter 14-8 Generating Borders");
Group root = new Group();
Scene scene = new Scene(root, 600, 330, Color.WHITE);

// create a grid pane
GridPane gridpane = new GridPane();
gridpane.setPadding(new Insets(5));
gridpane.setHgap(10);
gridpane.setVgap(10);

// label CSS Editor
Label cssEditorLbl = new Label("CSS Editor");
GridPane.setHalignment(cssEditorLbl, HPos.CENTER);
gridpane.add(cssEditorLbl, 0, 0);

// label Border View
Label borderLbl = new Label("Border View");
GridPane.setHalignment(borderLbl, HPos.CENTER);
gridpane.add(borderLbl, 1, 0);

// Text area for CSS editor
final TextArea cssEditorFld = new TextArea();
cssEditorFld.setPrefRowCount(10);
cssEditorFld.setPrefColumnCount(100);
cssEditorFld.setWrapText(true);
cssEditorFld.setPrefWidth(150);
GridPane.setHalignment(cssEditorFld, HPos.CENTER);
gridpane.add(cssEditorFld, 0, 1);

String cssDefault = "-fx-border-color: blue;\n"
 + "-fx-border-insets: 5;\n"
 + "-fx-border-width: 3;\n"
 + "-fx-border-style: dashed;\n";

cssEditorFld.setText(cssDefault);

Chapter 14 ■ JavaFX Fundamentals

383

// Border decorate the picture
final ImageView imv = new ImageView();
final Image image2 = new Image(GeneratingBorders.class.getResourceAsStream("smoke_glass_
buttons1.png"));
imv.setImage(image2);

final HBox pictureRegion = new HBox();
pictureRegion.setStyle(cssDefault);
pictureRegion.getChildren().add(imv);
gridpane.add(pictureRegion, 1, 1);

Button apply = new Button("Bling!");
GridPane.setHalignment(apply, HPos.RIGHT);
gridpane.add(apply, 0, 2);

apply.setOnAction((e) -> {
 pictureRegion.setStyle(cssEditorFld.getText());
});

root.getChildren().add(gridpane);
primaryStage.setScene(scene);
primaryStage.show();

Figure 14-9 illustrates the border customizer application.

Figure 14-9. Generating borders

Chapter 14 ■ JavaFX Fundamentals

384

How It Works
JavaFX is capable of styling JavaFX nodes similar to CSS in the world of web development (also
demonstrated in Recipe 14-3). This powerful API can alter a node’s background color, font, border, and
many other attributes, essentially allowing the developer or designer to skin GUI controls using CSS.

This solution to this recipe allows users to enter JavaFX CSS styles in the left text area and, by clicking
the Bling! button on the UI, apply the style around the image shown to the right. Based on the type of node,
there are limitations to what styles can be set. To see a full listing of all style selectors, refer to the JavaFX CSS
Reference Guide: http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html.

In the first step of applying JavaFX CSS styles, you must determine which type of node you want to style.
When setting attributes on various node types, you will discover that certain nodes have limitations. In this
recipe, the intent was to put a border around the ImageView object. Because ImageView is not extending from
Region, it doesn’t contain border style properties. So, to resolve this, simply create an HBox layout to contain
the imageView and apply the JavaFX CSS against the HBox. The following code applies JavaFX CSS border
styles to a horizontal box region (HBox) using the setStyle() method:

String cssDefault = "-fx-border-color: blue;\n"
 + "-fx-border-insets: 5;\n"
 + "-fx-border-width: 3;\n"
 + "-fx-border-style: dashed;\n";
final ImageView imv = new ImageView();
...//
final HBox pictureRegion = new HBox();
pictureRegion.setStyle(cssDefault);
pictureRegion.getChildren().add(imv);

14-9. Binding Expressions
Problem
You want to synchronize changes between two values.

Solution
Use the javafx.beans.binding.* and javafx.beans.property.* packages to bind variables. There is more
than one scenario to consider when binding values or properties. This recipe demonstrates the following
three binding strategies:

•	 Bidirectional binding on a Java Bean

•	 High-level binding using the Fluent API

•	 Low-level binding using javafx.beans.binding.* binding objects

The following code is a console application implementing these three strategies. The console
application will output property values based on various binding scenarios. The first scenario is a
bidirectional binding between a String property variable and a String property owned by a domain object
(Contact), such as the firstName property. The next scenario is a high-level binding using a fluent interface
API to calculate the area of rectangle. The last scenario is using a low-level binding strategy to calculate
the volume of a sphere. The difference between the high- and low-level binding is that the high level uses
methods such as multiply() and subtract() instead of the operators * and -. When using low-level

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

Chapter 14 ■ JavaFX Fundamentals

385

binding, you use a derived NumberBinding class such as a DoubleBinding class. With a DoubleBinding
class you override its computeValue() method so that you can use the familiar operators such as * and - to
formulate complex math equations:

package org.java9recipes.chapter14.recipe14_09;

import javafx.beans.binding.DoubleBinding;
import javafx.beans.binding.NumberBinding;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;

/**
 * Recipe 14-9: Binding Expressions
 * @author cdea
 * Update: J. Juneau
 */
public class BindingExpressions {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 System.out.println("Chapter 14-9 Binding Expressions\n");

 System.out.println("Binding a Contact bean [Bi-directional binding]");
 Contact contact = new Contact("John", "Doe");
 StringProperty fname = new SimpleStringProperty();
 fname.bindBidirectional(contact.firstNameProperty());
 StringProperty lname = new SimpleStringProperty();
 lname.bindBidirectional(contact.lastNameProperty());

 System.out.println("Current - StringProperty values : " + fname.getValue() + " "
+ lname.getValue());

 System.out.println("Current - Contact values : " + contact.getFirstName()
+ " " + contact.getLastName());

 System.out.println("Modifying StringProperty values");
 fname.setValue("Jane");
 lname.setValue("Deer");

 System.out.println("After - StringProperty values : " + fname.getValue() + " " +
lname.getValue());

 System.out.println("After - Contact values : " + contact.getFirstName() + "
" + contact.getLastName());

 System.out.println();
 System.out.println("A Area of a Rectangle [High level Fluent API]");

Chapter 14 ■ JavaFX Fundamentals

386

 // Area = width * height
 final IntegerProperty width = new SimpleIntegerProperty(10);
 final IntegerProperty height = new SimpleIntegerProperty(10);

 NumberBinding area = width.multiply(height);

 System.out.println("Current - Width and Height : " + width.get() + " " + height.
get());

 System.out.println("Current - Area of the Rectangle: " + area.getValue());
 System.out.println("Modifying width and height");

 width.set(100);
 height.set(700);

 System.out.println("After - Width and Height : " + width.get() + " " + height.
get());

 System.out.println("After - Area of the Rectangle: " + area.getValue());

 System.out.println();
 System.out.println("A Volume of a Sphere [low level API]");

 // volume = 4/3 * pi r^3
 final DoubleProperty radius = new SimpleDoubleProperty(2);

 DoubleBinding volumeOfSphere = new DoubleBinding() {
 {
 super.bind(radius);
 }

 @Override
 protected double computeValue() {
 return (4 / 3 * Math.PI * Math.pow(radius.get(), 3));
 }
 };

 System.out.println("Current - radius for Sphere: " + radius.get());
 System.out.println("Current - volume for Sphere: " + volumeOfSphere.get());
 System.out.println("Modifying DoubleProperty radius");

 radius.set(50);
 System.out.println("After - radius for Sphere: " + radius.get());
 System.out.println("After - volume for Sphere: " + volumeOfSphere.get());

 }
}

class Contact {

 private SimpleStringProperty firstName = new SimpleStringProperty();
 private SimpleStringProperty lastName = new SimpleStringProperty();

Chapter 14 ■ JavaFX Fundamentals

387

 public Contact(String fn, String ln) {
 firstName.setValue(fn);
 lastName.setValue(ln);
 }

 public final String getFirstName() {
 return firstName.getValue();
 }

 public StringProperty firstNameProperty() {
 return firstName;
 }

 public final void setFirstName(String firstName) {
 this.firstName.setValue(firstName);
 }

 public final String getLastName() {
 return lastName.getValue();
 }

 public StringProperty lastNameProperty() {
 return lastName;
 }

 public final void setLastName(String lastName) {
 this.lastName.setValue(lastName);
 }
}

The following output demonstrates the three binding scenarios:

Binding a Contact bean [Bi-directional binding]
Current - StringProperty values : John Doe
Current - Contact values : John Doe
Modifying StringProperty values
After - StringProperty values : Jane Deer
After - Contact values : Jane Deer

A Area of a Rectangle [High level Fluent API]
Current - Width and Height : 10 10
Current - Area of the Rectangle: 100
Modifying width and height
After - Width and Height : 100 700
After - Area of the Rectangle: 70000

A Volume of a Sphere [low level API]
Current - radius for Sphere: 2.0
Current - volume for Sphere: 25.132741228718345
Modifying DoubleProperty radius
After - radius for Sphere: 50.0
After - volume for Sphere: 392699.0816987241

Chapter 14 ■ JavaFX Fundamentals

388

How It Works
Binding implies that at least two values are being synchronized. This means when a dependent variable
changes, the other variable changes. JavaFX provides many binding options that enable developers to
synchronize properties in domain objects and GUI controls. This recipe demonstrates the three common
binding scenarios.

One of the easiest ways to bind variables is using a bidirectional bind. This scenario is often
used when domain objects contain data that will be bound to a GUI form. This recipe creates a simple
contact (Contact) object containing a first name and last name. Notice the instance variables using the
SimpleStringProperty class. Many of these classes, which end in Property, are javafx.beans.Observable
classes that can all be bound. In order for these properties to be bound, they must be the same data type.
In the preceding example, you create the first name and last name variables of type SimpleStringProperty
outside the created Contact domain object. Once they have been created, you bind them bidirectionally to
allow changes to update on either end. So if you change the domain object, the other bound properties are
updated. And when the outside variables are modified, the domain object’s properties are updated. The
following demonstrates bidirectional binding against String properties on a domain object (Contact):

Contact contact = new Contact("John", "Doe");
StringProperty fname = new SimpleStringProperty();
fname.bindBidirectional(contact.firstNameProperty());
StringProperty lname = new SimpleStringProperty();
lname.bindBidirectional(contact.lastNameProperty());

Next up is how to bind numbers. Binding numbers is simple when using the Fluent API. This high-level
mechanism allows developers to bind variables to compute values using simple arithmetic. Basically, a
formula is “bound” to change its result based on changes to the variables it’s bound to. Look at the Javadoc
(http://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/Bindings.html) for details
on all the available methods and number types. In this example, you simply create a formula for an area
of a rectangle. The area (NumberBinding) is the binding, and its dependencies are the width and height
(IntegerProperty) properties. When binding using the fluent interface API, you’ll notice the multiply()
method. According to the Javadoc, all property classes inherit from the NumberExpressionBase class, which
contains the number-based fluent interface APIs. The following code snippet uses the fluent interface API:

// Area = width * height
final IntegerProperty width = new SimpleIntegerProperty(10);
final IntegerProperty height = new SimpleIntegerProperty(10);
NumberBinding area = width.multiply(height);

The last scenario on binding numbers is considered more of a low-level approach. This allows
developers to use primitives and more complex math operations. Here, you use a DoubleBinding class to
solve the volume of a sphere given the radius. You begin by implementing the computeValue() method to
perform the calculation of the volume. Shown is the low-level binding scenario to compute the volume of a
sphere by overriding the computeValue() method:

final DoubleProperty radius = new SimpleDoubleProperty(2);

DoubleBinding volumeOfSphere = new DoubleBinding() {
 {
 super.bind(radius);
 }

http://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/Bindings.html

Chapter 14 ■ JavaFX Fundamentals

389

 @Override
 protected double computeValue() {
 return (4 / 3 * Math.PI * Math.pow(radius.get(), 3));
 }
};

14-10. Creating and Working with Observable Lists
Problem
You want to create a GUI application containing two list view controls that allow users to pass items between
the two lists.

Solution
You can take advantage of JavaFX’s javafx.collections.ObservableList and javafx.scene.control.
ListView classes to provide a model-view-controller (MVC) mechanism that updates the UI’s list view
control whenever the backend list is manipulated.

The following code creates a GUI application containing two lists that allow users to send items
contained in one list to the other. Here you will create a contrived application to pick candidates to be
considered heroes. The user picks potential candidates from the list on the left to be moved into the list on
the right to be considered heroes. This demonstrates UI list controls’ (ListView) ability to be synchronized
with backend store lists (ObservableList).

public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-10 Creating and Working with ObservableLists");
 Group root = new Group();
 Scene scene = new Scene(root, 400, 250, Color.WHITE);

 // create a grid pane
 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(10);
 gridpane.setVgap(10);

 // candidates label
 Label candidatesLbl = new Label("Candidates");
 GridPane.setHalignment(candidatesLbl, HPos.CENTER);
 gridpane.add(candidatesLbl, 0, 0);

 Label heroesLbl = new Label("Heroes");
 gridpane.add(heroesLbl, 2, 0);
 GridPane.setHalignment(heroesLbl, HPos.CENTER);

 // candidates
 final ObservableList<String> candidates = FXCollections.observableArrayList("Super man",
 "Spider man",
 "Wolverine",
 "Police",
 "Fire Rescue",
 "Soldiers",

Chapter 14 ■ JavaFX Fundamentals

390

 "Dad & Mom",
 "Doctor",
 "Politician",
 "Pastor",
 "Teacher");
 final ListView<String> candidatesListView = new ListView<>(candidates);
 candidatesListView.setPrefWidth(150);
 candidatesListView.setPrefHeight(150);

 gridpane.add(candidatesListView, 0, 1);

 // heros
 final ObservableList<String> heroes = FXCollections.observableArrayList();
 final ListView<String> heroListView = new ListView<>(heroes);
 heroListView.setPrefWidth(150);
 heroListView.setPrefHeight(150);

 gridpane.add(heroListView, 2, 1);

 // select heroes
 Button sendRightButton = new Button(">");
 sendRightButton.setOnAction((e) -> {
 String potential = candidatesListView.getSelectionModel().getSelectedItem();
 if (potential != null) {
 candidatesListView.getSelectionModel().clearSelection();
 candidates.remove(potential);
 heroes.add(potential);
 }
 });

 // deselect heroes
 Button sendLeftButton = new Button("<");
 sendLeftButton.setOnAction((e) -> {
 String notHero = heroListView.getSelectionModel().getSelectedItem();
 if (notHero != null) {
 heroListView.getSelectionModel().clearSelection();
 heroes.remove(notHero);
 candidates.add(notHero);
 }
 });

 VBox vbox = new VBox(5);
 vbox.getChildren().addAll(sendRightButton,sendLeftButton);

 gridpane.add(vbox, 1, 1);
 GridPane.setConstraints(vbox, 1, 1, 1, 2,HPos.CENTER, VPos.CENTER);

 root.getChildren().add(gridpane);
 primaryStage.setScene(scene);
 primaryStage.show();
}

Chapter 14 ■ JavaFX Fundamentals

391

How It Works
When dealing with Java collections you’ll notice there are so many useful container classes that represent all
kinds of data structures. One commonly used collection is the java.util.ArrayList class. When building
applications with domain objects that contain an ArrayList, developers can easily manipulate objects
inside the collection. But, in the past (back in the day), when using Java Swing components combined with
collections was a challenge, especially updating the GUI to reflect changes in the domain object. How do you
resolve this issue? Well, JavaFX’s ObservableList to the rescue!

Speaking of rescue, this recipe demonstrates a GUI application to allow users to choose their favorite
heroes. This is quite similar to application screens that manage user roles by adding or removing items from
list box components. In JavaFX, use a ListView control to hold String objects. Before creating an instance of
a ListView, the ObservableList containing the candidates is created. In the example, you’ll notice the use
of a factory class called FXCollections, in which you can pass in common collection types to be wrapped
and returned to the caller as an ObservableList. This recipe passes in an array of Strings instead of an
ArrayList, so hopefully you get the idea about how to use the FXCollections class. Be sure to use it wisely:
“With great power, there must also come great responsibility.” This code line calls the FXCollections class to
return an observable list (ObservableList):

ObservableList<String> candidates = FXCollections.observableArrayList(...);

After creating an ObservableList, a ListView class is instantiated using a constructor that receives the
observable list. Shown here is code to create and populate a ListView object:

ListView<String> candidatesListView = new ListView<String>(candidates);

Figure 14-10. ListViews and ObservableLists

Figure 14-10 depicts the hero selection application.

Chapter 14 ■ JavaFX Fundamentals

392

In the last item of business, the code will manipulate the ObservableLists as if they were java.util.
ArrayLists. Once manipulated, the ListView will be notified and automatically updated to reflect the
changes of the ObservableList. The following code snippet implements the event handler and action event
when the user presses the send right button:

// select heroes
Button sendRightButton = new Button(">");
sendRightButton.setOnAction((e) -> {
 String potential = candidatesListView.getSelectionModel().getSelectedItem();
 if (potential != null) {
 candidatesListView.getSelectionModel().clearSelection();
 candidates.remove(potential);
 heroes.add(potential);
 }
});

When setting an action, you implement an EventHandler via a lambda expression to listen for a button
press event. When a button press event arrives, the code will determine which item in the ListView was
selected. Once the item was determined, you clear the selection, remove the item, and add the item to the
hero’s ObservableList.

14-11. Generating a Background Process
Problem
You want to create a GUI application that simulates a long-running process using background processing
while displaying the progress to the users.

Solution
Create an application typical of a dialog box that shows the progress indicators while copying files in the
background. The following are the main classes used in this recipe:

•	 javafx.scene.control.ProgressBar

•	 javafx.scene.control.ProgressIndicator

•	 javafx.concurrent.Task classes

The following source code is an application that simulates a file copy dialog box displaying progress
indicators and performing background processes:

package org.java9recipes.chapter14.recipe14_11;

import java.util.Random;
import javafx.application.Application;
import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;
import javafx.concurrent.Task;
import javafx.geometry.Pos;
import javafx.scene.Group;
import javafx.scene.Scene;

Chapter 14 ■ JavaFX Fundamentals

393

import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.ProgressBar;
import javafx.scene.control.ProgressIndicator;
import javafx.scene.control.TextArea;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class BackgroundProcesses extends Application {

 static Task copyWorker;
 final int numFiles = 30;

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-11 Background Processes");
 Group root = new Group();
 Scene scene = new Scene(root, 330, 120, Color.WHITE);

 BorderPane mainPane = new BorderPane();
 mainPane.layoutXProperty().bind(scene.widthProperty().subtract(mainPane.

widthProperty()).divide(2));
 root.getChildren().add(mainPane);

 final Label label = new Label("Files Transfer:");
 final ProgressBar progressBar = new ProgressBar(0);
 final ProgressIndicator progressIndicator = new ProgressIndicator(0);

 final HBox hb = new HBox();
 hb.setSpacing(5);
 hb.setAlignment(Pos.CENTER);
 hb.getChildren().addAll(label, progressBar, progressIndicator);
 mainPane.setTop(hb);

 final Button startButton = new Button("Start");
 final Button cancelButton = new Button("Cancel");
 final TextArea textArea = new TextArea();
 textArea.setEditable(false);
 textArea.setPrefSize(200, 70);
 final HBox hb2 = new HBox();
 hb2.setSpacing(5);
 hb2.setAlignment(Pos.CENTER);

Chapter 14 ■ JavaFX Fundamentals

394

 hb2.getChildren().addAll(startButton, cancelButton, textArea);
 mainPane.setBottom(hb2);

 // wire up start button
 startButton.setOnAction((e) -> {
 startButton.setDisable(true);
 progressBar.setProgress(0);
 progressIndicator.setProgress(0);
 textArea.setText("");
 cancelButton.setDisable(false);
 copyWorker = createWorker(numFiles);

 // wire up progress bar
 progressBar.progressProperty().unbind();
 progressBar.progressProperty().bind(copyWorker.progressProperty());
 progressIndicator.progressProperty().unbind();
 progressIndicator.progressProperty().bind(copyWorker.progressProperty());

 // append to text area box
 copyWorker.messageProperty().addListener(new ChangeListener<String>() {

 public void changed(ObservableValue<? extends String> observable, String
oldValue, String newValue) {

 textArea.appendText(newValue + "\n");
 }
 });

 new Thread(copyWorker).start();
 });

 // cancel button will kill worker and reset.
 cancelButton.setOnAction((e) -> {
 startButton.setDisable(false);
 cancelButton.setDisable(true);
 copyWorker.cancel(true);

 // reset
 progressBar.progressProperty().unbind();
 progressBar.setProgress(0);
 progressIndicator.progressProperty().unbind();
 progressIndicator.setProgress(0);
 textArea.appendText("File transfer was cancelled.");
 });

 primaryStage.setScene(scene);
 primaryStage.show();
 }

 public Task createWorker(final int numFiles) {
 return new Task() {

Chapter 14 ■ JavaFX Fundamentals

395

 @Override
 protected Object call() throws Exception {
 for (int i = 0; i < numFiles; i++) {
 long elapsedTime = System.currentTimeMillis();
 copyFile("some file", "some dest file");
 elapsedTime = System.currentTimeMillis() - elapsedTime;
 String status = elapsedTime + " milliseconds";

 // queue up status
 updateMessage(status);
 updateProgress(i + 1, numFiles);
 }
 return true;
 }
 };
 }

 public void copyFile(String src, String dest) throws InterruptedException {
 // simulate a long time
 Random rnd = new Random(System.currentTimeMillis());
 long millis = rnd.nextInt(1000);
 Thread.sleep(millis);
 }
}

Figure 14-11 shows the Background Processes application, which simulates a file copy window.

Figure 14-11. Background processes

How It Works
One of the main pitfalls of GUI development is knowing when and how to delegate work (Threads). You are
constantly reminded of thread safety, especially when it comes to blocking the GUI thread. When using the
Java Swing API, the SwingWorker object must be implemented to defer non-GUI work off of the EDT. Similar
patterns and principles still apply in the world of JavaFX.

Chapter 14 ■ JavaFX Fundamentals

396

You begin by creating not one but two progress controls to show the user the work being done. One is
a progress bar and the other is a progress indicator. The progress indicator shows a percentage below the
indicator icon. The following code snippet shows the initial creation of progress controls:

final ProgressBar progressBar = new ProgressBar(0);
final ProgressIndicator progressIndicator = new ProgressIndicator(0);

Next, you create a worker thread via the createWorker() method. The createWorker() convenience
method will instantiate and return a javafx.concurrent.Task object, which is similar to the Java
Swing’s SwingWorker class. Unlike the SwingWorker class, the Task object is greatly simplified and easier
to use. If you compare the last recipe you will notice that none of the GUI controls is passed into the
Task. The clever JavaFX team has created observable properties that allow you to bind against. This
fosters a more event-driven approach to handling work (tasks). When creating an instance of a Task
object you implement the call() method to perform work in the background. During the work being
done, you may wish to queue up intermediate results such as progress or text info. For this, you can call
the updateProgress() and updateMessage() methods. These methods will update information in a
threadsafe manner so that the observer of the progress properties will be able to update the GUI safely
without blocking the GUI thread. The following code snippet demonstrates the ability to queue up
messages and progress:

// queue up status
updateMessage(status);
updateProgress(i + 1, numFiles);

After creating a worker Task, you unbind any old tasks bound to the progress controls. Once the
progress controls are unbound, you then bind the progress controls to the newly created Task object called
copyWorker. Shown here is the code used to rebind a new Task object to the progress UI controls:

// wire up progress bar
progressBar.progressProperty().unbind();
progressBar.progressProperty().bind(copyWorker.progressProperty());
progressIndicator.progressProperty().unbind();
progressIndicator.progressProperty().bind(copyWorker.progressProperty());

Next, implement a ChangeListener to append the queued results into the TextArea control. Another
remarkable thing about JavaFX properties is that you can attach many listeners similar to Java Swing
components. Finally, the worker and controls are all wired up to spawn a thread to go off in the background.
The following code line shows how to launch a Task worker object:

new Thread(copyWorker).start();

Lastly, the Cancel button will simply call the Task object’s cancel() method to kill the process. Once the
task is cancelled the progress controls are reset. Once a worker Task is cancelled it cannot be reused. When
pressed, the Start button recreates a new Task. If you want a more robust solution, you should look at the
javafx.concurrent.Service class. The following code line will cancel a Task worker object:

copyWorker.cancel(true);

Chapter 14 ■ JavaFX Fundamentals

397

14-12. Associating Keyboard Sequences with Applications
Problem
You want to create keyboard shortcuts for menu options.

Solution
Create an application that will use JavaFX’s key combination APIs. The main classes you will be using are
shown here:

•	 javafx.scene.input.KeyCode

•	 javafx.scene.input.KeyCodeCombination

•	 javafx.scene.input.KeyCombination

The following source code listing is an application that displays the available keyboard shortcuts that
are bound to the menu items. When the user performs a keyboard shortcut, the application will display the
key combination on the screen:

public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-12 Associating Keyboard Sequences");
 Group root = new Group();
 Scene scene = new Scene(root, 530, 300, Color.WHITE);

 final StringProperty statusProperty = new SimpleStringProperty();

 InnerShadow iShadow = new InnerShadow();
 iShadow.setOffsetX(3.5f);
 iShadow.setOffsetY(3.5f);

 final Text status = new Text();
 status.setEffect(iShadow);
 status.setX(100);
 status.setY(50);
 status.setFill(Color.LIME);
 status.setFont(Font.font(null, FontWeight.BOLD, 35));
 status.setTranslateY(50);

 status.textProperty().bind(statusProperty);
 statusProperty.set("Keyboard Shortcuts \nCtrl-N, \nCtrl-S, \nCtrl-X");
 root.getChildren().add(status);

 MenuBar menuBar = new MenuBar();
 menuBar.prefWidthProperty().bind(primaryStage.widthProperty());
 root.getChildren().add(menuBar);

 Menu menu = new Menu("File");
 menuBar.getMenus().add(menu);

Chapter 14 ■ JavaFX Fundamentals

398

 MenuItem newItem = new MenuItem();
 newItem.setText("New");
 newItem.setAccelerator(new KeyCodeCombination(KeyCode.N, KeyCombination.CONTROL_DOWN));
 newItem.setOnAction((e) -> {
 statusProperty.set("Ctrl-N");
 });
 menu.getItems().add(newItem);

 MenuItem saveItem = new MenuItem();
 saveItem.setText("Save");
 saveItem.setAccelerator(new KeyCodeCombination(KeyCode.S, KeyCombination.CONTROL_DOWN));
 saveItem.setOnAction((e) -> {
 statusProperty.set("Ctrl-S");
 });
 menu.getItems().add(saveItem);

 menu.getItems().add(new SeparatorMenuItem());

 MenuItem exitItem = new MenuItem();
 exitItem.setText("Exit");
 exitItem.setAccelerator(new KeyCodeCombination(KeyCode.X, KeyCombination.CONTROL_DOWN));
 exitItem.setOnAction((e) -> {
 statusProperty.set("Ctrl-X");
 });
 menu.getItems().add(exitItem);

 primaryStage.setScene(scene);
 primaryStage.show();
}

Figure 14-12 displays an application that demonstrates keyboard shortcuts.

Figure 14-12. Keyboard sequences/shortcuts

Chapter 14 ■ JavaFX Fundamentals

399

How It Works
The solution to this recipe demonstrates how to create key combination or keyboard shortcuts using the
javafx.scene.input.KeyCodeCombination and javafx.scene.input.KeyCombination classes. Seeing that
the previous recipe was a tad boring, we decided to make things a little more interesting here. This recipe
displays Text nodes onto the scene graph when the user performs the key combinations. When displaying
the Text nodes, we applied an inner shadow effect. The following code snippet creates a Text node with an
inner shadow effect:

InnerShadow iShadow = new InnerShadow();
iShadow.setOffsetX(3.5f);
iShadow.setOffsetY(3.5f);

final Text status = new Text();
status.setEffect(iShadow);
status.setX(100);
status.setY(50);
status.setFill(Color.LIME);
status.setFont(Font.font(null, FontWeight.BOLD, 35));
status.setTranslateY(50);

To create a keyboard shortcut, you simply call a menu or button control’s setAccelerator() method. In
this recipe, the key combination are set using the MenuItem node’s setAccelerator() method. The following
code line specifies the key combinations for a Ctrl-N:

MenuItem newItem = new MenuItem();
newItem.setText("New");
newItem.setAccelerator(new KeyCodeCombination(KeyCode.N, KeyCombination.CONTROL_DOWN));
newItem.setOnAction((e) -> {
 statusProperty.set("Ctrl-N");
});

As you can see from the code, when the accelerator (key combination) is pressed in the example, the
onAction ActionEvent is triggered. It sets the statusProperty value to Ctrl-N via a lambda expression.

14-13. Creating and Working with Tables
Problem
You want to display items in a UI table control similar to Java Swing’s JTable component.

Solution
Create an application using JavaFX’s javafx.scene.control.TableView class. The TableView control
provides the equivalent functionality to Swing’s JTable component.

To exercise the TableView control you will be creating an application that will display bosses
and employees. On the left you will implement a ListView control containing bosses, and employees
(subordinates) will be displayed in a TableView control on the right.

Chapter 14 ■ JavaFX Fundamentals

400

Shown here is the source code of a simple domain (Person) class to represent a boss or an employee to
be displayed in a ListView or TableView control:

package org.java9recipes.chapter15.recipe15_14;

import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;

public class Person {

 private StringProperty aliasName;
 private StringProperty firstName;
 private StringProperty lastName;
 private ObservableList<Person> employees = FXCollections.observableArrayList();

 public final void setAliasName(String value) {
 aliasNameProperty().set(value);
 }

 public final String getAliasName() {
 return aliasNameProperty().get();
 }

 public StringProperty aliasNameProperty() {
 if (aliasName == null) {
 aliasName = new SimpleStringProperty();
 }
 return aliasName;
 }

 public final void setFirstName(String value) {
 firstNameProperty().set(value);
 }

 public final String getFirstName() {
 return firstNameProperty().get();
 }

 public StringProperty firstNameProperty() {
 if (firstName == null) {
 firstName = new SimpleStringProperty();
 }
 return firstName;
 }

 public final void setLastName(String value) {
 lastNameProperty().set(value);
 }

Chapter 14 ■ JavaFX Fundamentals

401

 public final String getLastName() {
 return lastNameProperty().get();
 }

 public StringProperty lastNameProperty() {
 if (lastName == null) {
 lastName = new SimpleStringProperty();
 }
 return lastName;
 }

 public ObservableList<Person> employeesProperty() {
 return employees;
 }

 public Person(String alias, String firstName, String lastName) {
 setAliasName(alias);
 setFirstName(firstName);
 setLastName(lastName);
 }

}

The following is the main application code. It displays a list view component on the left containing
bosses and a table view control on the right containing employees:

public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-13 Working with Tables");
 Group root = new Group();
 Scene scene = new Scene(root, 500, 250, Color.WHITE);

 // create a grid pane
 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(10);
 gridpane.setVgap(10);

 // candidates label
 Label candidatesLbl = new Label("Boss");
 GridPane.setHalignment(candidatesLbl, HPos.CENTER);
 gridpane.add(candidatesLbl, 0, 0);

 // List of leaders
 ObservableList<Person> leaders = getPeople();
 final ListView<Person> leaderListView = new ListView<>(leaders);
 leaderListView.setPrefWidth(150);
 leaderListView.setPrefHeight(150);

 // display first and last name with tooltip using alias
 leaderListView.setCellFactory((ListView<Person> param) -> {
 final Label leadLbl = new Label();

Chapter 14 ■ JavaFX Fundamentals

402

 final Tooltip tooltip = new Tooltip();
 final ListCell<Person> cell = new ListCell<Person>() {
 @Override
 public void updateItem(Person item, boolean empty) {
 super.updateItem(item, empty);
 if (item != null) {
 leadLbl.setText(item.getAliasName());
 setText(item.getFirstName() + " " + item.getLastName());
 tooltip.setText(item.getAliasName());
 setTooltip(tooltip);
 }
 }
 }; // ListCell
 return cell;
 }); // setCellFactory

 gridpane.add(leaderListView, 0, 1);

 Label emplLbl = new Label("Employees");
 gridpane.add(emplLbl, 2, 0);
 GridPane.setHalignment(emplLbl, HPos.CENTER);

 final TableView<Person> employeeTableView = new TableView<>();
 employeeTableView.setPrefWidth(300);

 final ObservableList<Person> teamMembers = FXCollections.observableArrayList();
 employeeTableView.setItems(teamMembers);

 TableColumn<Person, String> aliasNameCol = new TableColumn<>("Alias");
 aliasNameCol.setEditable(true);
 aliasNameCol.setCellValueFactory(new PropertyValueFactory("aliasName"));

 aliasNameCol.setPrefWidth(employeeTableView.getPrefWidth() / 3);

 TableColumn<Person, String> firstNameCol = new TableColumn<>("First Name");
 firstNameCol.setCellValueFactory(new PropertyValueFactory("firstName"));
 firstNameCol.setPrefWidth(employeeTableView.getPrefWidth() / 3);

 TableColumn<Person, String> lastNameCol = new TableColumn<>("Last Name");
 lastNameCol.setCellValueFactory(new PropertyValueFactory("lastName"));
 lastNameCol.setPrefWidth(employeeTableView.getPrefWidth() / 3);

 employeeTableView.getColumns().setAll(aliasNameCol, firstNameCol, lastNameCol);
 gridpane.add(employeeTableView, 2, 1);

 // selection listening
 leaderListView.getSelectionModel().selectedItemProperty().addListener(
 (ObservableValue<? extends Person> observable, Person oldValue, Person

newValue) -> {

Chapter 14 ■ JavaFX Fundamentals

403

 if (observable != null && observable.getValue() != null) {
 teamMembers.clear();
 teamMembers.addAll(observable.getValue().employeesProperty());
 }
 });

 root.getChildren().add(gridpane);

 primaryStage.setScene(scene);
 primaryStage.show();
}

The following code shows the getPeople() method contained in the WorkingWithTables main
application class. This method populates the UI TableView control shown previously:

 private ObservableList<Person> getPeople() {
 ObservableList<Person> people = FXCollections.<Person>observableArrayList();
 Person docX = new Person("Professor X", "Charles", "Xavier");
 docX.employeesProperty().add(new Person("Wolverine", "James", "Howlett"));
 docX.employeesProperty().add(new Person("Cyclops", "Scott", "Summers"));
 docX.employeesProperty().add(new Person("Storm", "Ororo", "Munroe"));

 Person magneto = new Person("Magneto", "Max", "Eisenhardt");
 magneto.employeesProperty().add(new Person("Juggernaut", "Cain", "Marko"));
 magneto.employeesProperty().add(new Person("Mystique", "Raven", "Darkhölme"));
 magneto.employeesProperty().add(new Person("Sabretooth", "Victor", "Creed"));

 Person biker = new Person("Mountain Biker", "Jonathan", "Gennick");
 biker.employeesProperty().add(new Person("JavaJuneau", "Joshua", "Juneau"));
 biker.employeesProperty().add(new Person("Freddy", "Freddy", "Guime"));
 biker.employeesProperty().add(new Person("Mark", "Mark", "Beaty"));
 biker.employeesProperty().add(new Person("John", "John", "O'Conner"));
 biker.employeesProperty().add(new Person("D-Man", "Carl", "Dea"));

 people.add(docX);
 people.add(magneto);
 people.add(biker);

 return people;
 }

Figure 14-13 displays the application that demonstrates JavaFX’s TableView control.

Chapter 14 ■ JavaFX Fundamentals

404

How It Works
Just for fun we created a simple GUI to display employees and their bosses. You notice in Figure 14-13 on
the left is a list of people (the bosses). When users select a boss, their employees will be shown to in the
TableView area to the right. You’ll also notice the tooltip when you hover over the selected boss.

Before considering the TableView control, it’s important that you understand the ListView that is
responsible for updating the TableView. In model-view fashion, an ObservableList is created that contains
all the bosses for the ListView control’s constructor. This code calls the bosses leaders. The following code
creates a ListView control:

// List of leaders
ObservableList<Person> leaders = getPeople();
final ListView<Person> leaderListView = new ListView<Person>(leaders);

Next, create a cell factory to properly display the person’s name in the ListView control. Because
each item is a Person object, the ListView does not know how to render each row in the ListView control.
You simply create a javafx.util.Callback generic type object by specifying the ListView<Person> and a
ListCell<Person> data types. If you’re using a trusty IDE such as NetBeans, it will pregenerate things such
as the implementing method call(). Next is the variable cell of type ListCell<Person> (within the call()
method), in which you create a lambda expression. The lambda expression contains an implementation
for an updateItem() method. To implement the updateItem() method, obtain the person information and
update the Label control (leadLbl). Lastly, you set the tooltip to the associated text.

You then create a TableView control to display the employee base on the selected boss from the
ListView. When creating a TableView, first create the column headers. Use the following code to create a
table column:

TableColumn<String> firstNameCol = new TableColumn<String>("First Name");
firstNameCol.setProperty("firstName");

Once you have created a column, you’ll notice the setProperty() method, which is responsible for
calling the person Bean’s property. When the list of employees is put into the TableView, it will know how to
pull the properties to be placed in each cell in the table.

Figure 14-13. Working with tables

Chapter 14 ■ JavaFX Fundamentals

405

Last is the implementation of the selection listener on the ListViewer in JavaFX, called a selection
item property (selectionItemProperty). Create and add a ChangeListener to listen to selection events.
When a user selects a boss, the TableView is cleared and populated with the boss’s employees. Actually it is
the magic of the ObservableList that notifies the TableView of changes. To populate the TableView via the
teamMembers (ObservableList) variable, use this code:

teamMembers.clear();
teamMembers.addAll(observable.getValue().employeesProperty());

14-14. Organizing the UI with Split Views
Problem
You want to split up a GUI screen by using split divider controls.

Solution
Use JavaFX’s split pane control. The javafx.scene.control.SplitPane class is a UI control that enables you
to divide a screen into frame-like regions. The split control allows users to move the divider between any two
split regions with the mouse.

Shown here is the code used to create the GUI application that utilizes the javafx.scene.control.
SplitPane class. That class divides the screen into three windowed regions. The three windowed regions are
a left column, an upper right region, and a lower right region. In addition, Text nodes are added to the three
regions.

public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-4 Organizing UI with Split Views");
 Group root = new Group();
 Scene scene = new Scene(root, 350, 250, Color.WHITE);

 // Left and right split pane
 SplitPane splitPane = new SplitPane();
 splitPane.prefWidthProperty().bind(scene.widthProperty());
 splitPane.prefHeightProperty().bind(scene.heightProperty());

 //List<Node> items = splitPane.getItems();
 VBox leftArea = new VBox(10);

 for (int i = 0; i < 5; i++) {
 HBox rowBox = new HBox(20);
 final Text leftText = new Text();
 leftText.setText("Left " + i);
 leftText.setTranslateX(20);
 leftText.setFill(Color.BLUE);
 leftText.setFont(Font.font(null, FontWeight.BOLD, 20));

 rowBox.getChildren().add(leftText);
 leftArea.getChildren().add(rowBox);
 }
 leftArea.setAlignment(Pos.CENTER);

Chapter 14 ■ JavaFX Fundamentals

406

 // Upper and lower split pane
 SplitPane splitPane2 = new SplitPane();
 splitPane2.setOrientation(Orientation.VERTICAL);
 splitPane2.prefWidthProperty().bind(scene.widthProperty());
 splitPane2.prefHeightProperty().bind(scene.heightProperty());

 HBox centerArea = new HBox();

 InnerShadow iShadow = new InnerShadow();
 iShadow.setOffsetX(3.5f);
 iShadow.setOffsetY(3.5f);

 final Text upperRight = new Text();
 upperRight.setText("Upper Right");
 upperRight.setX(100);
 upperRight.setY(50);
 upperRight.setEffect(iShadow);
 upperRight.setFill(Color.LIME);
 upperRight.setFont(Font.font(null, FontWeight.BOLD, 35));
 upperRight.setTranslateY(50);
 centerArea.getChildren().add(upperRight);

 HBox rightArea = new HBox();

 final Text lowerRight = new Text();
 lowerRight.setText("Lower Right");
 lowerRight.setX(100);
 lowerRight.setY(50);
 lowerRight.setEffect(iShadow);
 lowerRight.setFill(Color.RED);
 lowerRight.setFont(Font.font(null, FontWeight.BOLD, 35));
 lowerRight.setTranslateY(50);
 rightArea.getChildren().add(lowerRight);

 splitPane2.getItems().add(centerArea);
 splitPane2.getItems().add(rightArea);

 // add left area
 splitPane.getItems().add(leftArea);

 // add right area
 splitPane.getItems().add(splitPane2);

 // evenly position divider
 ObservableList<SplitPane.Divider> dividers = splitPane.getDividers();
 for (int i = 0; i < dividers.size(); i++) {
 dividers.get(i).setPosition((i + 1.0) / 3);
 }

Chapter 14 ■ JavaFX Fundamentals

407

 HBox hbox = new HBox();
 hbox.getChildren().add(splitPane);
 root.getChildren().add(hbox);

 primaryStage.setScene(scene);
 primaryStage.show();
}

Figure 14-14 depicts the application using split pane controls.

Figure 14-14. Split views

How It Works
If you’ve ever seen a simple Rich Site Summary (RSS) reader or the Javadocs, you’ll notice that the screen is
divided into sections with dividers. This recipe creates three areas: the left, upper right, and lower right.

You begin by creating a SplitPane that divides the left from the right area of the scene. Then you bind
its width and height properties to the scene so the areas will take up the available space as the user resizes
the stage. Next, you create a VBox layout control representing the left area. In the VBox (leftArea), you
loop to generate a series of Text nodes. Next, generate the right side of the split pane. The following code
snippet allows the split pane control (SplitPane) to divide horizontally:

SplitPane splitPane = new SplitPane();
splitPane.prefWidthProperty().bind(scene.widthProperty());
splitPane.prefHeightProperty().bind(scene.heightProperty());

Now you create the SplitPane to divide the area vertically, which will form the upper right and lower
right regions. Shown here is the code used to split a window region vertically:

// Upper and lower split pane
SplitPane splitPane2 = new SplitPane();
splitPane2.setOrientation(Orientation.VERTICAL);

Chapter 14 ■ JavaFX Fundamentals

408

At last you assemble the split panes and adjust the dividers to be positioned so that the screen real
estate is divided evenly. The following code assembles the split panes and iterates through the list of dividers
to update their positions:

splitPane.getItems().add(splitPane2);

// evenly position divider
ObservableList<SplitPane.Divider> dividers = splitPane.getDividers();
for (int i = 0; i < dividers.size(); i++) {
 dividers.get(i).setPosition((i + 1.0) / 3);
}

HBox hbox = new HBox();
hbox.getChildren().add(splitPane);
root.getChildren().add(hbox);

14-15. Adding Tabs to the UI
Problem
You want to create a GUI application with tabs.

Solution
Use JavaFX’s tab and tab pane control. The tab (javafx.scene.control.Tab) and tab pane control (javafx.
scene.control.TabPane) classes allow you to place graph nodes in individual tabs.

The following code example creates a simple application having menu options that allow users to
choose a tab orientation. The available tab orientations are top, bottom, left, and right.

public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-15 Adding Tabs to a UI");
 Group root = new Group();
 Scene scene = new Scene(root, 400, 250, Color.WHITE);

 TabPane tabPane = new TabPane();

 MenuBar menuBar = new MenuBar();

 EventHandler<ActionEvent> action = changeTabPlacement(tabPane);

 Menu menu = new Menu("Tab Side");
 MenuItem left = new MenuItem("Left");

 left.setOnAction(action);
 menu.getItems().add(left);

 MenuItem right = new MenuItem("Right");
 right.setOnAction(action);
 menu.getItems().add(right);

Chapter 14 ■ JavaFX Fundamentals

409

 MenuItem top = new MenuItem("Top");
 top.setOnAction(action);
 menu.getItems().add(top);

 MenuItem bottom = new MenuItem("Bottom");
 bottom.setOnAction(action);
 menu.getItems().add(bottom);

 menuBar.getMenus().add(menu);

 BorderPane borderPane = new BorderPane();

 // generate 10 tabs
 for (int i = 0; i < 10; i++) {
 Tab tab = new Tab();
 tab.setText("Tab" + i);
 HBox hbox = new HBox();
 hbox.getChildren().add(new Label("Tab" + i));
 hbox.setAlignment(Pos.CENTER);
 tab.setContent(hbox);
 tabPane.getTabs().add(tab);
 }

 // add tab pane
 borderPane.setCenter(tabPane);

 // bind to take available space
 borderPane.prefHeightProperty().bind(scene.heightProperty());
 borderPane.prefWidthProperty().bind(scene.widthProperty());

 // add menu bar
 borderPane.setTop(menuBar);

 // add border Pane
 root.getChildren().add(borderPane);

 primaryStage.setScene(scene);
 primaryStage.show();
}

private EventHandler<ActionEvent> changeTabPlacement(final TabPane tabPane) {
 return (ActionEvent event) -> {
 MenuItem mItem = (MenuItem) event.getSource();
 String side = mItem.getText();
 if ("left".equalsIgnoreCase(side)) {
 tabPane.setSide(Side.LEFT);
 } else if ("right".equalsIgnoreCase(side)) {
 tabPane.setSide(Side.RIGHT);
 } else if ("top".equalsIgnoreCase(side)) {
 tabPane.setSide(Side.TOP);

Chapter 14 ■ JavaFX Fundamentals

410

 } else if ("bottom".equalsIgnoreCase(side)) {
 tabPane.setSide(Side.BOTTOM);
 }
 };
}

Figure 14-15 displays the tabs application, which allows users to change the tab orientation.

Figure 14-15. TabPane

How It Works
When you use the TabPane control, you may already know the orientation in which you want your tabs to
appear. This application allows you to set the orientation by the left, right, top, and bottom menu options.

If you’re familiar with the Swing API, you may notice that the JavaFX TabPane is very similar to the
Swing JTabbedPanel. Instead of adding JPanels, you simply add javafx.scene.control.Tab instances. The
following code snippet adds Tab controls to a TabPane control:

TabPane tabPane = new TabPane();
Tab tab = new Tab();
tab.setText("Tab" + i);
tabPane.getTabs().add(tab);

When you’re changing the orientation the TabPane control, use the setSide() method. The following
code sets the orientation of the TabPane control:

tabPane.setSide(Side.BOTTOM);

In this recipe, a Menu is used to change the orientation of the TabPane control. Different orientations
were assigned to the different MenuItem nodes of the Menu, and an EventHandler identified as
changeTabPlacement is used to change the orientation when the different MenuItem is selected. The
EventHandler simply inspects the text of the MenuItem to determine which orientation should be applied to
the TabPane.

Chapter 14 ■ JavaFX Fundamentals

411

14-16. Developing a Dialog Box
Problem
You want to create an application that contains a dialog box containing some text fields for user entry.

Solution
Use JavaFX’s stage (javafx.stage.Stage) and scene (javafx.scene.Scene) APIs to create a dialog box.

The following source code listing is an application that simulates a change password dialog box. The
application contains menu options to pop up the dialog box. In addition to using the menu options, users
can set the dialog box’s modal state (modality).

public class DevelopingADialog extends Application {

 static Stage LOGIN_DIALOG;
 static int dx = 1;
 static int dy = 1;

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 private static Stage createLoginDialog(Stage parent, boolean modal) {
 if (LOGIN_DIALOG != null) {
 LOGIN_DIALOG.close();
 }
 return new MyDialog(parent, modal, "Welcome to JavaFX!");
 }

 @Override
 public void start(final Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-16 Developing a Dialog");
 Group root = new Group();
 Scene scene = new Scene(root, 433, 312, Color.WHITE);

 MenuBar menuBar = new MenuBar();
 menuBar.prefWidthProperty().bind(primaryStage.widthProperty());

 Menu menu = new Menu("Home");

 // add change password menu itme
 MenuItem newItem = new MenuItem("Change Password", null);
 newItem.setOnAction((ActionEvent event) -> {
 if (LOGIN_DIALOG == null) {
 LOGIN_DIALOG = createLoginDialog(primaryStage, true);
 }

Chapter 14 ■ JavaFX Fundamentals

412

 LOGIN_DIALOG.sizeToScene();
 LOGIN_DIALOG.show();
 });

 menu.getItems().add(newItem);

 // add separator
 menu.getItems().add(new SeparatorMenuItem());

 // add non modal menu item
 ToggleGroup modalGroup = new ToggleGroup();
 RadioMenuItem nonModalItem = new RadioMenuItem();
 nonModalItem.setToggleGroup(modalGroup);
 nonModalItem.setText("Non Modal");
 nonModalItem.setSelected(true);

 nonModalItem.setOnAction((ActionEvent event) -> {
 LOGIN_DIALOG = createLoginDialog(primaryStage, false);
 });

 menu.getItems().add(nonModalItem);

 // add modal selection
 RadioMenuItem modalItem = new RadioMenuItem();
 modalItem.setToggleGroup(modalGroup);
 modalItem.setText("Modal");
 modalItem.setSelected(true);

 modalItem.setOnAction((ActionEvent event) -> {
 LOGIN_DIALOG = createLoginDialog(primaryStage, true);
 });
 menu.getItems().add(modalItem);

 // add separator
 menu.getItems().add(new SeparatorMenuItem());

 // add exit
 MenuItem exitItem = new MenuItem("Exit", null);
 exitItem.setMnemonicParsing(true);
 exitItem.setAccelerator(new KeyCodeCombination(KeyCode.X, KeyCombination.CONTROL_

DOWN));
 exitItem.setOnAction((ActionEvent event) -> {
 Platform.exit();
 });
 menu.getItems().add(exitItem);

 // add menu
 menuBar.getMenus().add(menu);

 // menu bar to window
 root.getChildren().add(menuBar);

Chapter 14 ■ JavaFX Fundamentals

413

 primaryStage.setScene(scene);
 primaryStage.show();

 addBouncyBall(scene);
 }

 private void addBouncyBall(final Scene scene) {

 final Circle ball = new Circle(100, 100, 20);
 RadialGradient gradient1 = new RadialGradient(0,
 .1,
 100,
 100,
 20,
 false,
 CycleMethod.NO_CYCLE,
 new Stop(0, Color.RED),
 new Stop(1, Color.BLACK));

 ball.setFill(gradient1);

 final Group root = (Group) scene.getRoot();
 root.getChildren().add(ball);

 Timeline tl = new Timeline();
 tl.setCycleCount(Animation.INDEFINITE);
 KeyFrame moveBall = new KeyFrame(Duration.seconds(.0200), (ActionEvent event) -> {
 double xMin = ball.getBoundsInParent().getMinX();
 double yMin = ball.getBoundsInParent().getMinY();
 double xMax = ball.getBoundsInParent().getMaxX();
 double yMax = ball.getBoundsInParent().getMaxY();

 // Collision - boundaries
 if (xMin < 0 || xMax > scene.getWidth()) {
 dx = dx * -1;
 }
 if (yMin < 0 || yMax > scene.getHeight()) {
 dy = dy * -1;
 }

 ball.setTranslateX(ball.getTranslateX() + dx);
 ball.setTranslateY(ball.getTranslateY() + dy);
 });

 tl.getKeyFrames().add(moveBall);
 tl.play();
 }
}

Chapter 14 ■ JavaFX Fundamentals

414

class MyDialog extends Stage {

 public MyDialog(Stage owner, boolean modality, String title) {
 super();
 initOwner(owner);
 Modality m = modality ? Modality.APPLICATION_MODAL : Modality.NONE;
 initModality(m);
 setOpacity(.90);
 setTitle(title);
 Group root = new Group();
 Scene scene = new Scene(root, 250, 150, Color.WHITE);
 setScene(scene);

 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(5);
 gridpane.setVgap(5);

 Label mainLabel = new Label("Enter User Name & Password");
 gridpane.add(mainLabel, 1, 0, 2, 1);

 Label userNameLbl = new Label("User Name: ");
 gridpane.add(userNameLbl, 0, 1);

 Label passwordLbl = new Label("Password: ");
 gridpane.add(passwordLbl, 0, 2);

 // username text field
 final TextField userNameFld = new TextField("Admin");
 gridpane.add(userNameFld, 1, 1);

 // password field
 final PasswordField passwordFld = new PasswordField();
 passwordFld.setText("drowssap");
 gridpane.add(passwordFld, 1, 2);

 Button login = new Button("Change");
 login.setOnAction((ActionEvent event) -> {
 close();
 });
 gridpane.add(login, 1, 3);
 GridPane.setHalignment(login, HPos.RIGHT);
 root.getChildren().add(gridpane);
 }
}

Chapter 14 ■ JavaFX Fundamentals

415

How It Works
To create dialogs, JavaFX uses another instance of a javafx.stage.Stage class to be displayed to the user.
Similar to extending from a JDialog class in Swing, you simply extend from a Stage class. You have the
opportunity to pass in the owning window in the constructor, which then calls the initOwner() method. The
modal state of the dialog box can be set using the initModality() method. The following class extends from
the Stage class, having a constructor initializing the owning stage and modal state:

class MyDialog extends Stage {

 public MyDialog(Stage owner, boolean modality, String title) {
 super();
 initOwner(owner);
 Modality m = modality ? Modality.APPLICATION_MODAL : Modality.NONE;
initModality(m);

 ...// The rest of the class

The rest of the code creates a scene (Scene) similar to the main application’s start() method. Because
login forms are pretty boring, we decided to create an animation of a bouncing ball while the user is busy
changing the password in the dialog box. (You will see more about creating animation in future recipes.)

When the menu item for Change Password is selected, the createLoginDialog method checks to
see if there is already an instance of MyDialog instantiated. If so, it closes that instance and generates
a new one. The newly created dialog is then displayed. Similarly, the RadioMenuItem controls call the
createLoginDialog method, passing different Boolean values to indicate whether the instantiated MyDialog
instance should be set to modal or not. As mentioned earlier, the bouncy ball has no bearing on the dialog;
it’s just added for effect.

Figure 14-16. Developing a dialog box

Figure 14-16 depicts the change password dialog box application with the nonmodal option enabled.

Chapter 14 ■ JavaFX Fundamentals

416

14-17. Printing with JavaFX
Problem
You want to provide the ability to print a designated node in your application scene graph.

Solution
Utilize the JavaFX Print API to print designated nodes, and to construct sophisticated print dialogs. In this
solution, a JavaFX application for drawing is generated. The drawing application allows you to print the
canvas via a Print button. When the Print button is invoked, a dialog is opened that provides printing options
such as printer and layout selection.

The following code is used to construct the application stage, including all buttons and drawing
features. This first class does not contain any of the printing logic…you’ll see that next…and these sources
are being shown to make it easy to follow along with the example.

public class PrintingWithJavaFX extends Application {

 static Stage PRINT_DIALOG;

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(PrintingWithJavaFX.class, args);
 }

 private static Stage createPrintDialog(Stage parent, boolean modal, Canvas node) {
 if (PRINT_DIALOG != null) {
 PRINT_DIALOG.close();
 }
 // Copy canvas
 WritableImage wim = new WritableImage(300, 300);
 node.snapshot(null, wim);
 ImageView iv = new ImageView();
 iv.setImage(wim);
 return new PrintDialog(parent, modal, "Printing Menu", iv);
 }

 @Override
 public void start(Stage primaryStage) {

 StackPane root = new StackPane();
 Canvas canvas = new Canvas(300, 300);
 final GraphicsContext graphicsContext = canvas.getGraphicsContext2D();

 final Button printButton = new Button("Print");
 final BooleanProperty printingProperty = new SimpleBooleanProperty(false);
 printButton.setOnAction(actionEvent-> {
 printingProperty.set(true);

Chapter 14 ■ JavaFX Fundamentals

417

 if (PRINT_DIALOG == null) {
 PRINT_DIALOG = createPrintDialog(primaryStage, true, canvas);
 }
 PRINT_DIALOG.sizeToScene();
 PRINT_DIALOG.show();
 });
 printButton.setTranslateX(3);

 final Button resetButton = new Button("Reset");
 resetButton.setOnAction(actionEvent-> {
 graphicsContext.clearRect(1, 1,
 graphicsContext.getCanvas().getWidth()-2,
 graphicsContext.getCanvas().getHeight()-2);
 });
 resetButton.setTranslateX(10);

 // Set up the pen color chooser
 ChoiceBox colorChooser = new ChoiceBox(FXCollections.observableArrayList(
 "Black", "Blue", "Red", "Green", "Brown", "Orange")
);
 // Select the first option by default
 colorChooser.getSelectionModel().selectFirst();

 colorChooser.getSelectionModel().selectedIndexProperty().addListener(
 (ChangeListener)(ov, old, newval) -> {
 Number idx = (Number)newval;
 Color newColor;
 switch(idx.intValue()){
 case 0: newColor = Color.BLACK;
 break;
 case 1: newColor = Color.BLUE;
 break;
 case 2: newColor = Color.RED;
 break;
 case 3: newColor = Color.GREEN;
 break;
 case 4: newColor = Color.BROWN;
 break;
 case 5: newColor = Color.ORANGE;
 break;
 default: newColor = Color.BLACK;
 break;
 }
 graphicsContext.setStroke(newColor);

 });
 colorChooser.setTranslateX(5);

 ChoiceBox sizeChooser = new ChoiceBox(FXCollections.observableArrayList(
 "1", "2", "3", "4", "5")
);

Chapter 14 ■ JavaFX Fundamentals

418

 // Select the first option by default
 sizeChooser.getSelectionModel().selectFirst();

 sizeChooser.getSelectionModel().selectedIndexProperty().addListener(
 (ChangeListener)(ov, old, newval) -> {
 Number idx = (Number)newval;

 switch(idx.intValue()){
 case 0: graphicsContext.setLineWidth(1);
 break;
 case 1: graphicsContext.setLineWidth(2);
 break;
 case 2: graphicsContext.setLineWidth(3);
 break;
 case 3: graphicsContext.setLineWidth(4);
 break;
 case 4: graphicsContext.setLineWidth(5);
 break;
 default: graphicsContext.setLineWidth(1);
 break;
 }
 });
 sizeChooser.setTranslateX(5);

 canvas.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent event) -> {
 graphicsContext.beginPath();
 graphicsContext.moveTo(event.getX(), event.getY());
 graphicsContext.stroke();
 });

 canvas.addEventHandler(MouseEvent.MOUSE_DRAGGED, (MouseEvent event) -> {
 graphicsContext.lineTo(event.getX(), event.getY());
 graphicsContext.stroke();
 });

 canvas.addEventHandler(MouseEvent.MOUSE_RELEASED, (MouseEvent event) -> {
 });

 HBox buttonBox = new HBox();
 buttonBox.getChildren().addAll(printButton, colorChooser, sizeChooser, resetButton);

 initDraw(graphicsContext, canvas.getLayoutX(), canvas.getLayoutY());

 BorderPane container = new BorderPane();
 container.setTop(buttonBox);

 container.setCenter(canvas);

 root.getChildren().add(container);
 Scene scene = new Scene(root, 400, 400);
 primaryStage.setTitle("Recipe 14-17: Printing from JavaFX");

Chapter 14 ■ JavaFX Fundamentals

419

 primaryStage.setScene(scene);
 primaryStage.show();
 }

 private void initDraw(GraphicsContext gc, double x, double y){
 double canvasWidth = gc.getCanvas().getWidth();
 double canvasHeight = gc.getCanvas().getHeight();

 gc.fill();
 gc.strokeRect(
 x, //x of the upper left corner
 y, //y of the upper left corner
 canvasWidth, //width of the rectangle
 canvasHeight); //height of the rectangle

 //gc.setFill(Color.RED);
 //gc.setStroke(Color.BLUE);
 //gc.setLineWidth(1);

 }

}

Next, you will take a look at the sources to create the PrintDialog class, which contains all of the
application’s printing logic. When use press the Print button, the dialog opens. It contains a handful of nodes
that use the JavaFX Print API.

class PrintDialog extends Stage {

 public PrintDialog(Stage owner, boolean modality, String title, Node printNode) {
 super();
 initOwner(owner);
 Modality m = modality ? Modality.APPLICATION_MODAL : Modality.NONE;
 initModality(m);
 setOpacity(.90);
 setTitle(title);
 Group root = new Group();
 Scene scene = new Scene(root, 450, 150, Color.WHITE);
 setScene(scene);

 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(5);
 gridpane.setVgap(5);

 Label printerLabel = new Label("Printer: ");
 gridpane.add(printerLabel, 0, 1);

 Label layoutLabel = new Label("Layout: ");
 gridpane.add(layoutLabel, 0, 2);

Chapter 14 ■ JavaFX Fundamentals

420

 final Printer selectedPrinter = Printer.getDefaultPrinter();
 // printer pick list
 ChoiceBox printerChooser = new ChoiceBox(FXCollections.observableArrayList(
 Printer.getAllPrinters())
);
 // Select the first option by default
 printerChooser.getSelectionModel().selectFirst();

 gridpane.add(printerChooser, 1, 1);

 ChoiceBox layoutChooser = new ChoiceBox(FXCollections.observableArrayList(
 "Portait", "Landscape")
);
 layoutChooser.getSelectionModel().selectFirst();

 layoutChooser.getSelectionModel().selectedIndexProperty().addListener(
 (ChangeListener)(ov, old, newval) -> {
 Number idx = (Number)newval;
 switch(idx.intValue()){
 case 0: selectedPrinter.createPageLayout(Paper.A0,

PageOrientation.PORTRAIT, Printer.MarginType.EQUAL);
 break;
 case 1: selectedPrinter.createPageLayout(Paper.A0,

PageOrientation.LANDSCAPE, Printer.MarginType.EQUAL);
 break;

 default: selectedPrinter.createPageLayout(Paper.A0,
PageOrientation.PORTRAIT, Printer.MarginType.EQUAL);

 break;
 }
 });
 gridpane.add(layoutChooser,1,2);
 Button printButton = new Button("Print");
 printButton.setOnAction((ActionEvent event) -> {
 print(printNode, selectedPrinter);
 });
 gridpane.add(printButton, 0, 3);

 GridPane.setHalignment(printButton, HPos.RIGHT);
 root.getChildren().add(gridpane);
 }

 public void print(final Node node, Printer printer) {

 PrinterJob job = PrinterJob.createPrinterJob();
 job.setPrinter(printer);
 if (job != null) {
 boolean success = job.printPage(node);

Chapter 14 ■ JavaFX Fundamentals

421

 if (success) {
 job.endJob();
 }
 }
 }
}

Figure 14-17 shows the application. The area within the canvas (drawing area) is printed using the
dialog (see Figure 14-18).

Figure 14-17. JavaFX drawing application with print functionality

Figure 14-18. Printing the menu by utilizing the JavaFX Print API

Chapter 14 ■ JavaFX Fundamentals

422

How It Works
In releases of JavaFX prior to JavaFX 8, there was no standard API for printing portions of an application
stage. In JavaFX 8, a Print API has been added to standardize the way in which printing features are handled.
The API also makes it easy to enable applications with printing functionality using very little code. The API is
quite large, as it contains a number of classes, but it is very straightforward and easy to use.

To enable print functionality for a specified node, start by working with the javafx.print.PrinterJob
class, as it contains all of the functionality for generating a very simple printing task. To send a node to the
default system printer, simply invoke PrintJob.createPrinterJob() to return a PrinterJob object. Once
the object has been returned, check to ensure that it is not null, and then call its printPage() method,
passing the node to be printed. The excerpt of the solution that contains this functionality is shown in the
following lines of code:

public void print(final Node node, Printer printer) {

 PrinterJob job = PrinterJob.createPrinterJob()
 job.setPrinter(printer);
 if (job != null) {
 boolean success = job.printPage(node);
 if (success) {
 job.endJob();
 }
 }
 }

While use of the PrinterJob is all that is required to send a node to the printer, the API allows for much
more customization. Table 14-3 lists the different classes available in the API, along with a brief description
of what they do.

Table 14-3. JavaFX Print API

Class Name Description

JobSettings Encapsulates settings for a print job

PageLayout Encapsulates layout settings

PrintRange Used to select the range or constrain print pages

Paper Encapsulates the paper sizes for printers

PaperSource Input tray used for Paper

Printer Represents the destination for a print job

PrinterAttributes Encapsulates the attributes for a printer

PrinterJob Used to invoke a JavaFX scene graph print

PrintResolution Represents supported device resolution

In the example, a Print dialog is generated that allows users to select where to send the print job. It also
provides the controls to select the desired print layout (portrait or landscape). The Printer.getDefaultPrin
ter() method can be invoked to return the default printer for the host machine. In the example, a ChoiceBox
is used to display all of the printers that are available on the host by calling the Printer.getAllPrinters()
method. The selected printer is then set on the PrinterJob within the print method, which sends the
desired node to that printer.

Chapter 14 ■ JavaFX Fundamentals

423

The printer layout is chosen via another ChoiceBox, and the selected printer’s options are updated
when a layout selection is made. The following line of code demonstrates how to set the layout to
PageOrientation.PORTRAIT for a selected print:

selectedPrinter.createPageLayout(Paper.A0, PageOrientation.PORTRAIT, Printer.MarginType.
EQUAL);

Any Node can be sent to a PrinterJob, but it is important to send a copy of the Node that you want to
print, as the print task may modify that Node.

The Print API is large, but it is easy to understand. This recipe just scratches the surface on what is
possible with the API. We recommend that you read through the Javadoc for more details, once you are
ready to develop your own printer processes. However, this recipe should provide a basic understanding of
how to get started. See the following link for the Javadoc: http://docs.oracle.com/javase/8/javafx/api/
javafx/print/package-summary.html.

14-18. Embedding Swing Content in JavaFX
Problem
You want to embed some simple Java Swing content into a JavaFX application.

Solution
Create a JavaFX application and embed the Swing content into it using the SwingNode class. In the following
example, a simple JavaFX application is used to toggle between a Swing-based user entry form and a JavaFX-
based form. A JavaFX button within the application can be used to determine which of the forms should be
displayed when the user clicks it.

First, let’s take a look at the code for the Swing form that is embedded into the JavaFX application. The
code resides in a class entitled SwingForm.java.

import java.awt.GridLayout;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;
public class SwingForm extends JPanel {

 JLabel formTitle, first, last, buttonLbl;
 protected JTextField firstField, lastField;

 public SwingForm(){

 JPanel innerPanel = new JPanel();

 GridLayout gl = new GridLayout(3,2);
 innerPanel.setLayout(gl);

 first = new JLabel("First Name:");
 innerPanel.add(first);
 firstField = new JTextField(10);
 innerPanel.add(firstField);

http://docs.oracle.com/javase/8/javafx/api/javafx/print/package-summary.html
http://docs.oracle.com/javase/8/javafx/api/javafx/print/package-summary.html

Chapter 14 ■ JavaFX Fundamentals

424

 last = new JLabel("Last Name:");
 innerPanel.add(last);
 lastField = new JTextField(10);
 innerPanel.add(lastField);

 JButton button = new JButton("Submit");
 button.addActionListener((event) -> {
 Platform.runLater(()-> {
 UserEntryForm.fxLabel.setText("Message from Swing form...");
 });
 });
 buttonLbl = new JLabel("Click Me:");
 innerPanel.add(buttonLbl);
 innerPanel.add(button);
 add(innerPanel);

 }
}

Next, let’s look at the JavaFX code that is used to create the graphical user interface, including the toggle
button and the JavaFX form. Note that the Swing form is embedded using the SwingNode object.

public class UserEntryForm extends Application {

 private static ToggleButton fxbutton;
 private static GridPane grid;
 public static Label fxLabel;

 @Override
 public void start(Stage stage) {
 final SwingNode swingNode = new SwingNode();
 createSwingContent(swingNode);
 BorderPane pane = new BorderPane();
 Image fxButtonIcon = new Image(
 getClass().getResourceAsStream("images/duke1.gif"));
 String buttonText = "Use Swing Form";
 fxbutton = new ToggleButton(buttonText, new ImageView(fxButtonIcon));
 fxbutton.setTooltip(
 new Tooltip("This button chooses between the Swing and FX form"));
 fxbutton.setStyle("-fx-font: 22 arial; -fx-base: #cce6ff;");
 fxbutton.setAlignment(Pos.CENTER);
 fxbutton.setOnAction((event)->{
 ToggleButton toggle = (ToggleButton) event.getSource();
 if(!toggle.isSelected()){
 swingNode.setDisable(true);
 swingNode.setVisible(false);
 grid.setDisable(false);
 grid.setVisible(true);
 fxbutton.setText("Use Swing Form");
 } else {
 swingNode.setDisable(false);
 swingNode.setVisible(true);

Chapter 14 ■ JavaFX Fundamentals

425

 grid.setDisable(true);
 grid.setVisible(false);
 fxbutton.setText("Use JavaFX Form");
 }
 });
 // Disable SwingNode by default
 swingNode.setVisible(false);
 Text appTitle = new Text("Swing/FX Form Demo");
 appTitle.setFont(Font.font("Tahoma", FontWeight.NORMAL, 20));

 pane.setTop(appTitle);
 HBox formPanel = new HBox();
 formPanel.setSpacing(10);
 fxLabel = new Label("Message from JavaFX form...");

 formPanel.getChildren().addAll(fxFormContent(), swingNode);

 pane.setCenter(formPanel);
 VBox vbox = new VBox();
 vbox.getChildren().addAll(fxbutton, fxLabel);

 pane.setBottom(vbox);

 Scene scene = new Scene(pane, 700, 500);
 stage.setScene(scene);
 stage.setTitle("Swing Form Embedded In JavaFX");
 stage.show();
 }

 private void createSwingContent(final SwingNode swingNode) {
 SwingUtilities.invokeLater(() -> {
 swingNode.setContent(new SwingForm());
 });
 }

 private GridPane fxFormContent() {
 grid = new GridPane();
 grid.setAlignment(Pos.CENTER);
 grid.setHgap(10);
 grid.setVgap(10);
 grid.setPadding(new Insets(25, 25, 25, 25));

 Text scenetitle = new Text("Enter User");
 scenetitle.setFont(Font.font("Tahoma", FontWeight.NORMAL, 20));
 grid.add(scenetitle, 0, 0, 2, 1);

 Label first = new Label("First Name:");
 grid.add(first, 0, 1);

 TextField firstField = new TextField();
 grid.add(firstField, 1, 1);

Chapter 14 ■ JavaFX Fundamentals

426

 Label last = new Label("Last Name:");
 grid.add(last, 0, 2);

 TextField lastField = new TextField();
 grid.add(lastField, 1, 2);

 Button messageButton = new Button("Click");
 messageButton.setOnAction((event) ->{
 fxLabel.setText("Message from JavaFX Form...");
 });
 grid.add(messageButton, 0,3);

 return grid;

 }

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }

}

Upon invocation, the application looks like the one shown in Figure 14-19.

Figure 14-19. Using SwingNode to embed a Swing form

Chapter 14 ■ JavaFX Fundamentals

427

How It Works
There are a great number of applications that have been written using the Java Swing framework. Sometimes
it makes sense to make use of those applications from within a JavaFX application, or embed portions of
those Swing applications where it makes sense. The javafx.embed.swing.SwingNode class makes it possible
to embed a JComponent instance into a JavaFX application with little effort, by passing the JComponent to the
SwingNode setContent() method. The content is repainted automatically and all events are forwarded to
the JComponent instance without user intervention.

In the example to this recipe, a simple Java Swing form is embedded by instantiating a new SwingNode
object and passing to it an instance of the class SwingForm. The Swing content should run on the EDT, so
any Swing access should be made on the EDT. That said, a new thread is created using SwingUtilities.
invokeLater, and a lambda expression encapsulates the Runnable that is used to set the Swing content.

It is possible to interact with JavaFX content from within Swing code as well. To do so, you must run the
JavaFX code within the JavaFX application thread by making a call to the javafx.application.Platform
class and invoking the runLater() method, passing a Runnable. For instance, in the example code, the
button in the Swing form can call back to the JavaFX label to change the text using the following code. Note
that the JavaFX label is a public field, so it is accessible directly from within the Swing class.

JButton button = new JButton("Submit");
 button.addActionListener((event) -> {
 Platform.runLater(()-> {
 UserEntryForm.fxLabel.setText("Message from Swing form...");
 });
 });

 ■ Note By default, the JavaFX application thread and the swing edt are separated. the edt does not run the
GuI code for a swing application. however, in JavaFX, the platform GuI thread runs the application code. there
is an experimental setting that enables single threading mode, which allows the JavaFX platform GuI thread to
become the edt when using swing and JavaFX together. to enable the experimental setting, execute your code
with the following option: Djavafx.embed.singleThread=true

By utilizing the new features of JavaFX 8, you can generate a JavaFX application that contains embedded
Swing code that can communicate directly with the JavaFX code.

Summary
JavaFX is the successor to the Java Swing API. It enables developers to produce sophisticated and powerful
user interfaces for the next generation of applications. This chapter provided you with a basic understanding
of JavaFX, along with some of the most widely used JavaFX APIs. Over the course of the next few chapters,
you’ll learn more about JavaFX, such as how to construct 3D objects and WebViews.

429© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_15

CHAPTER 15

Graphics with JavaFX

Have you ever heard someone say, “When two worlds collide”? This expression is used when a person from
a different background or culture is put in a situation where they are at odds and must face very difficult
decisions. When we build a GUI application requiring animations, we are often in a collision course between
business and gaming worlds.

In the ever-changing world of rich client applications, you probably have noticed an increase of
animations such as pulsing buttons, transitions, moving backgrounds, and so on. When GUI applications
use animations, they can provide visual cues to the users to let them know what to do next. With JavaFX, you
can have the best of both worlds.

Figure 15-1 illustrates a simple drawing coming alive.

Figure 15-1. Graphics with JavaFX

In this chapter you will create images, animations, and Look and Feels. Fasten your seatbelts; you’ll
discover solutions to integrate cool game-like interfaces into your everyday applications.

 ■ Note Refer to Chapter 14 if you are new to JavaFX. Among other things, it will help you create an
environment in which you can be productive using JavaFX.

http://dx.doi.org/10.1007/978-1-4842-1976-8_14

ChApteR 15 ■ GRAphiCs with JAvAFX

430

15-1. Creating Images
Problem
There are photos in your file directory that you would like to quickly browse through and showcase within a
graphical user interface.

Solution
Create a simple JavaFX image viewer application. The main Java classes used in this recipe are:

•	 javafx.scene.image.Image

•	 javafx.scene.image.ImageView

•	 EventHandler<DragEvent> classes

The following source code is an implementation of an image viewer application:

package org.java9recipes.chapter15.recipe15_01;

import java.io.File;
import java.util.ArrayList;
import java.util.List;
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.input.DragEvent;
import javafx.scene.input.Dragboard;
import javafx.scene.input.MouseEvent;
import javafx.scene.input.TransferMode;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

/**
 * Recipe 15-1: Creating Images
 *
 * @author cdea
 * Update: J Juneau
 */
public class CreatingImages extends Application {

 private final List<String> imageFiles = new ArrayList<>();
 private int currentIndex = -1;
 private final String filePrefix = "file:";

ChApteR 15 ■ GRAphiCs with JAvAFX

431

 public enum ButtonMove {

 NEXT, PREV
 };

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 15-1 Creating a Image");
 Group root = new Group();
 Scene scene = new Scene(root, 551, 400, Color.BLACK);

 // image view
 final ImageView currentImageView = new ImageView();

 // maintain aspect ratio
 currentImageView.setPreserveRatio(true);

 // resize based on the scene
 currentImageView.fitWidthProperty().bind(scene.widthProperty());

 final HBox pictureRegion = new HBox();
 pictureRegion.getChildren().add(currentImageView);
 root.getChildren().add(pictureRegion);

 // Dragging over surface
 scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 if (db.hasFiles()) {
 event.acceptTransferModes(TransferMode.COPY);
 } else {
 event.consume();
 }
 });

 // Dropping over surface
 scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 boolean success = false;
 if (db.hasFiles()) {
 success = true;
 String filePath = null;
 for (File file : db.getFiles()) {
 filePath = file.getAbsolutePath();
 System.out.println(filePath);

ChApteR 15 ■ GRAphiCs with JAvAFX

432

 currentIndex += 1;
 imageFiles.add(currentIndex, filePath);
 }
 filePath = filePrefix + filePath;
 // set new image as the image to show.
 Image imageimage = new Image(filePath);
 currentImageView.setImage(imageimage);

 }
 event.setDropCompleted(success);
 event.consume();

 });

 // create slide controls
 Group buttonGroup = new Group();

 // rounded rect
 Rectangle buttonArea = new Rectangle();
 buttonArea.setArcWidth(15);
 buttonArea.setArcHeight(20);
 buttonArea.setFill(new Color(0, 0, 0, .55));
 buttonArea.setX(0);
 buttonArea.setY(0);
 buttonArea.setWidth(60);
 buttonArea.setHeight(30);
 buttonArea.setStroke(Color.rgb(255, 255, 255, .70));

 buttonGroup.getChildren().add(buttonArea);
 // left control
 Arc leftButton = new Arc();
 leftButton.setType(ArcType.ROUND);
 leftButton.setCenterX(12);
 leftButton.setCenterY(16);
 leftButton.setRadiusX(15);
 leftButton.setRadiusY(15);
 leftButton.setStartAngle(-30);
 leftButton.setLength(60);
 leftButton.setFill(new Color(1, 1, 1, .90));

 leftButton.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent me) -> {
 int indx = gotoImageIndex(ButtonMove.PREV);
 if (indx > -1) {
 String namePict = imageFiles.get(indx);
 namePict = filePrefix + namePict;
 final Image image = new Image(namePict);
 currentImageView.setImage(image);
 }
 });
 buttonGroup.getChildren().add(leftButton);

ChApteR 15 ■ GRAphiCs with JAvAFX

433

 // right control
 Arc rightButton = new Arc();
 rightButton.setType(ArcType.ROUND);
 rightButton.setCenterX(12);
 rightButton.setCenterY(16);
 rightButton.setRadiusX(15);
 rightButton.setRadiusY(15);
 rightButton.setStartAngle(180 - 30);
 rightButton.setLength(60);
 rightButton.setFill(new Color(1, 1, 1, .90));
 rightButton.setTranslateX(40);
 buttonGroup.getChildren().add(rightButton);

 rightButton.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent me) -> {
 int indx = gotoImageIndex(ButtonMove.NEXT);
 if (indx > -1) {
 String namePict = imageFiles.get(indx);
 namePict = filePrefix + namePict;
 final Image image = new Image(namePict);
 currentImageView.setImage(image);
 }
 });

 // move button group when scene is resized

 buttonGroup.translateXProperty().bind(scene.widthProperty().subtract
(buttonArea.getWidth() + 6));

 buttonGroup.translateYProperty().bind(scene.heightProperty().subtract
(buttonArea.getHeight() + 6));

 root.getChildren().add(buttonGroup);

 primaryStage.setScene(scene);
 primaryStage.show();
 }

 /**
 * Returns the next index in the list of files to go to next.
 *
 * @param direction PREV and NEXT to move backward or forward in the list of
 * pictures.
 * @return int the index to the previous or next picture to be shown.
 */
 public int gotoImageIndex(ButtonMove direction) {
 int size = imageFiles.size();
 if (size == 0) {
 currentIndex = -1;
 } else if (direction == ButtonMove.NEXT && size > 1 && currentIndex < size - 1) {
 currentIndex += 1;
 } else if (direction == ButtonMove.PREV && size > 1 && currentIndex > 0) {
 currentIndex -= 1;
 }

 return currentIndex;
 }

ChApteR 15 ■ GRAphiCs with JAvAFX

434

Figure 15-2 depicts the drag-and-drop operation that gives the user visual feedback with a thumbnail-sized
image over the surface. In the figure, I’m dragging the image onto the application window.

Figure 15-2. Drag-and-drop in progress

Figure 15-3. Drop operation completed

Figure 15-3 shows that the drop operation has succesfully loaded the image.

ChApteR 15 ■ GRAphiCs with JAvAFX

435

How It Works
This recipe is a simple application that allows you to view images having file formats such as .jpg, .png,
and .gif. Loading an image requires using the mouse to drag and drop a file onto the window area. The
application also allows you to resize the window, which automatically causes the image to scale while
maintaining its aspect ratio. After a few images are successfully loaded, you will be able to page through each
image conveniently by clicking the left and right button controls, as shown in Figure 15-3.

Before the code walk-through, let’s discuss the application’s variables. Table 15-1 describes instance
variables for this sleek image viewer application.

Table 15-1. The CreatingImages Instance Variables

Variable Data Type Example Description

imageFiles List<String> /User/pictures/fun.jpg A list of Strings, each containing an image’s
absolute file path

currentIndex int 0 A zero relative index number into the
imageFiles list; -1 means no images to view

NEXT enum - User clicks the right arrow button

PREV enum - User clicks the left arrow button

When you’re dragging an image into the application, the imageFiles variable will cache the absolute
file path as a String instead of as the actual image file in order to save memory space. If a user drags the same
image file into the display area, the list will contain duplicate Strings representing the image file. As an image
is being displayed, the currentIndex variable contains the index into the imageFiles list. The imageFiles
list points to the String representing the current image file. As the user clicks the buttons to display the
previous and next image, the currentIndex will decrement or increment, respectively. Next, let’s walk
through the code detailing the steps for loading and displaying an image. Later, you will learn the steps for
paging through each image with the next and previous buttons.

Begin by instantiating an instance of the javafx.scene.image.ImageView class. The ImageView class
is a graph node (Node) used to display an already loaded javafx.scene.image.Image object. Using the
ImageView node will enable you to create special effects on the image to be displayed without manipulating
the physical image. To avoid performance degradation when rendering many effects, you can use numerous
ImageView objects that reference a single Image object. Many types of effects include blurring, fading, and
transforming an image.

One of the requirements is preserving the displayed image’s aspect ratio as the user resizes the
window. Here, you will simply call the setPreserveRatio() method with a value of true to preserve the
image’s aspect ratio. Remember that because the user resizes the window, you want to bind the width of
the ImageView to the Scene’s width to allow the image to be scaled. After setting up the ImageView, you will
want to pass it to an HBox instance (pictureRegion) to be put into the scene. The following code creates the
ImageView instance, preserves the aspect ratio, and scales the image:

// image view
final ImageView currentImageView = new ImageView();

// maintain aspect ratio
currentImageView.setPreserveRatio(true);

// resize based on the scene
currentImageView.fitWidthProperty().bind(scene.widthProperty());

ChApteR 15 ■ GRAphiCs with JAvAFX

436

Next, let’s cover JavaFX’s native drag-and-drop support, which provides many options for users, such as
dragging visual objects from an application to be dropped into another application. In this scenario, the user
will be dragging an image file from the host windowing operating system to the image viewer application.
In this scenario, EventHandler objects must be generated to listen to DragEvents. To fulfill this requirement,
you’ll set up a scene’s drag-over and drag-dropped event handler methods.

To set up the drag-over attribute, call the scene’s setOnDragOver() method with the appropriate
generic EventHandler<DragEvent> type. In the example, a lambda expression is used to implement the
event handler. Implement the handle() method via the lambda expression to listen for the drag-over event
(DragEvent). In the event handler, notice the event (DragEvent) object’s invocation to the getDragboard()
method. The call to getDragboard() will return the drag source (Dragboard), better known as the clipboard.
Once the Dragboard object is obtained, it is possible to determine and validate what is being dragged over
the surface. In this scenario, you need to determine whether the Dragboard object contains any files. If it
does, you call the event object’s acceptTransferModes() by passing in the constant TransferMode.COPY to
provide visual feedback to the user of the application (refer to Figure 15-2). Otherwise, it should consume
the event by calling the event.consume() method. The following code demonstrates setting up a scene’s
OnDragOver attribute:

 // Dragging over surface
scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 if (db.hasFiles()) {
 event.acceptTransferModes(TransferMode.COPY);
 } else {
 event.consume();
 }
});

Once the drag-over event handler attribute is set, you create a drag-dropped event handler attribute
so it can finalize the operation. Listening to a drag-dropped event is similar to listening to a drag-over event
in which the handle() method will be implemented via a lambda expression. Once again, you obtain the
Dragboard object from the event to determine whether the clipboard contains any files. If it does, the list
of files is iterated and the file names are added to the imageFiles list. This code demonstrates setting up a
scene’s OnDragDropped attribute:

// Dropping over surface
scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 boolean success = false;
 if (db.hasFiles()) {
 success = true;
 String filePath = null;
 for (File file : db.getFiles()) {
 filePath = file.getAbsolutePath();
 System.out.println(filePath);
 currentIndex += 1;
 imageFiles.add(currentIndex, filePath);
 }

ChApteR 15 ■ GRAphiCs with JAvAFX

437

 filePath = filePrefix + filePath;
 // set new image as the image to show.
 Image imageimage = new Image(filePath);
 currentImageView.setImage(imageimage);

 }
 event.setDropCompleted(success);
 event.consume();

});

As the last file is determined, the current image is displayed. The following code demonstrates loading
an image to be displayed:

// set new image as the image to show.
Image imageimage = new Image(filePath);
currentImageView.setImage(imageimage);

For the last requirements relating to the image viewer application, simple controls are generated that
allow the users to view the next or previous image. I emphasize “simple” controls because JavaFX contains
two other methods for creating custom controls. One way, Cascading Style Sheets (CSS) styling, is discussed
later, in Recipe 15-5. To explore the other alternative, refer to the Javadoc on the Skin and Skinnable APIs.

The simple buttons in this example are created using Java FX’s javafx.scene.shape.Arc to build the left
and right arrows on top of a small transparent rounded rectangle called javafx.scene.shape.Rectangle.
Next, an EventHandler that listens to mouse-pressed events is added via a lambda expression, and it will load
and display the appropriate image based on the enums ButtonMove.PREV and ButtonMove.NEXT.

When instantiating a generic class with a type variable between the < and > symbols, the same type
variable will be defined in the handle()’s signature. When implementing the event handler logic, you
determine which button was pressed and then return the index into the imageFiles list of the next image
to display. When loading an image using the Image class, it is possible to load images from the file system or
from a URL. The following code instantiates an EventHandler<MouseEvent> lambda expression to display the
previous image in the imageFiles list:

leftButton.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent me) -> {
 int indx = gotoImageIndex(ButtonMove.PREV);
 if (indx > -1) {
 String namePict = imageFiles.get(indx);
 namePict = filePrefix + namePict;
 final Image image = new Image(namePict);
 currentImageView.setImage(image);
 }
});

The right button’s (rightButton) event handler is identical. The only thing different is that it must
determine whether the previous or next button was pressed via the ButtonMove enum. This information is
passed to the gotoImageIndex() method to determine whether an image is available in that direction.

To finish the image viewer application, you bind the rectangular button’s control to the scene’s
width and height, which repositions the control as the user resizes the window. Here, you bind the
translateXProperty() to the scene’s width property by subtracting the buttonArea’s width (Fluent API).
In the example, you also bind the translateYProperty() based on the scene’s height property. Once your
buttons control is bound, your user will experience user interface goodness. The following code uses the
Fluent API to bind the button control’s properties to the scene’s properties:

ChApteR 15 ■ GRAphiCs with JAvAFX

438

// move button group when scene is resized
buttonGroup.translateXProperty().bind(scene.widthProperty().subtract(buttonArea.getWidth()
 + 6));

 buttonGroup.translateYProperty().bind(scene.heightProperty().subtract
(buttonArea.getHeight()
 + 6));
root.getChildren().add(buttonGroup);

15-2. Generating an Animation
Problem
You want to generate an animation. For example, you want to create a news ticker and photo viewer
application with the following requirements:

•	 It will have a news ticker control that scrolls to the left.

•	 It will fade out the current picture and fade in the next picture as the user clicks the
button controls.

•	 It will fade in and out button controls when the cursor moves in and out of the scene
area, respectively.

•	 The news ticker will pause when the mouse hovers over the text, and will start again
once the mouse moves away from the text.

Solution
Create animated effects by accessing JavaFX’s animation APIs (javafx.animation.*).To create the
aforementioned news ticker, you need the following classes:

•	 javafx.animation.TranslateTransition

•	 javafx.util.Duration

•	 javafx.event.EventHandler<ActionEvent>

•	 javafx.scene.shape.Rectangle

To fade out the current picture and fade in next picture, you need the following classes:

•	 javafx.animation.SequentialTransition

•	 javafx.animation.FadeTransition

•	 javafx.event.EventHandler<ActionEvent>

•	 javafx.scene.image.Image

•	 javafx.scene.image.ImageView

•	 javafx.util.Duration

ChApteR 15 ■ GRAphiCs with JAvAFX

439

To fade in and out button controls when the cursor moves into and out of the scene area, respectively,
you need the following classes:

•	 javafx.animation.FadeTransition

•	 javafx.util.Duration

Shown here is the code used to create a news ticker control:

// create ticker area
final Group tickerArea = new Group();
final Rectangle tickerRect = new Rectangle();
tickerRect.setArcWidth(15);
tickerRect.setArcHeight(20);
tickerRect.setFill(new Color(0, 0, 0, .55));
tickerRect.setX(0);
tickerRect.setY(0);
tickerRect.setWidth(scene.getWidth() - 6);
tickerRect.setHeight(30);
tickerRect.setStroke(Color.rgb(255, 255, 255, .70));

Rectangle clipRegion = new Rectangle();
clipRegion.setArcWidth(15);
clipRegion.setArcHeight(20);
clipRegion.setX(0);
clipRegion.setY(0);
clipRegion.setWidth(scene.getWidth() - 6);
clipRegion.setHeight(30);
clipRegion.setStroke(Color.rgb(255, 255, 255, .70));

tickerArea.setClip(clipRegion);

// Resize the ticker area when the window is resized
tickerArea.setTranslateX(6);
tickerArea.translateYProperty().bind(scene.heightProperty().subtract(
 tickerRect.getHeight() + 6));
tickerRect.widthProperty().bind(scene.widthProperty().subtract(
 buttonRect.getWidth() + 16));
clipRegion.widthProperty().bind(scene.widthProperty().subtract(
 buttonRect.getWidth() + 16));
tickerArea.getChildren().add(tickerRect);

root.getChildren().add(tickerArea);

// add news text
Text news = new Text();
news.setText("JavaFX 8 News Ticker... | New Features: Swing Node, Event Dispatch Thread and
JavaFX Application Thread Merge, " +
 " New Look and Feel - Modena, Rich Text Support, Printing, Tree Table Control,

Much More!");
news.setTranslateY(18);
news.setFill(Color.WHITE);
tickerArea.getChildren().add(news);

ChApteR 15 ■ GRAphiCs with JAvAFX

440

final TranslateTransition ticker = new TranslateTransition();
ticker.setNode(news);
int newsLength = news.getText().length();

// Calculated guess based upon length of text
ticker.setDuration(Duration.millis((newsLength * 4/300) * 15000));
ticker.setFromX(scene.widthProperty().doubleValue());
ticker.setToX(-scene.widthProperty().doubleValue() - (newsLength * 5));
ticker.setFromY(19);
ticker.setInterpolator(Interpolator.LINEAR);
ticker.setCycleCount(1);

// when ticker has finished reset and replay ticker animation
ticker.setOnFinished((ActionEvent ae) -> {
 ticker.stop();
 ticker.setFromX(scene.getWidth());
 ticker.setDuration(new Duration((newsLength * 4/300) * 15000));
 ticker.playFromStart();
});

// stop ticker if hovered over
tickerArea.setOnMouseEntered((MouseEvent me) -> {
 ticker.pause();
});

// restart ticker if mouse leaves the ticker
tickerArea.setOnMouseExited((MouseEvent me) -> {
 ticker.play();
});

ticker.play();

The following is the code used to fade out the current picture and fade in the next picture:

 // previous button
 Arc prevButton = // create arc ...

 prevButton.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent me) -> {
 int indx = gotoImageIndex(PREV);
 if (indx > -1) {
 String namePict = imagesFiles.get(indx);
 final Image nextImage = new Image(namePict);
 SequentialTransition seqTransition = transitionByFading

(nextImage, currentImageView);
 seqTransition.play();
 }
 });

 buttonGroup.getChildren().add(prevButton);

ChApteR 15 ■ GRAphiCs with JAvAFX

441

 // next button
 Arc nextButton = //... create arc

 buttonGroup.getChildren().add(nextButton);

 nextButton.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent me) -> {
 int indx = gotoImageIndex(NEXT);
 if (indx > -1) {
 String namePict = imagesFiles.get(indx);
 final Image nextImage = new Image(namePict);
 SequentialTransition seqTransition = transitionByFading

(nextImage, currentImageView);
 seqTransition.play();

 }
 });

//... the rest of the start(Stage primaryStage) method

public int gotoImageIndex(int direction) {
 int size = imagesFiles.size();
 if (size == 0) {
 currentIndexImageFile = -1;
 } else if (direction == NEXT && size > 1 && currentIndexImageFile < size - 1) {
 currentIndexImageFile += 1;
 } else if (direction == PREV && size > 1 && currentIndexImageFile > 0) {
 currentIndexImageFile -= 1;
 }

 return currentIndexImageFile;
}

public SequentialTransition transitionByFading(final Image nextImage, final ImageView
imageView) {
 FadeTransition fadeOut = new FadeTransition(Duration.millis(500), imageView);
 fadeOut.setFromValue(1.0);
 fadeOut.setToValue(0.0);
 fadeOut.setOnFinished((ActionEvent ae) -> {
 imageView.setImage(nextImage);
 });
 FadeTransition fadeIn = new FadeTransition(Duration.millis(500), imageView);
 fadeIn.setFromValue(0.0);
 fadeIn.setToValue(1.0);
 SequentialTransition seqTransition = new SequentialTransition();
 seqTransition.getChildren().addAll(fadeOut, fadeIn);
 return seqTransition;
}

ChApteR 15 ■ GRAphiCs with JAvAFX

442

The following code is used to fade in and out the button controls when the cursor moves into and out of
the scene area, respectively:

// Fade in button controls
scene.setOnMouseEntered((MouseEvent me) -> {
 FadeTransition fadeButtons = new FadeTransition(Duration.millis(500), buttonGroup);
 fadeButtons.setFromValue(0.0);
 fadeButtons.setToValue(1.0);
 fadeButtons.play();
});

// Fade out button controls
scene.setOnMouseExited((MouseEvent me) -> {
 FadeTransition fadeButtons = new FadeTransition(Duration.millis(500), buttonGroup);
 fadeButtons.setFromValue(1);
 fadeButtons.setToValue(0);
 fadeButtons.play();
});

Figure 15-4 shows the photo viewer application with a ticker control in the bottom region of the screen.

Figure 15-4. Photo viewer with a news ticker

How It Works
This recipe takes the photo viewer application from Recipe 15-1 and adds a news ticker and some
nice photo-changing animation to it. The main animation effects focus on translating and fading.
First, a news ticker control is created, and it scrolls Text nodes to the left by using a translation transition
(javafx.animation.TranslateTransition). Next, another fading effect is applied so that slow transitions
will occur when the user clicks the previous and next buttons to transition to the next image. To perform this
effect, a compound transition (javafx.animation.SequentialTransition) is used, consisting of multiple

ChApteR 15 ■ GRAphiCs with JAvAFX

443

animations. Finally, to create the effect of the button controls fading in and out based on where the mouse is
located, you use a fade transition (javafx.animation.FadeTransition).

Before I begin to discuss the steps to fulfill the requirements, I want to mention the basics of JavaFX
animation. The JavaFX animation API allows you to assemble timed events that can interpolate over a
node’s attribute values to produce animated effects. Each timed event is called a keyframe (KeyFrame), and
it is responsible for interpolating over a node’s property over a period of time (javafx.util.Duration).
Knowing that a keyframe’s job is to operate on a node’s property value, you have to create an instance
of a KeyValue class that will reference the desired node property. The idea of interpolation is simply the
distributing of values between a start and end value. An example is to move a rectangle by its current x
position (zero) to 100 pixels in 1,000 milliseconds; in other words, move the rectangle 100 pixels to the right
during one second. Shown here is a keyframe and key value to interpolate a rectangle’s x property for 1,000
milliseconds:

final Rectangle rectangle = new Rectangle(0, 0, 50, 50);
KeyValue keyValue = new KeyValue(rectangle.xProperty(), 100);
KeyFrame keyFrame = new KeyFrame(Duration.millis(1000), keyValue);

When creating many keyframes that are assembled consecutively, you need to create a timeline.
Because timeline is a subclass of javafx.animation.Animation, there are standard attributes, such as its
cycle count and autoreverse, that you can set. The cycle count is the number of times you want the timeline
to play the animation. If you want the cycle count to play the animation indefinitely, use the value
Timeline.INDEFINITE. The autoreverse is the capability for the animation to play the timeline backward. By
default, the cycle count is set to 1, and the autoreverse is set to false. When adding keyframes you simply
add them using the getKeyFrames().add() method on the TimeLine object. The following code snippet
demonstrates a timeline playing indefinitely with autoreverse set to true:

Timeline timeline = new Timeline();
timeline.setCycleCount(Timeline.INDEFINITE);
timeline.setAutoReverse(true);
timeline.getKeyFrames().add(keyFrame);
timeline.play();

With this knowledge of timelines you can animate any graph node in JavaFX. Although you can create
timelines in a low-level way, it can become very cumbersome. You are probably wondering whether there
are easier ways to express common animations. Good news! JavaFX has transitions (Transition), which are
convenience classes that perform common animated effects. Some of the common animation effects you
can create with transitions include:

•	 javafx.animation.FadeTransition

•	 javafx.animation.PathTransition

•	 javafx.animation.ScaleTransition

•	 javafx.animation.TranslateTransition

To see more transitions, see javafx.animation in the Javadoc. Because Transition objects are also
subclasses of the javafx.animation.Animation class, you can set the cycle count and autoreverse attributes.
This recipe focuses on two transition effects: translate transition (TranslateTransition) and fade transition
(FadeTransition).

The first requirement in the problem statement is to create a news ticker. In a news ticker control,
Text nodes scroll from right to left inside a rectangular region. When the text scrolls to the left edge of the
rectangular region you will want the text to be clipped to create a view port that only shows pixels inside of
the rectangle. To do this, you first create a Group to hold all the components that comprise a ticker control.

ChApteR 15 ■ GRAphiCs with JAvAFX

444

Next you create a white rounded rectangle filled with 55% opacity. After creating the visual region, you create
a similar rectangle that represents the clipped region using the setClip(someRectangle) method on the
Group object. Figure 15-5 shows a rounded rectangular area that serves as the clipped region.

Figure 15-5. Setting the clipped region on the Group object

Once the ticker control is created, you bind the translate Y based on the scene’s height property minus
the ticker control’s height. You also bind the ticker control’s width property based on the width of scene
minus the button control’s width. By binding these properties, the ticker control can change its size and
position whenever a user resizes the application window. This makes the ticker control appear to float at
the bottom of the window. The following code binds the ticker control’s translate Y, width, and clip region’s
width property:

tickerArea.translateYProperty().bind(scene.heightProperty().subtract(tickerRect.getHeight() + 6));
tickerRect.widthProperty().bind(scene.widthProperty().subtract(buttonRect.getWidth() + 16));
clipRegion.widthProperty().bind(scene.widthProperty().subtract(buttonRect.getWidth() + 16));
tickerArea.getChildren().add(tickerRect);

Now that the ticker control is complete, you’ll create some news to feed into it. In the example, a Text
node with text that represents a news feed is used. To add a newly created Text node to the ticker control,
you call its getChildren().add() method. The following code adds a Text node to the ticker control:

final Group tickerArea = new Group();
final Rectangle tickerRect = //...
Text news = new Text();
news.setText("JavaFX 8 News Ticker... | New Features: Swing Node, Event Dispatch Thread and
JavaFX Application Thread Merge, " +
 "New Look and Feel - Modena, Rich Text Support, Printing, Tree Table Control, Much
More!");
news.setTranslateY(18);
news.setFill(Color.WHITE);
tickerArea.getChildren().add(news);

Next you have to scroll the Text node from right to left using JavaFX’s TranslateTransition API. The
first step is to set the target node to perform the TranslateTransition. Then you set the duration, which
is the total amount of time the TranslateTransition will spend animating. A TranslateTransition
simplifies the creation of an animation by exposing convenience methods that operate on a Node’s
translate X and Y properties. The convenience methods are prepended with from and to. For instance,
in the scenario in which you use translate X on a Text node, there are the methods fromX() and toX().
The fromX() is the starting value and the toX() is the end value that will be interpolated. In the example,
you base these calculations on the length of the text in the Text node. Therefore, if you are reading from
a remote source, such as an RSS feed, the text length difference should not break the ticker. Next, you set
the TranslateTransition to a linear transition (Interpolator.LINEAR) to interpolate evenly between the
start and end values. To see more interpolator types or to see how to create custom interpolators, see the
Javadoc on javafx.animation.Interpolators. Finally, in the example the cycle count is set to 1, which

ChApteR 15 ■ GRAphiCs with JAvAFX

445

will animate the ticker once based on the specified duration. The following code snippet details creating a
TranslateTransition that animates a Text node from right to left:

final TranslateTransition ticker = new TranslateTransition();
ticker.setNode(news);
int newsLength = news.getText().length();
ticker.setDuration(Duration.millis((newsLength * 4/300) * 15000));
ticker.setFromX(scene.widthProperty().doubleValue());
ticker.setToX(-scene.widthProperty().doubleValue() - (newsLength * 5));
ticker.setFromY(19);
ticker.setInterpolator(Interpolator.LINEAR);
ticker.setCycleCount(1);

When the ticker’s news has scrolled completely off of the ticker area to the far left of the scene, you will
want to stop and replay the news feed from the start (the far right). To do this, you create an instance of an
EventHandler<ActionEvent> object via a lambda expression, to be set on the ticker (TranslateTransition)
object using the setOnFinished() method. Here is how you replay the TranslateTransition animation:

// when window resizes width wise the ticker will know how far to move
// when ticker has finished reset and replay ticker animation
ticker.setOnFinished((ActionEvent ae) -> {
 ticker.stop();
 ticker.setFromX(scene.getWidth());
 ticker.setDuration(new Duration((newsLength * 4/300) * 15000));
 ticker.playFromStart();
});

Once the animation is defined, you simply invoke the play() method to get it started. The following
code snippet shows how to play a TranslateTransition:

ticker.play();

To pause and start the ticker when the mouse hovers over and leaves the text, you need to implement
similar event handlers:

// stop ticker if hovered over
tickerArea.setOnMouseEntered((MouseEvent me) -> {
 ticker.pause();
});

// restart ticker if mouse leaves the ticker
tickerArea.setOnMouseExited((MouseEvent me) -> {
 ticker.play();
});

Now that you have a better understanding of animated transitions, what about a transition that can
trigger any number of transitions? JavaFX has two transitions that provide this behavior. The two transitions
can invoke individual dependent transitions sequentially or in parallel. In this recipe, you’ll use a sequential
transition (SequentialTransition) to contain two FadeTransitions in order to fade out the current image
displayed and to fade in the next image. When creating the previous and next button’s event handlers,
you first determine the next image to be displayed by calling the gotoImageIndex() method. Once the

ChApteR 15 ■ GRAphiCs with JAvAFX

446

next image to be displayed is determined, you call the transitionByFading() method, which returns an
instance of a SequentialTransition. When calling the transitionByFading() method, you’ll notice that
two FadeTransitions are created. The first transition will change the opacity level from 1.0 to 0.0 to fade
out the current image, and the second transition will interpolate the opacity level from 0.0 to 1.0, fading in
the next image, which then becomes the current image. At last the two FadeTransitions are added to the
SequentialTransition and returned to the caller. The following code creates two FadeTransitions and
adds them to a SequentialTransition:

FadeTransition fadeOut = new FadeTransition(Duration.millis(500), imageView);
fadeOut.setFromValue(1.0);
fadeOut.setToValue(0.0);
fadeOut.setOnFinished((ActionEvent ae) -> {
 imageView.setImage(nextImage);
});
FadeTransition fadeIn = new FadeTransition(Duration.millis(500), imageView);
fadeIn.setFromValue(0.0);
fadeIn.setToValue(1.0);
SequentialTransition seqTransition = new SequentialTransition();
seqTransition.getChildren().addAll(fadeOut, fadeIn);
return seqTransition;

For the last requirements relating to fading in and out, use the button controls. Use the FadeTransition
to create a ghostly animated effect. For starters, you create an EventHandler (more specifically, an
EventHandler<MouseEvent> via a lambda expression). It is easy to add mouse events to the scene; all you
have to do is override the handle() method where the inbound parameter is a MouseEvent type (the same as
its formal type parameter). Inside of the lambda, you create an instance of a FadeTransition object by using
the constructor that takes the duration and node as parameters. Next, you’ll notice the setFromValue() and
setToValue() methods that are called to interpolate values between 1.0 and 0.0 for the opacity level, causing
the fade in effect to occur. The following code adds an EventHandler to create the fade in effect when the
mouse cursor is positioned inside of the scene:

// Fade in button controls
scene.setOnMouseEntered((MouseEvent me) -> {
 FadeTransition fadeButtons = new FadeTransition(Duration.millis(500), buttonGroup);
 fadeButtons.setFromValue(0.0);
 fadeButtons.setToValue(1.0);
 fadeButtons.play();
});

Last but not least, the fade out EventHandler is basically the same as the fade in, except that the opacity
From and To values are from 1.0 to 0.0, which make the buttons vanish mysteriously when the mouse pointer
moves off the scene area.

15-3. Animating Shapes Along a Path
Problem
You want to create a way to animate shapes along a path.

ChApteR 15 ■ GRAphiCs with JAvAFX

447

Solution
Create an application that allows users to draw the path for a shape to follow. The main Java classes used in
this recipe are these:

•	 javafx.animation.PathTransition

•	 javafx.scene.input.MouseEvent

•	 javafx.event.EventHandler

•	 javafx.geometry.Point2D

•	 javafx.scene.shape.LineTo

•	 javafx.scene.shape.MoveTo

•	 javafx.scene.shape.Path

The following code demonstrates drawing a path for a shape to follow:

package org.java9recipes.chapter15.recipe15_03;

import javafx.animation.PathTransition;
import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.geometry.Point2D;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.Color;
import javafx.scene.paint.CycleMethod;
import javafx.scene.paint.RadialGradient;
import javafx.scene.paint.Stop;
import javafx.scene.shape.Circle;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.stage.Stage;
import javafx.util.Duration;

/**
 * Recipe 15-3: Working with the Scene Graph
 * @author cdea
 * Update: J Juneau
 */
public class WorkingWithTheSceneGraph extends Application {

 Path onePath = new Path();
 Point2D anchorPt;
 /**
 * @param args the command line arguments
 */

ChApteR 15 ■ GRAphiCs with JAvAFX

448

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 15-3 Working with the Scene Graph");

 final Group root = new Group();
 // add path
 root.getChildren().add(onePath);

 final Scene scene = new Scene(root, 300, 250);
 scene.setFill(Color.WHITE);

 RadialGradient gradient1 = new RadialGradient(0,
 .1,
 100,
 100,
 20,
 false,
 CycleMethod.NO_CYCLE,
 new Stop(0, Color.RED),
 new Stop(1, Color.BLACK));

 // create a sphere
 final Circle sphere = new Circle();
 sphere.setCenterX(100);
 sphere.setCenterY(100);
 sphere.setRadius(20);
 sphere.setFill(gradient1);

 // add sphere
 root.getChildren().add(sphere);

 // animate sphere by following the path.
 final PathTransition pathTransition = new PathTransition();
 pathTransition.setDuration(Duration.millis(4000));
 pathTransition.setCycleCount(1);
 pathTransition.setNode(sphere);
 pathTransition.setPath(onePath);
 pathTransition.setOrientation(PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);

 // once finished clear path
 pathTransition.onFinishedProperty().set((EventHandler<ActionEvent>)
 (ActionEvent event) -> {
 onePath.getElements().clear();
 });

ChApteR 15 ■ GRAphiCs with JAvAFX

449

 // starting initial path
 scene.onMousePressedProperty().set((EventHandler<MouseEvent>)
 (MouseEvent event) -> {
 onePath.getElements().clear();
 // start point in path
 anchorPt = new Point2D(event.getX(), event.getY());
 onePath.setStrokeWidth(3);
 onePath.setStroke(Color.BLACK);
 onePath.getElements().add(new MoveTo(anchorPt.getX(), anchorPt.getY()));
 });

 // dragging creates lineTos added to the path
 scene.onMouseDraggedProperty().set((EventHandler<MouseEvent>)
 (MouseEvent event) -> {
 onePath.getElements().add(new LineTo(event.getX(), event.getY()));
 });

 // end the path when mouse released event
 scene.onMouseReleasedProperty().set((EventHandler<MouseEvent>)
 (MouseEvent event) -> {
 onePath.setStrokeWidth(0);
 if (onePath.getElements().size() > 1) {
 pathTransition.stop();
 pathTransition.playFromStart();
 }
 });

 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

Figure 15-6 shows the drawn path the circle will follow. When the user performs a mouse release, the
drawn path will disappear and the red ball will follow the path drawn earlier.

ChApteR 15 ■ GRAphiCs with JAvAFX

450

How It Works
In this recipe, you create a simple application enabling objects to follow a drawn path on the scene
graph. To make things simple, the example uses one shape (Circle) that performs a path transition
(javafx.animation.PathTransition). The application user will draw a path on the scene surface by
pressing the mouse button like a drawing program. Once satisfied with the path drawn, the user releases the
mouse press, which triggers the red ball to follow the path, similar to objects moving through pipes inside a
building.

You first create two instance variables to maintain the coordinates that make up the path. To hold the
path being drawn, create an instance of a javafx.scene.shape.Path object. The path instance should be
added to the scene graph before the start of the application. Shown here is the process of adding the instance
variable onePath to the scene graph:

// add path
root.getChildren().add(onePath);

Next, you create an instance variable anchorPt (javafx.geometry.Point2D) that will hold the path’s
starting point. Later, you will see how these variables are updated based on mouse events. Shown here are
the instance variables that maintain the currently drawn path:

Path onePath = new Path();
Point2D anchorPt;

Figure 15-6. Path transition

ChApteR 15 ■ GRAphiCs with JAvAFX

451

First, let’s create a shape that will be animated. In this scenario, you’ll create a cool-looking red ball.
To create a spherical-looking ball, create a gradient color RadialGradient that’s used to paint or fill a circle
shape. (Refer to Recipe 15-6 for how to fill shapes with a gradient paint.) Once you have created the red
spherical ball, you need to create the PathTransition object to perform the path-following animation. After
instantiating a PathTransition() object, simply set the duration to four seconds and the cycle count to one.
The cycle count is the number of times the animation cycle will occur. Next, you set the node to reference
the red ball (sphere). Then, you set the path() method to the instance variable onePath, which contains all
the coordinates and lines that make up a drawn path. After setting the path for the sphere to animate, you
should specify how the shape will follow the path, such as perpendicular to a tangent point on the path. The
following code creates an instance of a path transition:

// animate sphere by following the path.
final PathTransition pathTransition = new PathTransition();
pathTransition.setDuration(Duration.millis(4000));
pathTransition.setCycleCount(1);
pathTransition.setNode(sphere);
pathTransition.setPath(onePath);
pathTransition.setOrientation(PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);

After you’ve created the path transition, you’ll want it to clean up when the animation is completed. To
reset or clean up the path variable when the animation is finished, create and add an event handler to listen
to the onFinished property event on the path transition object.

The following code snippet adds an event handler to clear the current path information:

// once finished clear path
pathTransition.onFinishedProperty().set((EventHandler<ActionEvent>)
(ActionEvent event) -> {
 onePath.getElements().clear();
});

With the shape and transition all set up, the application needs to respond to mouse events that
will update the instance variable mentioned earlier. To do so, listen to mouse events occurring on
the Scene object. Here, you will once again rely on creating event handlers to be set on the scene’s
onMouseXXXProperty methods, where the XXX denotes the actual mouse event name such as pressed,
dragged, and released.

When a user draws a path, he or she will perform a mouse-press event to begin the start of the path. To
listen to a mouse-press event, create an event handler with a formal type parameter of MouseEvent. In the
example, a lambda expression is used. As a mouse-press event occurs, clear the instance variable onePath
of any prior drawn path information. Next, simply set the stroke width and color of the path so the users can
see the path being drawn. Finally, add the starting point to the path using an instance of a MoveTo object.
Shown here is the handler code that responds when the user performs a mouse press:

 // starting initial path
 scene.onMousePressedProperty().set((EventHandler<MouseEvent>)
(MouseEvent event) -> {
 onePath.getElements().clear();
 // start point in path
 anchorPt = new Point2D(event.getX(), event.getY());
 onePath.setStrokeWidth(3);
 onePath.setStroke(Color.BLACK);
 onePath.getElements().add(new MoveTo(anchorPt.getX(), anchorPt.getY()));
 });

ChApteR 15 ■ GRAphiCs with JAvAFX

452

Once the mouse-press event handler is in place, you create another handler for mouse-drag events.
Again, look for the scene’s onMouseXXXProperty() methods that correspond to the proper mouse event
that you care about. In this case, the onMouseDraggedProperty() will be set. Inside the lambda expression,
obtain mouse coordinates that will be converted to LineTo objects to be added to the path (Path).
These LineTo objects are instances of path element (javafx.scene.shape.PathElement), as discussed in
Recipe 15-5. The following code is an event handler responsible for mouse-drag events:

// dragging creates lineTos added to the path
scene.onMouseDraggedProperty().set((EventHandler<MouseEvent>)
(MouseEvent event) -> {
 onePath.getElements().add(new LineTo(event.getX(), event.getY()));
});

Finally, create an event handler to listen to a mouse-release event. When a user releases the mouse, the
path’s stroke is set to zero to appear as if it has removed. Then you reset the path transition by stopping it and
playing it from the start. The following code is an event handler responsible for a mouse-release event:

// end the path when mouse released event
 scene.onMouseReleasedProperty().set((EventHandler<MouseEvent>)
 (MouseEvent event) -> {
 onePath.setStrokeWidth(0);
 if (onePath.getElements().size() > 1) {
 pathTransition.stop();
 pathTransition.playFromStart();
 }
});

15-4. Manipulating Layout via Grids
Problem
You want to create a nice-looking form-based user interface using a grid type layout.

Solution
Create a simple using the JavaFX’s javafx.scene.layout.GridPane. In this solution, a form designer
application will be created to demonstrate the GridPane. The application will have the following features:

•	 It will toggle the display of the grid layout’s grid lines for debugging.

•	 It will adjust the top padding of the GridPane.

•	 It will adjust the left padding of the GridPane.

•	 It will adjust the horizontal gap between cells in the GridPane.

•	 It will adjust the vertical gap between cells in the GridPane.

•	 It will align controls within cells horizontally.

•	 It will align controls within cells vertically.

ChApteR 15 ■ GRAphiCs with JAvAFX

453

The following code is the main launching point for the form designer application:

public class ManipulatingLayoutViaGrids extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 15-4 Manipulating Layout via Grids ");
 Group root = new Group();
 Scene scene = new Scene(root, 640, 480, Color.WHITE);

 // Left and right split pane
 SplitPane splitPane = new SplitPane();
 splitPane.prefWidthProperty().bind(scene.widthProperty());
 splitPane.prefHeightProperty().bind(scene.heightProperty());

 // Form on the right
 GridPane rightGridPane = new MyForm();

 GridPane leftGridPane = new GridPaneControlPanel(rightGridPane);

 VBox leftArea = new VBox(10);
 leftArea.getChildren().add(leftGridPane);
 HBox hbox = new HBox();
 hbox.getChildren().add(splitPane);
 root.getChildren().add(hbox);
 splitPane.getItems().addAll(leftArea, rightGridPane);

 primaryStage.setScene(scene);

 primaryStage.show();
 }

}

When the form designer application is launched, the target form to be manipulated is shown on the
right side of the window’s split pane. The following code is a simple grid-like form class that extends from
GridPane. It will be manipulated by the form designer application:

/**
 * MyForm is a form to be manipulated by the user.
 * @author cdea
 */
public class MyForm extends GridPane{
 public MyForm() {

ChApteR 15 ■ GRAphiCs with JAvAFX

454

 setPadding(new Insets(5));
 setHgap(5);
 setVgap(5);

 Label fNameLbl = new Label("First Name");
 TextField fNameFld = new TextField();
 Label lNameLbl = new Label("Last Name");
 TextField lNameFld = new TextField();
 Label ageLbl = new Label("Age");
 TextField ageFld = new TextField();

 Button saveButt = new Button("Save");

 // First name label
 GridPane.setHalignment(fNameLbl, HPos.RIGHT);
 add(fNameLbl, 0, 0);

 // Last name label
 GridPane.setHalignment(lNameLbl, HPos.RIGHT);
 add(lNameLbl, 0, 1);

 // Age label
 GridPane.setHalignment(ageLbl, HPos.RIGHT);
 add(ageLbl, 0, 2);

 // First name field
 GridPane.setHalignment(fNameFld, HPos.LEFT);
 add(fNameFld, 1, 0);

 // Last name field
 GridPane.setHalignment(lNameFld, HPos.LEFT);
 add(lNameFld, 1, 1);

 // Age Field
 GridPane.setHalignment(ageFld, HPos.RIGHT);
 add(ageFld, 1, 2);

 // Save button
 GridPane.setHalignment(saveButt, HPos.RIGHT);
 add(saveButt, 1, 3);

 }
}

When the application is launched, the grid property control panel is shown on the left side of the
window’s split pane. The property control panel allows the users to manipulate the target form’s grid pane
attributes dynamically. The following code represents the grid property control panel that will manipulate a
target grid pane’s properties:

/**
 * GridPaneControlPanel represents the left area of the split pane
 * allowing the user to manipulate the GridPane on the right.

ChApteR 15 ■ GRAphiCs with JAvAFX

455

 *
 * Manipulating Layout Via Grids
 * @author cdea
 */
public class GridPaneControlPanel extends GridPane{
 public GridPaneControlPanel(final GridPane targetGridPane) {
 super();

 setPadding(new Insets(5));
 setHgap(5);
 setVgap(5);

 // Setting Grid lines
 Label gridLinesLbl = new Label("Grid Lines");
 final ToggleButton gridLinesToggle = new ToggleButton("Off");
 gridLinesToggle.selectedProperty().addListener((ObservableValue<? extends Boolean> ov,

Boolean oldValue, Boolean newVal) -> {
 targetGridPane.setGridLinesVisible(newVal);
 gridLinesToggle.setText(newVal ? "On" : "Off");
 });

 // toggle grid lines label
 GridPane.setHalignment(gridLinesLbl, HPos.RIGHT);
 add(gridLinesLbl, 0, 0);

 // toggle grid lines
 GridPane.setHalignment(gridLinesToggle, HPos.LEFT);
 add(gridLinesToggle, 1, 0);

 // Setting padding [top]
 Label gridPaddingLbl = new Label("Top Padding");

 final Slider gridPaddingSlider = new Slider();
 gridPaddingSlider.setMin(0);
 gridPaddingSlider.setMax(100);
 gridPaddingSlider.setValue(5);
 gridPaddingSlider.setShowTickLabels(true);
 gridPaddingSlider.setShowTickMarks(true);
 gridPaddingSlider.setMinorTickCount(1);
 gridPaddingSlider.setBlockIncrement(5);

 gridPaddingSlider.valueProperty().addListener((ObservableValue<? extends Number> ov,
Number oldVal, Number newVal) -> {

 double top1 = targetGridPane.getInsets().getTop();
 double right1 = targetGridPane.getInsets().getRight();
 double bottom1 = targetGridPane.getInsets().getBottom();
 double left1 = targetGridPane.getInsets().getLeft();
 Insets newInsets = new Insets((double) newVal, right1, bottom1, left1);
 targetGridPane.setPadding(newInsets);
 });

ChApteR 15 ■ GRAphiCs with JAvAFX

456

 // padding adjustment label
 GridPane.setHalignment(gridPaddingLbl, HPos.RIGHT);
 add(gridPaddingLbl, 0, 1);

 // padding adjustment slider
 GridPane.setHalignment(gridPaddingSlider, HPos.LEFT);
 add(gridPaddingSlider, 1, 1);

 // Setting padding [top]
 Label gridPaddingLeftLbl = new Label("Left Padding");

 final Slider gridPaddingLeftSlider = new Slider();
 gridPaddingLeftSlider.setMin(0);
 gridPaddingLeftSlider.setMax(100);
 gridPaddingLeftSlider.setValue(5);
 gridPaddingLeftSlider.setShowTickLabels(true);
 gridPaddingLeftSlider.setShowTickMarks(true);
 gridPaddingLeftSlider.setMinorTickCount(1);
 gridPaddingLeftSlider.setBlockIncrement(5);

 gridPaddingLeftSlider.valueProperty().addListener((ObservableValue<? extends Number>
ov, Number oldVal, Number newVal) -> {

 double top1 = targetGridPane.getInsets().getTop();
 double right1 = targetGridPane.getInsets().getRight();
 double bottom1 = targetGridPane.getInsets().getBottom();
 double left1 = targetGridPane.getInsets().getLeft();
 Insets newInsets = new Insets(top1, right1, bottom1, (double) newVal);
 targetGridPane.setPadding(newInsets);
 });

 // padding adjustment label
 GridPane.setHalignment(gridPaddingLeftLbl, HPos.RIGHT);
 add(gridPaddingLeftLbl, 0, 2);

 // padding adjustment slider
 GridPane.setHalignment(gridPaddingLeftSlider, HPos.LEFT);
 add(gridPaddingLeftSlider, 1, 2);

 // Horizontal gap
 Label gridHGapLbl = new Label("Horizontal Gap");

 final Slider gridHGapSlider = new Slider();
 gridHGapSlider.setMin(0);
 gridHGapSlider.setMax(100);
 gridHGapSlider.setValue(5);
 gridHGapSlider.setShowTickLabels(true);
 gridHGapSlider.setShowTickMarks(true);
 gridHGapSlider.setMinorTickCount(1);
 gridHGapSlider.setBlockIncrement(5);

ChApteR 15 ■ GRAphiCs with JAvAFX

457

 gridHGapSlider.valueProperty().addListener((ObservableValue<? extends Number> ov,
Number oldVal, Number newVal) -> {

 targetGridPane.setHgap((double) newVal);
 });

 // hgap label
 GridPane.setHalignment(gridHGapLbl, HPos.RIGHT);
 add(gridHGapLbl, 0, 3);

 // hgap slider
 GridPane.setHalignment(gridHGapSlider, HPos.LEFT);
 add(gridHGapSlider, 1, 3);

 // Vertical gap
 Label gridVGapLbl = new Label("Vertical Gap");

 final Slider gridVGapSlider = new Slider();
 gridVGapSlider.setMin(0);
 gridVGapSlider.setMax(100);
 gridVGapSlider.setValue(5);
 gridVGapSlider.setShowTickLabels(true);
 gridVGapSlider.setShowTickMarks(true);
 gridVGapSlider.setMinorTickCount(1);
 gridVGapSlider.setBlockIncrement(5);

 gridVGapSlider.valueProperty().addListener((ObservableValue<? extends Number> ov,
Number oldVal, Number newVal) -> {

 targetGridPane.setVgap((double) newVal);
 });

 // vgap label
 GridPane.setHalignment(gridVGapLbl, HPos.RIGHT);
 add(gridVGapLbl, 0, 4);

 // vgap slider
 GridPane.setHalignment(gridVGapSlider, HPos.LEFT);
 add(gridVGapSlider, 1, 4);

 // Cell Column
 Label cellCol = new Label("Cell Column");
 final TextField cellColFld = new TextField("0");

 // cell Column label
 GridPane.setHalignment(cellCol, HPos.RIGHT);
 add(cellCol, 0, 5);

 // cell Column field
 GridPane.setHalignment(cellColFld, HPos.LEFT);
 add(cellColFld, 1, 5);

ChApteR 15 ■ GRAphiCs with JAvAFX

458

 // Cell Row
 Label cellRowLbl = new Label("Cell Row");
 final TextField cellRowFld = new TextField("0");

 // cell Row label
 GridPane.setHalignment(cellRowLbl, HPos.RIGHT);
 add(cellRowLbl, 0, 6);

 // cell Row field
 GridPane.setHalignment(cellRowFld, HPos.LEFT);
 add(cellRowFld, 1, 6);

 // Horizontal Alignment
 Label hAlignLbl = new Label("Horiz. Align");
 final ChoiceBox hAlignFld = new ChoiceBox(FXCollections.observableArrayList(
 "CENTER", "LEFT", "RIGHT")
);
 hAlignFld.getSelectionModel().select("LEFT");

 // cell Row label
 GridPane.setHalignment(hAlignLbl, HPos.RIGHT);
 add(hAlignLbl, 0, 7);

 // cell Row field
 GridPane.setHalignment(hAlignFld, HPos.LEFT);
 add(hAlignFld, 1, 7);

 // Vertical Alignment
 Label vAlignLbl = new Label("Vert. Align");
 final ChoiceBox vAlignFld = new ChoiceBox(FXCollections.observableArrayList(
 "BASELINE", "BOTTOM", "CENTER", "TOP")
);
 vAlignFld.getSelectionModel().select("TOP");
 // cell Row label
 GridPane.setHalignment(vAlignLbl, HPos.RIGHT);
 add(vAlignLbl, 0, 8);

 // cell Row field
 GridPane.setHalignment(vAlignFld, HPos.LEFT);
 add(vAlignFld, 1, 8);

 // Vertical Alignment
 Label cellApplyLbl = new Label("Cell Constraint");
 final Button cellApplyButton = new Button("Apply");
 cellApplyButton.setOnAction((ActionEvent event) -> {
 for (Node child:targetGridPane.getChildren()) {

 int targetColIndx = 0;
 int targetRowIndx = 0;
 try {
 targetColIndx = Integer.parseInt(cellColFld.getText());

ChApteR 15 ■ GRAphiCs with JAvAFX

459

 targetRowIndx = Integer.parseInt(cellRowFld.getText());
 } catch (NumberFormatException e) {

 }
 System.out.println("child = " + child.getClass().getSimpleName());
 int col = GridPane.getColumnIndex(child);
 int row = GridPane.getRowIndex(child);
 if (col == targetColIndx && row == targetRowIndx) {
 GridPane.setHalignment(child, HPos.valueOf(hAlignFld.getSelectionModel().

getSelectedItem().toString()));
 GridPane.setValignment(child, VPos.valueOf(vAlignFld.getSelectionModel().

getSelectedItem().toString()));
 }
 }
 });

 // cell Row label
 GridPane.setHalignment(cellApplyLbl, HPos.RIGHT);
 add(cellApplyLbl, 0, 9);

 // cell Row field
 GridPane.setHalignment(cellApplyButton, HPos.LEFT);
 add(cellApplyButton, 1, 9);

 }
}

Figure 15-7 shows an application with the GridPane property control panel on the left and the target
form on the right.

ChApteR 15 ■ GRAphiCs with JAvAFX

460

How It Works
The form designer application allows the users to adjust properties using the GridPane property control
panel to the left. While adjusting properties from the left control panel, the target form on the right side will
be manipulated dynamically. When creating such an application, you will be binding controls to various
properties onto the target form (GridPane). This designer application is basically broken into three classes:
ManipulatingLayoutViaGrids, MyForm, and GridPaneControlPanel. The ManipulatingLayoutViaGrids
class is the main application to be launched. MyForm is the target form that will be manipulated, and
GridPaneControlPanel is the grid property control panel that has UI controls bound to the targets form’s
grid pane properties.

Begin by creating the main launching point for the application (ManipulatingLayoutViaGrids).
This class is responsible for creating a split pane (SplitPane) that sets up the target form to the right and
instantiates a GridPaneControlPanel to be displayed to the left. To instantiate a GridPaneControlPanel you
must pass in the target form you want to manipulate into the constructor. I will discuss this further,
but suffice it to say that the GridPaneControlPanel constructor will wire its controls to properties on the
target form.

Next, you create a dummy form named MyForm. This is your target form that the property control panel
will manipulate. Here, notice that the MyForm extends GridPane. In the MyForm’s constructor, you create and
add controls to be put into the form (GridPane).

Figure 15-7. Manipulating layout via grids

ChApteR 15 ■ GRAphiCs with JAvAFX

461

To learn more about the GridPane, refer to Recipe 15-8. The following code is a target form to be
manipulated by the form designer application:

/**
 * MyForm is a form to be manipulated by the user.
 * @author cdea
 */
public class MyForm extends GridPane{
 public MyForm() {

 setPadding(new Insets(5));
 setHgap(5);
 setVgap(5);

 Label fNameLbl = new Label("First Name");
 TextField fNameFld = new TextField();
 Label lNameLbl = new Label("Last Name");
 TextField lNameFld = new TextField();
 Label ageLbl = new Label("Age");
 TextField ageFld = new TextField();

 Button saveButt = new Button("Save");

 // First name label
 GridPane.setHalignment(fNameLbl, HPos.RIGHT);
 add(fNameLbl, 0, 0);
 //... The rest of the form code

To manipulate the target form you need to create a grid property control panel
(GridPaneControlPanel). This class is responsible for binding the target form’s grid pane properties to UI
controls that allow users to adjust values using the keyboard and mouse. As you learned in Chapter 14, in
Recipe 14-9, you can bind values with JavaFX properties. But instead of binding values directly, you can also
be notified when a property has changed.

Another feature that you can add to properties is the change listener. JavaFX javafx.beans.value.
ChangeListeners are similar to Java swing’s property change support (java.beans.PropertyChangeListener).
Similarly, when a bean’s property value has changed, you will want to be notified. Change listeners are designed
to intercept the change by making the old and new value available to the developer. The example starts this
process by creating a JavaFXchange listener for the toggle button to turn gridlines on or off. When a user
interacts with the toggle button, the change listener will simply update the target’s grid pane’s gridlinesVisible
property. Because a toggle button’s (ToggleButton) selected property is a Boolean value, you instantiate a
ChangeListener class with its formal type parameter as Boolean. You’ll also notice the lambda expression
change listener implementation, where its inbound parameters will match the generic formal type parameter
specified when instantiating a ChangeListener<Boolean>. When a property change event occurs, the change
listener will invoke setGridLinesVisible() on the target grid pane with the new value and update the toggle
button’s text. The following code snippet shows a ChangeListener<Boolean> added to a ToggleButton:

gridLinesToggle.selectedProperty().addListener(
 (ObservableValue<? extends Boolean> ov,
 Boolean oldValue, Boolean newVal) -> {
 targetGridPane.setGridLinesVisible(newVal);
 gridLinesToggle.setText(newVal ? "On" : "Off");
});

http://dx.doi.org/10.1007/978-1-4842-1976-8_14

ChApteR 15 ■ GRAphiCs with JAvAFX

462

Next, you apply a change listener to a slider control that allows the user to adjust the target grid pane’s
top padding. To create a change listener for a slider, you instantiate a ChangeListener<Number>. Again, you’ll
use a lambda expression with a signature the same as its formal type parameter Number. When a change
occurs, the slider’s value is used to create an Insets object, which becomes the new padding for the target
grid pane. Shown here is the change listener for the top padding and slider control:

gridPaddingSlider.valueProperty().addListener((
 ObservableValue<? extends Number> ov, Number oldVal, Number newVal) -> {
 double top1 = targetGridPane.getInsets().getTop();
 double right1 = targetGridPane.getInsets().getRight();
 double bottom1 = targetGridPane.getInsets().getBottom();
 double left1 = targetGridPane.getInsets().getLeft();
 Insets newInsets = new Insets((double) newVal, right1, bottom1, left1);
 targetGridPane.setPadding(newInsets);
});

Because the implementation of the other slider controls that handle left padding, horizontal gap,
and vertical gap are virtually identical to the top padding slider control mentioned previously, you can
fast-forward to cell constraints controls.

The last bits of grid control panel properties that you want to manipulate are the target grid pane’s cell
constraints. For brevity, the example only allows the user to set a component’s alignment inside of a cell
of a GridPane. To see more properties to modify, refer to the Javadoc on javafx.scene.layout.GridPane.
Figure 15-8 depicts the cell constraint settings for individual cells. An example is to left-justify the label Age
on the target grid pane. Because cells are zero-relative, you will enter 0 in the Cell Column field and 2 into
the Cell Row field. Next, you select the drop-down box Horiz. Align to LEFT. Once you’re satisfied with the
settings, click Apply. Figure 15-9 shows the Age label control left-aligned horizontally. To implement this
change, create a lambda expression that implements EventHandler<ActionEvent> for the apply button’s
onAction attribute. Inside of the lambda expression, you iterate the node children owned by the target grid
pane to determine whether it is the specified cell. Once the specified cell and child node is determined, the
alignment is applied. The following code shows an EventHandler that applies a cell constraint when the
apply button is pressed:

cellApplyButton.setOnAction((ActionEvent event) -> {
 for (Node child:targetGridPane.getChildren()) {

 int targetColIndx = 0;
 int targetRowIndx = 0;
 try {
 targetColIndx = Integer.parseInt(cellColFld.getText());
 targetRowIndx = Integer.parseInt(cellRowFld.getText());
 } catch (NumberFormatException e) {

 }
 System.out.println("child = " + child.getClass().getSimpleName());
 int col = GridPane.getColumnIndex(child);
 int row = GridPane.getRowIndex(child);
 if (col == targetColIndx && row == targetRowIndx) {
 GridPane.setHalignment(child, HPos.valueOf(hAlignFld.getSelectionModel().

getSelectedItem().toString()));

ChApteR 15 ■ GRAphiCs with JAvAFX

463

Figure 15-9 depicts the target grid pane with the grid lines turned on and the Age label left-aligned
horizontally at cell column 0 and cell row 2.

15-5. Enhancing the Interface with CSS
Problem
You want to change the Look and Feel of the GUI interface.

Solution
Apply JavaFX’s CSS styling to graph nodes. The following code demonstrates using CSS styling on graph
nodes. The code creates five themes: Modena, Caspian, Control Style 1, Control Style 2, and Sky. Each theme
is defined using CSS and affects the Look and Feel of a dialog box. Following the code, you can see the two
different renditions of the dialog box:

package org.java9recipes.chapter15.recipe15_05;

import javafx.application.Application;
import javafx.collections.FXCollections;

 GridPane.setValignment(child, VPos.valueOf(vAlignFld.getSelectionModel().
getSelectedItem().toString()));

 }
 }
 });

Figure 15-8 depicts the cell constraint grid control panel section that left-aligns the control at cell
column 0 and cell row 2.

Figure 15-9. Target grid pane

Figure 15-8. Cell constraints

ChApteR 15 ■ GRAphiCs with JAvAFX

464

import javafx.collections.ObservableList;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Menu;
import javafx.scene.control.MenuBar;
import javafx.scene.control.MenuItem;
import javafx.scene.control.SplitPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

/**
 * Recipe 15-5: Enhancing with CSS
 * @author cdea
 * Update: J Juneau
 */
public class EnhancingWithCss extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {

 primaryStage.setTitle("Chapter 15-5 Enhancing with CSS ");
 Group root = new Group();
 final Scene scene = new Scene(root, 640, 480, Color.BLACK);
 MenuBar menuBar = new MenuBar();
 Menu menu = new Menu("Look and Feel");

 // Modena Look and Feel
 MenuItem modenaLnf = new MenuItem("Modena");
 modenaLnf.setOnAction(enableCss(STYLESHEET_MODENA,scene));
 menu.getItems().add(modenaLnf);

 // Old default, Caspian Look and Feel
 MenuItem caspianLnf = new MenuItem("Caspian");
 caspianLnf.setOnAction(enableCss(STYLESHEET_CASPIAN, scene));

 menu.getItems().add(caspianLnf);

ChApteR 15 ■ GRAphiCs with JAvAFX

465

 menu.getItems().add(createMenuItem("Control Style 1", "controlStyle1.css", scene));
 menu.getItems().add(createMenuItem("Control Style 2", "controlStyle2.css", scene));
 menu.getItems().add(createMenuItem("Sky", "sky.css", scene));

 menuBar.getMenus().add(menu);
 // stretch menu
 menuBar.prefWidthProperty().bind(primaryStage.widthProperty());

 // Left and right split pane
 SplitPane splitPane = new SplitPane();
 splitPane.prefWidthProperty().bind(scene.widthProperty());
 splitPane.prefHeightProperty().bind(scene.heightProperty());

 // Form on the right
 GridPane rightGridPane = new MyForm();

 GridPane leftGridPane = new GridPaneControlPanel(rightGridPane);
 VBox leftArea = new VBox(10);
 leftArea.getChildren().add(leftGridPane);

 HBox hbox = new HBox();
 hbox.getChildren().add(splitPane);
 VBox vbox = new VBox();
 vbox.getChildren().add(menuBar);
 vbox.getChildren().add(hbox);
 root.getChildren().add(vbox);
 splitPane.getItems().addAll(leftArea, rightGridPane);

 primaryStage.setScene(scene);

 primaryStage.show();

 }

 protected final MenuItem createMenuItem(String label, String css, final Scene scene){
 MenuItem menuItem = new MenuItem(label);
 ObservableList<String> cssStyle = loadSkin(css);
 menuItem.setOnAction(skinForm(cssStyle, scene));
 return menuItem;
 }

 protected final ObservableList<String> loadSkin(String cssFileName) {
 ObservableList<String> cssStyle = FXCollections.observableArrayList();
 cssStyle.addAll(getClass().getResource(cssFileName).toExternalForm());
 return cssStyle;
 }

ChApteR 15 ■ GRAphiCs with JAvAFX

466

 protected final EventHandler<ActionEvent> skinForm
 (final ObservableList<String> cssStyle, final Scene scene) {
 return (ActionEvent event) -> {
 scene.getStylesheets().clear();
 scene.getStylesheets().addAll(cssStyle);
 };
 }

 protected final EventHandler<ActionEvent> enableCss(String style, final Scene scene){
 return (ActionEvent event) -> {

 scene.getStylesheets().clear();
 setUserAgentStylesheet(style);
 };
 }

}

Figure 15-10 depicts the standard JavaFX Modena Look and Feel (theme).

Figure 15-10. Modena Look and Feel

ChApteR 15 ■ GRAphiCs with JAvAFX

467

Figure 15-11 depicts the Control Style 1 Look and Feel (theme).

Figure 15-11. Control Style 1 Look and Feel

How It Works
JavaFX has the capability to apply CSS styles to the scene graph and its nodes just like browsers apply CSS
styles to elements in an HTML document object model (DOM). In this recipe, you will be skinning a user
interface using JavaFX styling attributes. You basically use the recipe’s UI to apply the various Look and
Feels. To showcase the available skins, a menu selection allows the users to choose the Look and Feel to
apply to the UI.

Before discussing the CSS styling properties, take a look at how you load the CSS styles to be applied
to a JavaFX application. The application in the example uses menu items to allow the user to choose the
preferred Look and Feel. When creating a menu item, you’ll create a convenience method to build a menu
item that loads the specified CSS and an EventHandler action, via a lambda expression, to apply the
chosen CSS style to the current UI. The Modena Look and Feel is loaded by default. Different Look and
Feels can be applied by passing their respective style sheets to the setUserAgentStylesheet() method.
For instance, to load the Caspian Look and Feel, you simply pass the constant STYLESHEET_CASPIAN to the
setUserAgentStylesheet() method. The following code shows how to create these menu items:

MenuItem caspianLnf = new MenuItem("Caspian");
caspianLnf.setOnAction(skinForm(caspian, scene));

ChApteR 15 ■ GRAphiCs with JAvAFX

468

Shown next is the code for adding a menu item containing the Sky Look and Feel CSS style, which is
ready to be applied to the current UI.

// Modena Look and Feel
MenuItem modenaLnf = new MenuItem("Modena");
modenaLnf.setOnAction(enableCss(STYLESHEET_MODENA,scene));
menu.getItems().add(modenaLnf);

The setOnAction() method calls a method named enableCss(), which takes a style sheet and the
current scene. The code for enableCss() is as follows:

protected final EventHandler<ActionEvent> enableCss(String style, final Scene scene){
 return (ActionEvent event) -> {

 scene.getStylesheets().clear();
 setUserAgentStylesheet(style);
 };
 }

For each of the other CSS styles, which are not part of the default JavaFX distribution, the menu item
creation is a bit different. This is an example of the code that utilizes the convenience method that was
previously discussed.

menu.getItems().add(createMenuItem("Control Style 1", "controlStyle1.css", scene));

Calling the createMenuItem() method will also call another convenience method to load the CSS file
called loadSkin(). It will also set the menu item’s onAction attribute with an appropriate EventHandler
by calling the skinForm() method. To recap, the loadSkin is responsible for loading the CSS file, and the
skinForm() method’s job is to apply the skin onto the UI application. Shown here are the convenience
methods to build menu items that apply CSS styles to a UI application:

 protected final MenuItem createMenuItem(String label, String css, final Scene scene){
 MenuItem menuItem = new MenuItem(label);
 ObservableList<String> cssStyle = loadSkin(css);
 menuItem.setOnAction(skinForm(cssStyle, scene));
 return menuItem;
 }

 protected final ObservableList<String> loadSkin(String cssFileName) {
 ObservableList<String> cssStyle = FXCollections.observableArrayList();
 cssStyle.addAll(getClass().getResource(cssFileName).toExternalForm());
 return cssStyle;
 }

 protected final EventHandler<ActionEvent> skinForm
 (final ObservableList<String> cssStyle, final Scene scene) {
 return (ActionEvent event) -> {
 scene.getStylesheets().clear();
 scene.getStylesheets().addAll(cssStyle);
 };
}

ChApteR 15 ■ GRAphiCs with JAvAFX

469

 ■ Note to run this recipe, make sure the Css files are located in the compiled classes area. Resource files
can be loaded easily when placed in the same directory (package) as the compiled class file that is loading
them. the Css files are colocated with this code example file. in NetBeans, you can select Clean and Build
project or you can copy files to your classes’ build area.

Now that you know how to load CSS styles, let’s talk about the JavaFX CSS selectors and styling
properties. Like CSS style sheets, there are selectors or style classes associated with Node objects in the
scene graph. All scene graph nodes have a method called setStyle() that applies styling properties that
could potentially change the node’s background color, border, stroke, and so on. Because all graph nodes
extend from the Node class, derived classes will be able to inherit the same styling properties. Knowing the
inheritance hierarchy of node types is very important because the type of node will determine the types of
styling properties you can affect. For instance, a Rectangle extends from Shape, which extends from Node.
The inheritance does not include -fx-border-style, which is the part of node that extends from Region.
Based on the type of node, there are limitations to what styles you are able to set. To see a full list of all the
style selectors, refer to the JavaFX CSS Reference Guide:

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

All JavaFX styling properties are prefixed with -fx-. For example, all Nodes have the styling
property to affect opacity, and that attribute is -fx-opacity. Following are selectors that style the JavaFX
javafx.scene.control.Labels and javafx.scene.control.Buttons:

.label {
 -fx-text-fill: rgba(17, 145, 213);
 -fx-border-color: rgba(255, 255, 255, .80);
 -fx-border-radius: 8;
 -fx-padding: 6 6 6 6;
 -fx-font: bold italic 20pt "LucidaBrightDemiBold";

}
.button{
 -fx-text-fill: rgba(17, 145, 213);
 -fx-border-color: rgba(255, 255, 255, .80);
 -fx-border-radius: 8;
 -fx-padding: 6 6 6 6;
 -fx-font: bold italic 20pt "LucidaBrightDemiBold";

}

Summary
In this chapter, we covered a variety of topics that deal with JavaFX graphics. We learned how to create
images by developing an application that allows one to drag and drop images onto a stage, thereby creating
a copy of the image. We then covered recipes; which enable animation of text and also of shapes. Lastly, we
learned how to utilize grids and/or CSS to lay out application components.

471© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_16

CHAPTER 16

Media with JavaFX

JavaFX provides a media-rich API capable of playing audio and video. The Media API allows developers to
incorporate audio and video into their Rich Client Applications. One of the main benefits of the Media API
is its cross-platform abilities when distributing media content via the web. With a range of devices (tablets,
music players, TVs, and so on) that need to play multimedia content, the need for a cross-platform API is
essential.

Imagine a not-so-distant future where your TV or wall is capable of interacting with you in ways that
you’ve never dreamed possible. For instance, while viewing a movie you could select items or clothing used
in the movie to be immediately purchased, all from the comfort of your home. With this future in mind,
developers seek to enhance the interactive qualities of their media-based applications.

In this chapter you will learn how to play audio and video in an interactive way. Find your seats for Act
III of JavaFX as audio and video take center stage―as depicted in Figure 16-1.

16-1. Playing Audio
Problem
You want to code an application that will allow you to listen to music and become entertained with a
graphical visualization.

Figure 16-1. Audio and video

Chapter 16 ■ Media with JavaFX

472

Solution
Create an MP3 player by utilizing the following classes:

•	 javafx.scene.media.Media

•	 javafx.scene.media.MediaPlayer

•	 javafx.scene.media.AudioSpectrumListener

The following source code is an implementation of a simple MP3 player:

package org.java9recipes.chapter16.recipe16_01;

import java.io.File;
import java.util.Random;
import javafx.application.Application;
import javafx.application.Platform;
import javafx.geometry.Point2D;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.input.DragEvent;
import javafx.scene.input.Dragboard;
import javafx.scene.input.MouseEvent;
import javafx.scene.input.TransferMode;
import javafx.scene.media.AudioSpectrumListener;
import javafx.scene.media.Media;
import javafx.scene.media.MediaPlayer;
import javafx.scene.paint.Color;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Line;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Text;
import javafx.stage.Stage;
import javafx.stage.StageStyle;

public class PlayingAudio extends Application {

 private MediaPlayer mediaPlayer;
 private Point2D anchorPt;
 private Point2D previousLocation;

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 16 ■ Media with JavaFX

473

 @Override
 public void start(final Stage primaryStage) {
 primaryStage.setTitle("Chapter 16-1 Playing Audio");
 primaryStage.centerOnScreen();
 primaryStage.initStyle(StageStyle.TRANSPARENT);

 Group root = new Group();
 Scene scene = new Scene(root, 551, 270, Color.rgb(0, 0, 0, 0));

 // application area
 Rectangle applicationArea = new Rectangle();
 applicationArea.setArcWidth(20);
 applicationArea.setArcHeight(20);
 applicationArea.setFill(Color.rgb(0, 0, 0, .80));
 applicationArea.setX(0);
 applicationArea.setY(0);
 applicationArea.setStrokeWidth(2);
 applicationArea.setStroke(Color.rgb(255, 255, 255, .70));

 root.getChildren().add(applicationArea);
 applicationArea.widthProperty().bind(scene.widthProperty());
 applicationArea.heightProperty().bind(scene.heightProperty());

 final Group phaseNodes = new Group();
 root.getChildren().add(phaseNodes);

 // starting initial anchor point
 scene.setOnMousePressed((MouseEvent event) -> {
 anchorPt = new Point2D(event.getScreenX(), event.getScreenY());
 });

 // dragging the entire stage
 scene.setOnMouseDragged((MouseEvent event) -> {
 if (anchorPt != null && previousLocation != null) {
 primaryStage.setX(previousLocation.getX() + event.getScreenX() - anchorPt.

getX());
 primaryStage.setY(previousLocation.getY() + event.getScreenY() - anchorPt.

getY());
 }
 });

 // set the current location
 scene.setOnMouseReleased((MouseEvent event) -> {
 previousLocation = new Point2D(primaryStage.getX(), primaryStage.getY());
 });

 // Dragging over surface
 scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 if (db.hasFiles()) {
 event.acceptTransferModes(TransferMode.COPY);
 } else {

Chapter 16 ■ Media with JavaFX

474

 event.consume();
 }
 });

 // Dropping over surface
 scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 boolean success = false;
 if (db.hasFiles()) {
 success = true;
 String filePath = null;
 for (File file : db.getFiles()) {
 filePath = file.getAbsolutePath();
 System.out.println(filePath);
 }
 // play file
 Media media = new Media(new File(filePath).toURI().toString());

 if (mediaPlayer != null) {
 mediaPlayer.stop();
 }

 mediaPlayer = new MediaPlayer(media);

 // Maintained Inner Class for Tutorial, could be changed to lambda
 mediaPlayer.setAudioSpectrumListener(new AudioSpectrumListener() {
 @Override
 public void spectrumDataUpdate(double timestamp, double duration,

float[] magnitudes, float[] phases) {
 phaseNodes.getChildren().clear();
 int i = 0;
 int x = 10;
 int y = 150;
 final Random rand = new Random(System.currentTimeMillis());
 for (float phase : phases) {
 int red = rand.nextInt(255);
 int green = rand.nextInt(255);
 int blue = rand.nextInt(255);

 Circle circle = new Circle(10);
 circle.setCenterX(x + i);
 circle.setCenterY(y + (phase * 100));
 circle.setFill(Color.rgb(red, green, blue, .70));
 phaseNodes.getChildren().add(circle);
 i += 5;
 }
 }
 });

 mediaPlayer.setOnReady(mediaPlayer::play);
 }

Chapter 16 ■ Media with JavaFX

475

 event.setDropCompleted(success);
 event.consume();
 });

 // create slide controls
 final Group buttonGroup = new Group();

 // rounded rect
 Rectangle buttonArea = new Rectangle();
 buttonArea.setArcWidth(15);
 buttonArea.setArcHeight(20);
 buttonArea.setFill(new Color(0, 0, 0, .55));
 buttonArea.setX(0);
 buttonArea.setY(0);
 buttonArea.setWidth(60);
 buttonArea.setHeight(30);
 buttonArea.setStroke(Color.rgb(255, 255, 255, .70));

 buttonGroup.getChildren().add(buttonArea);
 // stop audio control
 Rectangle stopButton = new Rectangle();
 stopButton.setArcWidth(5);
 stopButton.setArcHeight(5);
 stopButton.setFill(Color.rgb(255, 255, 255, .80));
 stopButton.setX(0);
 stopButton.setY(0);
 stopButton.setWidth(10);
 stopButton.setHeight(10);
 stopButton.setTranslateX(15);
 stopButton.setTranslateY(10);
 stopButton.setStroke(Color.rgb(255, 255, 255, .70));

 stopButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 }
 });
 buttonGroup.getChildren().add(stopButton);

 // play control
 final Arc playButton = new Arc();
 playButton.setType(ArcType.ROUND);
 playButton.setCenterX(12);
 playButton.setCenterY(16);
 playButton.setRadiusX(15);
 playButton.setRadiusY(15);
 playButton.setStartAngle(180 - 30);
 playButton.setLength(60);
 playButton.setFill(new Color(1, 1, 1, .90));
 playButton.setTranslateX(40);

 playButton.setOnMousePressed((MouseEvent me) -> {
 mediaPlayer.play();
 });

Chapter 16 ■ Media with JavaFX

476

 // pause control
 final Group pause = new Group();
 final Circle pauseButton = new Circle();
 pauseButton.setCenterX(12);
 pauseButton.setCenterY(16);
 pauseButton.setRadius(10);
 pauseButton.setStroke(new Color(1, 1, 1, .90));
 pauseButton.setTranslateX(30);

 final Line firstLine = new Line();
 firstLine.setStartX(6);
 firstLine.setStartY(16 - 10);
 firstLine.setEndX(6);
 firstLine.setEndY(16 - 2);
 firstLine.setStrokeWidth(3);
 firstLine.setTranslateX(34);
 firstLine.setTranslateY(6);
 firstLine.setStroke(new Color(1, 1, 1, .90));

 final Line secondLine = new Line();
 secondLine.setStartX(6);
 secondLine.setStartY(16 - 10);
 secondLine.setEndX(6);
 secondLine.setEndY(16 - 2);
 secondLine.setStrokeWidth(3);
 secondLine.setTranslateX(38);
 secondLine.setTranslateY(6);
 secondLine.setStroke(new Color(1, 1, 1, .90));

 pause.getChildren().addAll(pauseButton, firstLine, secondLine);

 pause.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 buttonGroup.getChildren().remove(pause);
 buttonGroup.getChildren().add(playButton);
 mediaPlayer.pause();
 }
 });

 playButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 buttonGroup.getChildren().remove(playButton);
 buttonGroup.getChildren().add(pause);
 mediaPlayer.play();
 }
 });

 buttonGroup.getChildren().add(pause);
 // move button group when scene is resized

 buttonGroup.translateXProperty().bind(scene.widthProperty().subtract(buttonArea.
getWidth() + 6));

Chapter 16 ■ Media with JavaFX

477

 buttonGroup.translateYProperty().bind(scene.heightProperty().subtract(buttonArea.
getHeight() + 6));

 root.getChildren().add(buttonGroup);

 // close button
 final Group closeApp = new Group();
 Circle closeButton = new Circle();
 closeButton.setCenterX(5);
 closeButton.setCenterY(0);
 closeButton.setRadius(7);
 closeButton.setFill(Color.rgb(255, 255, 255, .80));

 Node closeXmark = new Text(2, 4, "X");
 closeApp.translateXProperty().bind(scene.widthProperty().subtract(15));
 closeApp.setTranslateY(10);
 closeApp.getChildren().addAll(closeButton, closeXmark);
 closeApp.setOnMouseClicked((MouseEvent event) -> {
 Platform.exit();
 });

 root.getChildren().add(closeApp);

 primaryStage.setScene(scene);
 primaryStage.show();
 previousLocation = new Point2D(primaryStage.getX(), primaryStage.getY());

 }
}

Figure 16-2 shows a JavaFX MP3 player with visualizations.

Figure 16-2. JavaFX MP3 player

Chapter 16 ■ Media with JavaFX

478

How It Works
Before you get started, I’ll discuss the instructions on how to operate the MP3 player application that is
created. The users will be able to drag and drop an audio file into the application area to be played. Located
on the lower right of the application are buttons to stop, pause, and resume play of audio media. (The button
controls are shown in Figure 16-2.) As the music is playing, the user will also notice randomly colored balls
bouncing around to the music. Once the users are done listening to the music, they can quit the application
by clicking the white rounded close button located in the upper right corner.

It is similar to Recipe 15-1, in which you learned how to use the drag-and-drop desktop metaphor to
load files into a JavaFX application. Instead of image files, however, the user is accessing audio files. JavaFX
currently supports the following audio file formats: .mp3, .wav, and .aiff.

Following the same look and feel, you will use the same style as Recipe 15-1. In this recipe, you modify
the button controls to resemble buttons, similar to many media player applications. When the pause button
is pressed, it will pause the audio media from playing and toggle to the play button control, thus allowing
the users to resume. As an added bonus, the MP3 player will appear as an irregular shaped, semitransparent
window without borders that can also be dragged around the desktop using the mouse. Now that you know
how the music player will operate, let’s walk through the code.

First, you need to create instance variables that will maintain state information for the lifetime of the
application. Table 16-1 describes all the instance variables used in this music player application. The first
variable is a reference to a media player (MediaPlayer) object that will be created in conjunction with
a Media object containing an audio file. Next, you create an anchorPt variable used to save the starting
coordinate of a mouse press when the users begin to drag the window across the screen. When calculating
the upper left bounds of the application window during a mouse-dragged operation, the previousLocation
variable will contain the previous window’s screen X and Y coordinates.

Table 16-1 lists the MP3 player application’s instance variables.

In previous chapters relating to GUIs, you saw that GUI applications normally contain a title bar and
windowed borders surrounding the scene. Here, I wanted to raise the bar a little by showing you how to create
irregularly shaped semitransparent windows, thus making things look more hip or modern. As you begin to
create the media player, you’ll notice in the start() method that you prepare the Stage object by initializing
the style using StageStyle.TRANSPARENT. After you initialize the style to StageStyle.TRANSPARENT, the
window will be undecorated, with the entire window area’s opaque value set to zero (invisible). The following
code shows you how to create a transparent window without a title bar or windowed borders:

primaryStage.initStyle(StageStyle.TRANSPARENT);

With the invisible stage, you create a rounded rectangular region that will be the application’s surface or
main content area. Next, notice the width and height of the rectangle bound to the scene object in case the
window is resized. Because the window isn’t going to be resized, the bind isn’t necessary (it will be needed,
however, in Recipe 16-2, when you provide the ability to enlarge a video screen to take on a full-screen mode).

Table 16-1. MP3 Player Application Instance Variables

Variable Data Type Example Description

mediaPlayer MediaPlayer N/A A media player control that plays audio and video

anchorPt Point2D 100,100 A coordinate where the user begins to drag the
window

previousLocation Point2D 0,0 The upper left corner of the stage’s previous
coordinate; assists in dragging the window

Chapter 16 ■ Media with JavaFX

479

After creating a black, semitransparent, rounded rectangular area (applicationArea), you’ll be
creating a simple Group object to hold all the randomly colored Circle nodes that will show off graphical
visualizations while the audio is being played. Later, you will see how the phaseNodes (Group) variable is
updated based on sound information using an AudioSpectrumListener.

Next, you add EventHandler<MouseEvent> instances to the Scene object (the example uses lambda
expressions) to monitor mouse events as the user drags the window around the screen. The first event in this
scenario is a mouse press, which will save the cursor’s current (X, Y) coordinates to the variable anchorPt.
The following code is adding an EventHandler to the mouse-press property of the Scene:

// starting initial anchor point
scene.setOnMousePressed((MouseEvent event) -> {
 anchorPt = new Point2D(event.getScreenX(), event.getScreenY());
});

After implementing the mouse-press event handler, you can create an EventHandler to the Scene’s
mouse-drag property. The mouse–drag event handler will update and position the application window
(Stage) dynamically, based on the previous window’s location (upper left corner) along with the anchorPt
variable. Shown here is an event handler responsible for the mouse-drag event on the Scene object:

// dragging the entire stage
scene.setOnMouseDragged((MouseEvent event) -> {
 if (anchorPt != null && previousLocation != null) {
 primaryStage.setX(previousLocation.getX() + event.getScreenX() - anchorPt.getX());
 primaryStage.setY(previousLocation.getY() + event.getScreenY() - anchorPt.getY());
 }
});

You will want to handle the mouse-release event to perform actions. Once the mouse is released, the
event handler will update the previousLocation variable for subsequent mouse-drag events to move the
application window about the screen. The following code snippet updates the previousLocation variable:

// set the current location
scene.setOnMouseReleased((MouseEvent event) -> {
 previousLocation = new Point2D(primaryStage.getX(), primaryStage.getY());
});

Next, you will be implementing the drag-and-drop scenario to load the audio file from the file system
(using the File Manager). When handling a drag-and-drop scenario, it is similar to Recipe 15-1, in which
you created an EventHandler to handle DragEvents. Instead of loading image files, you’ll be loading audio
files from the host file system. For brevity, I simply mention the code lines of the drag-and-dropped event
handler. Once the audio file is available, you will create a Media object by passing in the file as a URI. The
following code snippet is how to create a Media object:

Media media = new Media(new File(filePath).toURI().toString());

Once you have created a Media object you will have to create an instance of a MediaPlayer in order to
play the sound file. Both the Media and MediaPlayer objects are immutable, which is why new instances of
each will be created every time the user drags a file into the application. Next, you will check the instance
variable mediaPlayer for a previous instance to make sure it is stopped before creating a new MediaPlayer
instance. The following code checks for a prior media player to be stopped:

 if (mediaPlayer != null) {
 mediaPlayer.stop();
 }

Chapter 16 ■ Media with JavaFX

480

So, here is where you create a MediaPlayer instance. A MediaPlayer object is responsible for controlling
the playing of media objects. Notice that a MediaPlayer will treat sound or video media the same in
terms of playing, pausing, and stopping media. When creating a media player, you specify the media and
audioSpectrumListener attribute methods. Setting the autoPlay attribute to true will play the audio
media immediately after it has been loaded. The last thing to specify on the MediaPlayer instance is an
AudioSpectrumListener. So, what exactly is this type of listener, you say? Well, according to the Javadoc, it
is an observer receiving periodic updates of the audio spectrum. In layman’s terms, it is the audio media’s
sound data such as volume, tempo, and so on. To create an instance of an AudioSpectrumListener,
you create an inner class that overrides the method spectrumDataUpdate(). You could have also used a
lambda expression here; the example uses the inner class to provide better insight into the functionality.
Table 16-2 lists all the inbound parameters for the audio spectrum listener’s method. For more details,
refer to the Javadoc at http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/
AudioSpectrumListener.html.

In the example, randomly colored circle nodes are created, positioned, and placed on the scene based
on the variable phases (array of floats). To draw each colored circle, the circle’s center X is incremented by
five pixels and the circle’s center Y is added with each phase value multiplied by 100. Shown here is the code
snippet that plots each randomly colored circle:

circle.setCenterX(x + i);
circle.setCenterY(y + (phase * 100));
... // setting the circle
i+=5;

Here is an inner class implementation of an AudioSpectrumListener:

new AudioSpectrumListener() {
 @Override
 public void spectrumDataUpdate(double timestamp, double duration, float[] magnitudes,

float[] phases) {

 phaseNodes.getChildren().clear();
 int i = 0;
 int x = 10;
 int y = 150;
 final Random rand = new Random(System.currentTimeMillis());
 for(float phase:phases) {
 int red = rand.nextInt(255);
 int green = rand.nextInt(255);
 int blue = rand.nextInt(255);

Table 16-2. The AudioSpectrumListener's Method spectrumDataUpdate() Inbound Parameters

Variable Data Type Example Description

timestamp double 2.4261 When the event occurred, in seconds

duration Double 0.1 The duration of time (in seconds) the spectrum was
computed

magnitudes float[] -50.474335 An array of float values representing each band’s
spectrum magnitude in decibels (nonpositive float value)

phases float[] 1.2217305 An array of float values representing each band’s phase

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/AudioSpectrumListener.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/AudioSpectrumListener.html

Chapter 16 ■ Media with JavaFX

481

 Circle circle = new Circle(10);
 circle.setCenterX(x + i);
 circle.setCenterY(y + (phase * 100));
 circle.setFill(Color.rgb(red, green, blue, .70));
 phaseNodes.getChildren().add(circle);
 i+=5;
 }

 }
 };

Once the media player is created, you create a java.lang.Runnable to be set to the onReady attribute to
be invoked when the media is in a ready state. Once the ready event is realized, the run() method will call
the media player object’s play() method to begin the audio. With the dragged-drop sequence completed,
you notify the drag-and-drop system by invoking the event’s setDropCompleted() method with a value of
true. The following code snippet demonstrates how to implement a Runnable to begin the media player as
soon as the media player is in a ready state using a method reference:

 mediaPlayer.setOnReady(mediaPlayer::play);

Finally, create buttons with JavaFX shapes to represent the stop, play, pause, and close buttons. When
creating shapes or custom nodes, you can add event handlers to nodes in order to respond to mouse clicks.
Although there are advanced ways to build custom controls in JavaFX, this example uses custom-built
button icons from simple rectangles, arcs, circles, and lines. To see more advanced ways to create custom
controls, refer to the Javadoc on the Skinnable API or to Recipe 16-5. To attach event handlers for a mouse
press, simply call the setOnMousePress() method by passing in an EventHandler<MouseEvent> instance.
The following code demonstrates adding an EventHandler to respond to mouse press on the stopButton
node:

stopButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 }
});

Because all the buttons use the same code snippet, only the method calls that each button will perform
on the media player are listed. The last button, Close, isn’t related to the media player, but it provides a way
to exit the MP3 player application. The following actions are responsible for stopping, pausing, playing, and
exiting the MP3 player application:

Stop - mediaPlayer.stop();
Pause - mediaPlayer.pause();
Play - mediaPlayer.play();
Close - Platform.exit();

16-2. Playing Video
Problem
You want to create an application to view a video file complete with controls to play, pause, stop, and seek.

Chapter 16 ■ Media with JavaFX

482

Solution
Create a video media player application by utilizing the following classes:

•	 javafx.scene.media.Media

•	 javafx.scene.media.MediaPlayer

•	 javafx.scene.media.MediaView

The following code is an implementation of a JavaFX basic video player:

public void start(final Stage primaryStage) {
 primaryStage.setTitle("Chapter 16-2 Playing Video");
 primaryStage.centerOnScreen();
 primaryStage.initStyle(StageStyle.TRANSPARENT);

 final Group root = new Group();
 final Scene scene = new Scene(root, 540, 300, Color.rgb(0, 0, 0, 0));

 // rounded rectangle with slightly transparent
 Node applicationArea = createBackground(scene);
 root.getChildren().add(applicationArea);

 // allow the user to drag window on the desktop
 attachMouseEvents(scene, primaryStage);

 // allow the user to see the progress of the video playing
 progressSlider = createSlider(scene);
 root.getChildren().add(progressSlider);

 // Dragging over surface
 scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 if (db.hasFiles() || db.hasUrl() || db.hasString()) {
 event.acceptTransferModes(TransferMode.COPY);
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 }
 } else {
 event.consume();
 }
 });

 // update slider as video is progressing (later removal)
 progressListener = (ObservableValue<? extends Duration> observable, Duration oldValue,

Duration newValue) -> {
 progressSlider.setValue(newValue.toSeconds());
 };

 // Dropping over surface
 scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();

Chapter 16 ■ Media with JavaFX

483

 boolean success = false;
 URI resourceUrlOrFile = null;

 // dragged from web browser address line?
 if (db.hasContent(DataFormat.URL)) {
 try {
 resourceUrlOrFile = new URI(db.getUrl());
 } catch (URISyntaxException ex) {
 ex.printStackTrace();
 }
 } else if (db.hasFiles()) {
 // dragged from the file system
 String filePath = null;
 for (File file:db.getFiles()) {
 filePath = file.getAbsolutePath();
 }
 resourceUrlOrFile = new File(filePath).toURI();
 success = true;
 }
 // load media
 Media media = new Media(resourceUrlOrFile.toString());

 // stop previous media player and clean up
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 mediaPlayer.currentTimeProperty().removeListener(progressListener);
 mediaPlayer.setOnPaused(null);
 mediaPlayer.setOnPlaying(null);
 mediaPlayer.setOnReady(null);
 }

 // create a new media player
 mediaPlayer = new MediaPlayer(media);

 // as the media is playing move the slider for progress
 mediaPlayer.currentTimeProperty().addListener(progressListener);

 // play video when ready status
 mediaPlayer.setOnReady(() -> {
 progressSlider.setValue(1);
 progressSlider.setMax(mediaPlayer.getMedia().getDuration().toMillis()/1000);
 mediaPlayer.play();
 });

 // Lazy init media viewer
 if (mediaView == null) {
 mediaView = new MediaView();
 mediaView.setMediaPlayer(mediaPlayer);
 mediaView.setX(4);
 mediaView.setY(4);
 mediaView.setPreserveRatio(true);

Chapter 16 ■ Media with JavaFX

484

 mediaView.setOpacity(.85);
 mediaView.setSmooth(true);

 mediaView.fitWidthProperty().bind(scene.widthProperty().subtract(220));
 mediaView.fitHeightProperty().bind(scene.heightProperty().subtract(30));

 // make media view as the second node on the scene.
 root.getChildren().add(1, mediaView);
 }

 // sometimes loading errors occur, print error when this happens
 mediaView.setOnError((MediaErrorEvent event1) -> {
 event1.getMediaError().printStackTrace();
 });

 mediaView.setMediaPlayer(mediaPlayer);

 event.setDropCompleted(success);
 event.consume();
 });

 // rectangular area holding buttons
 final Group buttonArea = createButtonArea(scene);

 // stop button will stop and rewind the media
 Node stopButton = createStopControl();

 // play button can resume or start a media
 final Node playButton = createPlayControl();

 // pause media play
 final Node pauseButton = createPauseControl();

 stopButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer!= null) {
 buttonArea.getChildren().removeAll(pauseButton, playButton);
 buttonArea.getChildren().add(playButton);
 mediaPlayer.stop();
 }
 });
 // pause media and swap button with play button
 pauseButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer!=null) {
 buttonArea.getChildren().removeAll(pauseButton, playButton);
 buttonArea.getChildren().add(playButton);
 mediaPlayer.pause();
 paused = true;
 }
 });

Chapter 16 ■ Media with JavaFX

485

 // play media and swap button with pause button
 playButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 buttonArea.getChildren().removeAll(pauseButton, playButton);
 buttonArea.getChildren().add(pauseButton);
 paused = false;
 mediaPlayer.play();
 }
 });

 // add stop button to button area
 buttonArea.getChildren().add(stopButton);

 // set pause button as default
 buttonArea.getChildren().add(pauseButton);

 // add buttons
 root.getChildren().add(buttonArea);

 // create a close button
 Node closeButton= createCloseButton(scene);
 root.getChildren().add(closeButton);

 primaryStage.setOnShown((WindowEvent we) -> {
 previousLocation = new Point2D(primaryStage.getX(), primaryStage.getY());
 });

 primaryStage.setScene(scene);
 primaryStage.show();

}

Following is the attachMouseEvents() method, which adds an EventHandler to the scene so the video
player can enter full-screen mode.

private void attachMouseEvents(Scene scene, final Stage primaryStage) {

 // Full screen toggle
 scene.setOnMouseClicked((MouseEvent event) -> {
 if (event.getClickCount() == 2) {
 primaryStage.setFullScreen(!primaryStage.isFullScreen());
 }
 });
 ... // the rest of the EventHandlers
}

The following method creates a slider control with a ChangeListener to enable the users to search
backward and forward through the video:

private Slider createSlider(Scene scene) {
 Slider slider = new Slider();
 slider.setMin(0);

Chapter 16 ■ Media with JavaFX

486

 slider.setMax(100);
 slider.setValue(1);
 slider.setShowTickLabels(true);
 slider.setShowTickMarks(true);

 slider.valueProperty().addListener((ObservableValue<? extends Number> observable,
 Number oldValue, Number newValue) -> {
 if (paused) {
 long dur = newValue.intValue() * 1000;
 mediaPlayer.seek(new Duration(dur));
 }
 });

 slider.translateYProperty().bind(scene.heightProperty().subtract(30));
 return slider;
}

Figure 16-3 depicts the JavaFX basic video player with a slider control.

How It Works
To create a video player, you will model the application similar to the example in Recipe 16-1 by reusing
the same application features such as drag-and-drop files, media button controls, and so on. For the sake
of clarity, I took the previous recipe and moved much of the UI code into convenience functions so you will
be able to focus on the Media APIs without getting lost in the UI code. The rest of the recipes in this chapter
consist of adding simple features to the JavaFX basic media player created in this recipe. This being said,
the code snippets in the following recipes will be brief, consisting only of the necessary code for each new
desired feature.

Figure 16-3. JavaFX basic video player

Chapter 16 ■ Media with JavaFX

487

It is important to note that the JavaFX media player supports various media formats. The supported
formats are as follows:

•	 AIFF

•	 FXM, FLV

•	 HLS (*)

•	 MP3

•	 MP4

•	 WAV

For a complete summary of the supported media types, see the online documentation at http://docs.
oracle.com/javase/8/javafx/api/javafx/scene/media/package-summary.html.

Just like the audio player created in the last recipe, the JavaFX basic video player has the same basic
media controls, including stop, pause, and play. In addition to these simple controls, you’ve added new
capabilities such as seeking and full-screen mode.

When playing a video you’ll need a view area (javafx.scene.media.MediaView) to show it. You also
create a slider control to monitor the progress of the video, which is located at the lower left portion of
the application shown in Figure 16-3. The slider control allows the users to seek backward and forward
through the video. One last bonus feature is enabling the video to become full screen by double-clicking the
application window. To restore the window, users repeat the double-click or press Escape.

To quickly get started, let’s jump into the code. After setting the stage in the start() method, you create
a black semitransparent background by calling the createBackground() method (applicationArea). Next,
the attachMouseEvents() method is invoked to set up the EventHandlers so they can enable the users
to drag the application window around the desktop. Another EventHandler to be attached to the scene
will allow the users to switch to full-screen mode. A conditional is used to check for a double-click in the
application window in order to invoke full-screen mode. Once the double-click is performed, the Stage’s
method setFullScreen() is invoked with a Boolean value opposite of the currently set value. Shown here is
the code needed to make a window go to full-screen mode:

// Full screen toggle
scene.setOnMouseClicked((MouseEvent event) -> {
 if (event.getClickCount() == 2) {
 primaryStage.setFullScreen(!primaryStage.isFullScreen());
 }
});

As you continue the steps inside the start() method, a slider control is created by calling the
convenience method createSlider(). The createSlider() method instantiates a Slider control and
adds a ChangeListener to move the slider as the video is playing. The ChangeListener’s changed() method
is invoked any time the slider’s value changes. Once the changed() method is invoked you will have an
opportunity to see the old and new values. The following code creates a ChangeListener to update the slider
as the video is being played:

// update slider as video is progressing (later removal)
progressListener = (ObservableValue<? extends Duration> observable,
 Duration oldValue, Duration newValue) -> {
 progressSlider.setValue(newValue.toSeconds());
};

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/package-summary.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/package-summary.html

Chapter 16 ■ Media with JavaFX

488

After creating the progress listener (progressListener), the drag-dropped EventHandler for the scene
needs to be created. The goal is to determine whether the pause button was pressed before the user
can move the slider. Once a slider.isPressed() flag is determined, you will obtain the new value to be
converted to milliseconds. The dur variable is used to move the mediaPlayer to seek the position into the
video as the user slides the control left or right. The ChangeListener’s changed() method is invoked any
time the slider’s value changes. The following code is responsible for moving the seek position into the video
based on the user moving the slider.

slider.valueProperty().addListener((ObservableValue<? extends Number> observable,
 Number oldValue, Number newValue) -> {
 if (slider.isPressed()) {
 long dur = newValue.intValue() * 1000;
 mediaPlayer.seek(new Duration(dur));
 }
});

Moving right along, you next implement a drag-dropped EventHandler to handle the media file being
dropped into the application window area. Here the example first checks to see whether there was a previous
mediaPlayer. If there was, the previous mediaPlayer object is stopped and cleanup is performed:

 // stop previous media player and clean up
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 mediaPlayer.currentTimeProperty().removeListener(progressListener);
 mediaPlayer.setOnPaused(null);
 mediaPlayer.setOnPlaying(null);
 mediaPlayer.setOnReady(null);
 }
 ...
 // play video when ready status
 mediaPlayer.setOnReady(() -> {
 progressSlider.setValue(1);
 progressSlider.setMax(mediaPlayer.getMedia().getDuration().toMillis() / 1000);
 mediaPlayer.play();
 });// setOnReady()

As with the audio player, you create a Runnable instance to be run when the media player is in a ready
state. You’ll notice also that the progressSlider control uses values in seconds.

Once the media player object is in a ready state, a MediaView instance is created to display the media.
The following code creates a MediaView object to be placed into the scene graph to display video content:

// Lazy init media viewer
if (mediaView == null) {
 mediaView = new MediaView();
 mediaView.setMediaPlayer(mediaPlayer);
 mediaView.setX(4);
 mediaView.setY(4);
 mediaView.setPreserveRatio(true);
 mediaView.setOpacity(.85);
 mediaView.setSmooth(true);

Chapter 16 ■ Media with JavaFX

489

 mediaView.fitWidthProperty().bind(scene.widthProperty().subtract(220));
 mediaView.fitHeightProperty().bind(scene.heightProperty().subtract(30));

 // make media view as the second node on the scene.
 root.getChildren().add(1, mediaView);
}

// sometimes loading errors occur, print error when this happens
mediaView.setOnError((MediaErrorEvent event1) -> {
 event1.getMediaError().printStackTrace();
});

mediaView.setMediaPlayer(mediaPlayer);

event.setDropCompleted(success);
event.consume();
});

Whew! You are finally finished with the scene’s drag-dropped EventHandler. Up next is pretty much the
rest of the media button controls, which are similar to the code at the end of Recipe 16-1. The only difference
is a single instance variable named paused of type Boolean that denotes whether the video was paused. The
following code shows the pauseButton and playButton controlling the mediaPlayer object and setting the
paused flag accordingly:

// pause media and swap button with play button
pauseButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 buttonArea.getChildren().removeAll(pauseButton, playButton);
 buttonArea.getChildren().add(playButton);
 mediaPlayer.pause();
 paused = true;
 }
});

// play media and swap button with pause button
playButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 buttonArea.getChildren().removeAll(pauseButton, playButton);
 buttonArea.getChildren().add(pauseButton);
 paused = false;
 mediaPlayer.play();
 }
});

That is how you create a video media player. In the next recipe, you learn how to listen to media events
and invoke actions.

Chapter 16 ■ Media with JavaFX

490

16-3. Controlling Media Actions and Events
Problem
You want the media player application to provide feedback in response to certain events, such as displaying
the text “Paused” on the screen when the media player’s paused event is triggered.

Solution
You can use one or more of the media event handler methods. Shown in Table 16-3 are all the possible
media events that are raised to allow developers to attach EventHandlers or Runnables.

The following code presents the “Paused” text the users, with the “Duration” having a decimal of
milliseconds. This text is overlaid on top of the video when the user clicks the pause button (see Figure 16-4).

 // when paused event display pause message
mediaPlayer.setOnPaused(() -> {
 pauseMessage.setText("Paused \nDuration: " +
 mediaPlayer.currentTimeProperty().getValue().toMillis());
 pauseMessage.setOpacity(.90);
});

Table 16-3. Media Events

Class Set On Method On Method Property Method Description

Media setOnError() onErrorProperty() When an error occurs

MediaPlayer setOnEndOfMedia() onEndOfMediaProperty() Reached the end of the
media play

MediaPlayer setOnError() onErrorProperty() Error occurred

MediaPlayer setOnHalted() onHaltedProperty() Media status changes to
HALTED

MediaPlayer setOnMarker() onMarkerProperty() Marker event triggered

MediaPlayer setOnPaused() onPausedProperty() Paused event occurred

MediaPlayer setOnPlaying() onPlayingProperty() The media is currently
playing

MediaPlayer setOnReady() onReadyProperty() Media player is in a ready
state

MediaPlayer setOnRepeat() onRepeatProperty() Repeat property is set

MediaPlayer setOnStalled() onStalledProperty() Media player is stalled

MediaPlayer setOnStopped() onStoppedProperty() Media player has stopped

MediaView setOnError() onErrorProperty() Error occurred in media
view

Chapter 16 ■ Media with JavaFX

491

How It Works
Event-driven architecture (EDA) is a prominent architectural pattern used to model loosely coupled
components and services that pass messages asynchronously. The JavaFX team designed the Media API to
be event-driven, and this recipe demonstrates how to implement it in response to media events.

With event-based programming in mind, you will discover nonblocking or callback behaviors when
invoking functions. In this recipe, you will implement the display of text in response to an onPaused event
instead of placing your code into the pause button logic. Instead of tying code directly to a button via an
EventHandler, you will be implementing code that will respond to the media player’s onPaused event being
triggered. When responding to media events, you will be implementing java.lang.Runnables.

You’ll be happy to know that you’ve been using event properties and implementing Runnables all
along, albeit usually in the form of lambda expressions. Hopefully you noticed this in all the recipes in this
chapter. When the media player is in a ready state, the Runnable code will be invoked. Why is this correct?
Well, when the media player is finished loading the media, the onReady property will be notified. That way,
you can be sure you can invoke the MediaPlayer’s play() method. I trust that you will get used to event style
programming. The following code snippet demonstrates setting a Runnable instance into a media player
object’s OnReady property using a lambda expression:

mediaPlayer.setOnReady(() -> {
 mediaPlayer.play();
});

So that you can see the difference between the lambda style of programming versus the older style, here
is the same code implemented without using a lambda expression:

mediaPlayer.setOnReady(new Runnable() {
 @Override
 public void run() {
 mediaPlayer.play();
 }
});

Figure 16-4. Paused event

Chapter 16 ■ Media with JavaFX

492

See how many lines of code you got rid of by using lambdas? You will be taking steps similar to the
onReady property. Once a Paused event has been triggered, the run() method will be invoked to present
to the user a message containing a Text node with the word Paused and a duration showing the time in
milliseconds into the video. Once the text is displayed, you might want to write down the duration as
markers (as you’ll learn in Recipe 16-4). The following code snippet shows an attached Runnable instance,
which is responsible for displaying a paused message and duration in milliseconds at the point at which it
was paused in the video:

// when paused event display pause message
mediaPlayer.setOnPaused(() -> {
pauseMessage.setText("Paused \nDuration: " +
 mediaPlayer.currentTimeProperty().getValue().toMillis());
pauseMessage.setOpacity(.90);
});

16-4. Marking a Position in a Video
Problem
You want to provide closed caption text while playing a video in the media player application.

Solution
Begin by applying the solution in Recipe 16-3. By obtaining the marked durations (in milliseconds) from the
previous recipe, you will create media marker events at points into the video. With each media marker you
will associate text that will be displayed as closed captions. When a marker comes to pass, the text will be
shown in the upper right side.

The following code snippet demonstrates media marker events being handled in the onDragDropped
event property of the Scene object:

... // inside the start() method

final VBox messageArea = createClosedCaptionArea(scene);
root.getChildren().add(messageArea);

// Dropping over surface
scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 boolean success = false;
 URI resourceUrlOrFile = null;

 // dragged from web browser address line?
 if (db.hasContent(DataFormat.URL)) {
 try {
 resourceUrlOrFile = new URI(db.getUrl().toString());
 } catch (URISyntaxException ex) {
 ex.printStackTrace();
 }
 } else if (db.hasFiles()) {

Chapter 16 ■ Media with JavaFX

493

 // dragged from the file system
 String filePath = null;
 for (File file:db.getFiles()) {
 filePath = file.getAbsolutePath();
 }
 resourceUrlOrFile = new File(filePath).toURI();
 success = true;
 }
 // load media
 Media media = new Media(resourceUrlOrFile.toString());

 // stop previous media player and clean up
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 mediaPlayer.currentTimeProperty().removeListener(progressListener);
 mediaPlayer.setOnPaused(null);
 mediaPlayer.setOnPlaying(null);
 mediaPlayer.setOnReady(null);
 }

 // create a new media player
 mediaPlayer = new MediaPlayer(media);

 // as the media is playing move the slider for progress
 mediaPlayer.currentTimeProperty().addListener(progressListener);

 // when paused event display pause message
 mediaPlayer.setOnPaused(() -> {
 pauseMessage.setOpacity(.90);
 });

 // when playing make pause text invisible
 mediaPlayer.setOnPlaying(() -> {
 pauseMessage.setOpacity(0);
 });

 // play video when ready status
 mediaPlayer.setOnReady(() -> {
 progressSlider.setValue(1);
 progressSlider.setMax(mediaPlayer.getMedia().getDuration().toMillis()/1000);
 mediaPlayer.play();
 });

 // Lazy init media viewer
 if (mediaView == null) {
 mediaView = new MediaView(mediaPlayer);
 mediaView.setX(4);
 mediaView.setY(4);
 mediaView.setPreserveRatio(true);
 mediaView.setOpacity(.85);
 mediaView.setSmooth(true);

Chapter 16 ■ Media with JavaFX

494

 mediaView.fitWidthProperty().bind(scene.widthProperty().subtract(messageArea.
widthProperty().add(70)));

 mediaView.fitHeightProperty().bind(scene.heightProperty().subtract(30));

 // make media view as the second node on the scene.
 root.getChildren().add(1, mediaView);
 }

 // sometimes loading errors occur
 mediaView.setOnError((MediaErrorEvent event1) -> {
 event1.getMediaError().printStackTrace();
 });

 mediaView.setMediaPlayer(mediaPlayer);

 media.getMarkers().put("First marker", Duration.millis(10000));
 media.getMarkers().put("Second marker", Duration.millis(20000));
 media.getMarkers().put("Last one...", Duration.millis(30000));

 // display closed caption
 mediaPlayer.setOnMarker((MediaMarkerEvent event1) -> {
 closedCaption.setText(event1.getMarker().getKey());
 });

 event.setDropCompleted(success);
 event.consume();
}); // end of setOnDragDropped

The following code shows a factory method that returns an area that will contain the closed caption to
be displayed to the right of the video:

private VBox createClosedCaptionArea(final Scene scene) {
 // create message area
 final VBox messageArea = new VBox(3);
 messageArea.setTranslateY(30);
 messageArea.translateXProperty().bind(scene.widthProperty().subtract(152));
 messageArea.setTranslateY(20);
 closedCaption = new Text();
 closedCaption.setStroke(Color.WHITE);
 closedCaption.setFill(Color.YELLOW);
 closedCaption.setFont(new Font(15));

 messageArea.getChildren().add(closedCaption);
 return messageArea;
}

Chapter 16 ■ Media with JavaFX

495

Figure 16-5 depicts the video media player displaying the closed caption text.

How It Works
The Media API has many event properties to which the developer can attach EventHandlers or Runnables
instances so they can respond when the events are triggered. This recipe focused on the OnMarker event
property. The Marker property is responsible for receiving marker events (MediaMarkerEvent).

Let’s begin by adding markers to the Media object. It contains a method getMarkers() that returns a
javafx.collections.ObservableMap<String, Duration>. With an observable map, you can add key/value
pairs that represent each marker. Adding keys should be a unique identifier, and the value is an instance of
Duration. For simplicity, this example uses the closed caption text as the key for each media marker. The
marker durations are those written down as users press the pause button at points in the video determined
in Recipe 16-3. Be advised that this is not the recommended approach to use for production-quality code.
You may want to use a parallel Map instead.

After adding markers you will be setting an EventHandler into the MediaPlayer object’s OnMarker
property using the setOnMarker() method. Next, you implement an EventHandler via a lambda expression
to handle MediaMarkerEvents that are raised. Once an event has been received, you obtain the key
representing the text to be used in the closed caption. The instance variable closedCaption (javafx.scene.
text.Text node) will simply be shown by calling the setText() method with the key or String associated
with the marker.

That’s it for media markers. That goes to show how you can coordinate special effects, animations, and
so on during a video quite easily.

16-5. Synchronizing Animation and Media
Problem
You want to incorporate animated effects in your media display application, such as scrolling the text
"The End" after the video is finished playing.

Figure 16-5. Closed caption text

Chapter 16 ■ Media with JavaFX

496

Solution
Simply use Recipe 16-3 together with Recipe 16-2 to achieve the desired result. Recipe 16-3 shows how to
respond to media events and Recipe 16-2 demonstrates how to use the translate transition to animate text.

The following code demonstrates an attached action when the end of a media event is triggered:

mediaPlayer.setOnEndOfMedia(() -> {
 closedCaption.setText("");
 animateTheEnd.getNode().setOpacity(.90);
 animateTheEnd.playFromStart();
 });

The following method creates a translateTransition of a Text node containing the String "The End"
that appears after an end of media event is triggered:

 public TranslateTransition createTheEnd(Scene scene) {
 Text theEnd = new Text("The End");
 theEnd.setFont(new Font(40));
 theEnd.setStrokeWidth(3);
 theEnd.setFill(Color.WHITE);
 theEnd.setStroke(Color.WHITE);
 theEnd.setX(75);

 TranslateTransition scrollUp = new TranslateTransition();
 scrollUp.setNode(theEnd);
 scrollUp.setDuration(Duration.seconds(1));
 scrollUp.setInterpolator(Interpolator.EASE_IN);
 scrollUp.setFromY(scene.getHeight() + 40);
 scrollUp.setToY(scene.getHeight()/2);

 return scrollUp;
}

Figure 16-6 depicts the “The End” text node scrolling along after the OnEndOfMedia event is triggered.

Figure 16-6. Animating “The End”

Chapter 16 ■ Media with JavaFX

497

How It Works
This recipe showcases how to synchronize events to animated effects. In the code example, when the
video reaches the end, an OnEndOfMedia property event initiates a Runnable instance. Once the instance is
initiated, a TranslateTransition animation is performed by scrolling a Text node upward that contains the
String "The End".

Let’s take a look at the setOnEndOfMedia() method associated with the MediaPlayer object. Just
like in Recipe 16-3, you simply call the setOnEndOfMedia() method by passing in a lambda expression
implementing Runnable, which contains the code that will invoke an animation. If you don’t know how
the animation works, refer to Recipe 16-2. Once the event occurs, you will see the text scroll upward. The
following code snippet is from inside the scene.setOnDragDropped() method:

mediaPlayer.setOnEndOfMedia(() -> {
 closedCaption.setText("");
 animateTheEnd.getNode().setOpacity(.90);
 animateTheEnd.playFromStart();
 });

For the sake of space, I trust you know where the code block would reside. If not, refer to Recipe 16-3,
in which you will notice other OnXXX properties methods. To see the entire code listing and download the
source code, visit the book’s website.

To animate "The End" you create a convenience createTheEnd() method to create an instance of a
Text node and return a TranslateTransition object to the caller. The TranslateTransition that’s returned
does the following: it waits a second before playing the video. Next is the interpolator in which you used the
Interpolator.EASE_IN to move the Text node by easing in before a full stop. Last is setting the Y property of
the node to move from the bottom to the center of the viewing area.

The following code creates an animation that scrolls a node in an upward motion:

TranslateTransition scrollUp = new TranslateTransition();
scrollUp.setNode(theEnd);
scrollUp.setDuration(Duration.seconds(1));
scrollUp.setInterpolator(Interpolator.EASE_IN);
scrollUp.setFromY(scene.getHeight() + 40);
scrollUp.setToY(scene.getHeight()/2);

Summary
JavaFX has been a venue for development of media-based applications since its beginning. The JavaFX
Media API enables developers to easily add media and media-based controls to any application. In previous
versions of JavaFX, video and audio types were more limited. Java 8 added more support for different media
types and also added the ability to implement media controls via lambda expressions.

This chapter provided a brief overview of some JavaFX Media API capabilities. However, we haven’t
even scratched the surface of the possibilities. For more information regarding the JavaFX Media API, see the
online documentation at http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/
package-summary.html.

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/package-summary.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/package-summary.html

499© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_17

CHAPTER 17

Java Web Applications with
JavaServer Faces

Java development is not just on the desktop alone. Thousands of enterprise applications are written
using Java Enterprise Edition (Java EE), which enables development of sophisticated, robust, and secure
applications. The most mainstream and mature framework for developing Java EE applications is JavaServer
Faces (JSF). JDK 9 can be used along with some Java EE application servers, such as GlassFish, to enable use
of the Java 9 features. Although Java EE and JSF are far too big to cover in one chapter, this will provide you
with a glimpse into the world of web development with Java 9 and Java EE.

In this chapter, I will cover the basics of the JSF framework, from developing a basic application to
creating a sophisticated front end. Throughout the process, I will cover important information such as how
to correctly scope your controller classes, and also how to generate a web application template. In the end,
you will be able to get started developing Java web applications, or maintain existing JSF projects.

Since web application development contains a number of interconnected processes, it is recommended
to utilize an integrated development environment such as NetBeans to more easily organize web projects.
Throughout this chapter, I will demonstrate the solutions to the recipes utilizing NetBeans IDE 8.2. However,
you can apply these same basic concepts to projects using any number of Java IDEs.

 ■ Note This book was written using an early access release of the GlassFish 5 application server along with
JDK 9. To configure the server to utilize JDK 9, modify the GlassFish <<GlassFish-Home>>/config/asenv.conf
file and add the AS_JAVA property, pointing to an installation of JDK 9. Next, modify the <<GlassFish-Home>>/
bin/asadmin file to make the last line as follows:

exec "$JAVA" --add-modules java.annotations.common -jar "$AS_INSTALL_LIB/client/appserver-cli.jar" "$@"

17-1. Creating and Configure a Web Project
Problem
You would like to create and configure a simple Java web application project that will utilize the JSF web
framework.

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

500

Solution
There are a number of different project formats that can be used to create a web application. One of the most
flexible is the Maven web application format. The Apache Maven build system makes it easy to organize
a build and expand functionality of an application as time goes on since it contains a robust dependency
management system. In this solution, utilize NetBeans IDE to generate a Maven Web Application project,
and then configure the project for developing JSF application.

First, open NetBeans IDE and select “File,” “New Project,” and then from the New Project window,
choose the “Maven” category, and the “Web Application” project (Figure 17-1), then click “Next.”

Name the application “HelloJsf,” and place it into a directory on your hard disk. Change the “Package
Name” to org.java9recipes, and keep all of the other defaults (Figure 17-2).

Figure 17-1. NetBeans Maven Web Application project

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

501

Next, select a server to which the application will be deployed, and a Java EE version. In this case, I will
utilize Payara 5 server (GlassFish will also suffice), and Java EE 7 (Figure 17-3).

Figure 17-2. New Java Web Application configuration

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

502

After the project is created, right-click the project and choose “Properties” to configure it for JSF and
to assign a Java Platform. In the property menu, select the “Frameworks” category, then choose “Add” and
select JSF. Next, click the “Components” tab within the same window and select “PrimeFaces” (Figure 17-4).

Figure 17-3. Choose server and Java EE version

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

503

Click “OK” to save the project properties, and the project is now ready to be built utilizing JSF as the
framework, along with the PrimeFaces UI library.

How It Works
Development of web applications requires orchestration of a number of different files. While it is possible
to develop a Java EE web application without the use of an IDE, using a development environment makes
it almost a trivial task. In this recipe, the NetBeans IDE is used to configure a Maven based web application.
Maven is a build system similar to Apache Ant, and it is very useful for organization of application projects.
Maven is not necessarily better than Ant, but it is easier to get started using. Both Ant and Maven are
build systems; however, Maven uses convention over configuration, whereby it assumes many default
configurations so that one can use very easily. Ant, on the other hand, requires one to configure and write
a build script before it can be used. One of the key components of Maven is that it makes dependency
management very easy. It has become one of the most popular project formats, and developing a Maven
project in NetBeans creates a project that is portable.

During the project creation wizard, a number of fields must be filled in, although many of the defaults
can be left in place. Most importantly, set up a proper package naming convention for the application, and
choose the server and Java EE version.

 ■ Note The settings that are completed when utilizing the wizard can be changed after the project has been
created by going into the project properties.

Figure 17-4. Configure project properties

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

504

Once the initial wizard has completed, a basic Maven web project will have been generated. At this
point, the project can be configured to utilize web frameworks, different versions of the JDK, and so on, by
changing the project properties. Right-click a NetBeans project to enter the project properties screen, and
utilize the category selection to view or change properties pertaining to the selected category. In this case
selecting the “Frameworks” category will allow you the ability to add a web framework, such as JSF. When
a framework is added to the project, all plumbing and configuration for the framework is completed. Also
at this point when choosing JSF, select the “Components” tab on the Frameworks properties and add any
other JSF libraries that will be in use. In this case, add “PrimeFaces” since the application developed in this
chapter will utilize the PrimeFaces component library.

Once frameworks have been configured, be sure to select the “Sources” category within the properties
dialog and select the “Source/Binary Format” pertaining to the JDK version that will be used for coding the
application. In this case, select 1.8, since Java 9 has not yet been certified to run on an application server at the
time of this writing. Next, select the “Build”->”Compile” category within the properties dialog and ensure that
the “Java Platform” select aligns with the one that has been chosen on the “Source/Binary Format” category.

Once these selections have been made, the configuration is complete. Choose “OK” in the project
properties. The project will be altered to include new views (index.xhtml and welcomePrimefaces.xhtml)
(Figure 17-5). The web.xml deployment descriptor will also be altered for JSF configuration. The welcome file
will now point to index.xhtml, and the FacesServlet, a key component of the JSF framework, will be configured.

Figure 17-5. Maven Web project fully configured for JSF

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

505

The web.xml Configuration for a JSF Application usually looks very similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">
 <context-param>
 <param-name>javax.faces.PROJECT_STAGE</param-name>
 <param-value>Development</param-value>
 </context-param>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>
 30
 </session-timeout>
 </session-config>
 <welcome-file-list>
 <welcome-file>faces/index.xhtml</welcome-file>
 </welcome-file-list>
</web-app>

At this point, right-click the NetBeans project and choose “Run.” This will cause the application to be
compiled and deployed to the application server that was selected in the project properties or at project
creation time (Figures 17-6 and 17-7).

Figure 17-6. Deployed HelloJsf application

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

506

That does it for the creation and configuration of a JSF project within NetBeans. In the next recipe, I will
delve into the world of JSF as the HelloJsf application is modified to add some functionality.

17-2. Developing a JSF Application
Problem
You have created a Maven web project configured with JSF, and you wish to add functionality to the
application.

Solution
Build the application such that it will contain an HTML form with a number of fields to populate. The form,
when submitted, will invoke a controller method.

First, create a Java class that will be used as a container to hold the data that is submitted in the form.
Create a new Java class in a package named org.java9recipes.hellojsf.model, and name it User.
In the class, create three private fields of type String for now: firstName, lastName, and email.
Next, generate accessor methods (getters and setters) for these fields by right-clicking in the file and
choosing “Refactor->Encapsulate Fields” from the contextual menu. This will open the “Encapsulate Fields”
dialog, in which you should select all fields for creation of accessor methods and click “Refactor” (Figure 17-8).

Figure 17-7. Selecting the “Welcome to PrimeFaces” link

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

507

Next, create the Contexts and Dependency Injection (CDI) managed bean. Right-click the project’s
“Source Packages” node, and create a new package named org.java9recipes.hellojsf.jsf, which will be
used to package all of the managed bean controller classes for the application. Next, create a new Java class
in the new package named HelloJsfController and make the class implement java.io.Serializable
so that it can be passivation capable. Annotate the class with @ViewScoped to indicate that this bean will be
managed in the view scope (more about scopes in Recipe 17-6). Also, annotate the class with @Named, which
makes the controller class injectable and also allows one to reference the class from expression language
within JSF views. Next, create a private field of type User, name the field user and encapsulate fields to
generate the accessor methods. Within the getUser() method that is generated, perform a check to see if the
user field is null, and if so, then instantiate a new User. At this point, the class should look as follows:

package org.java9recipes.hellojsf.jsf;

import javax.faces.view.ViewScoped;
import javax.inject.Named;
import org.java9recipes.hellojsf.model.User;

@Named
@ViewScoped
public class HelloJsfController implements java.io.Serializable {

Figure 17-8. Encapsulate Fields

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

508

 private User user;

 public User getUser() {
 if(user == null){
 user = new User();
 }
 return user;
 }

 public void setUser(User user) {
 this.user = user;
 }

}

Lastly, create a public method that has a void return type and name it createUser(). This method will
be invoked when someone clicks the submit button on the form. In the method, simply print a message to
the screen to indicate that the user has been successfully created. To do this, obtain a handle on the current
FacesContext instance, which pertains to the current session. Once obtained, add a new FacesMessage to it by
passing a null as the first parameter since the message will not be assigned to any single component, and pass
the message as the second parameter. Finally, set the user object to null so that a new user object can be created.

 ■ Note FacesContext contains state information regarding a JSF request. The FacesContext is updated
throughout the different phases of a JSF request processing lifecycle.

The method should look as follows once complete.

public void createUser(){
 FacesContext context = FacesContext.getCurrentInstance();
 context.addMessage(null, new FacesMessage("Successfully Added User: " +
 user.getFirstName() + " " + user.getLastName()));
 user = null;
}

Next, it is time to create the view. In this case, open the index.xhtml view file within NetBeans IDE, and
add the HTML markup and JSF components that will comprise the form.

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:p="http://primefaces.org/ui">
 <h:head>
 <title>Facelet Title</title>
 </h:head>
 <h:body>
 Hello from Facelets

 <h:link outcome="welcomePrimefaces" value="Primefaces welcome page" />

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

509

 <h:form>
 <p:messages id="messages"/>

 <p:outputLabel for="firstName" value="First: "/>
 <p:inputText id="firstName" value="#{helloJsfController.user.firstName}"/>

 <p:outputLabel for="lastName" value="Last: " />
 <p:inputText id="lastName" value="#{helloJsfController.user.lastName}"/>

 <p:outputLabel for="email" value="Email: " />
 <p:inputText id="email" value="#{helloJsfController.user.email}"/>

 <p:commandButton id="submitUser" value="Submit" ajax="false"
 action="#{helloJsfController.createUser()}"/>

 </h:form>
 </h:body>
</html>

Once the view has been generated and the CDI controller has been created, the application can be built
and ran by right-clicking the project and choosing “Run.” The screen will look similar to that in Figure 17-9.

How It Works
JSF was developed in 2004 by Sun Microsystems in an effort to help simplify web application development
and make web applications easier to manage/support. It was an evolution of the JavaServer Pages (JSP)
framework, adding a more organized development life cycle and the ability to more easily utilize modern
web technologies. JSF uses XML files in the XHTML format for view construction and Java classes for
application logic, allowing it to adhere to the MVC architecture. Every request in a JSF application is
processed by the FacesServlet. The FacesServlet is responsible for building the component trees,

Figure 17-9. JSF form

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

510

processing events, determining navigation, and rendering responses. JSF has now become a mature
web framework, and has many advantages over its previous renditions. There are also a large number of
component and functional libraries that can be used to extend JSF applications.

The framework is very powerful, including easy integration with technologies such as Ajax and HTML5
making it effortless to develop dynamic content. JSF works well with databases, using JDBC, Enterprise Java
Bean (EJB), or RESTful technology to work with the back end. JavaBeans, known as JSF managed beans, are
used for application logic and support the dynamic content within each view. They can adhere to different
life spans depending upon the scope that is used (Recipe 17-6). Views can invoke methods within the beans
to perform actions such as data manipulation and form processing. Properties can also be declared within
the beans and exposed within the views and evaluated utilizing a standard expression language, providing a
convenient way to pass values to and from the server. JSF allows developers to customize their applications
with preexisting validation and conversion tags that can be used on components with the view. It is also easy
to build custom validators, as well as custom components, that can be applied to components in a view. In a
nutshell, JSFs maturity makes it easy to develop just about any web application using the framework.

In this solution, a small application named HelloJsf is created. The application view contains a simple
HTML form for submitting a few fields of data, a button for submitting the form to the back end, and a
message component for displaying the response. The controller class named UserController is ViewScoped,
meaning that the scope of objects within the class will be retained for the life of the view. Once the user
navigates to another view or closes the window, the objects are destroyed. An object named User is used
as a container for passing the user data around within the application, and the User is declared within the
controller class and made available to the view via accessor methods.

private User user;

/**
 * @return the user
 */
public User getUser() {
 if(user == null){
 user = new User();
 }
 return user;
}

/**
 * @param user the user to set
 */
public void setUser(User user) {
 this.user = user;
}

CDI controller classes contain the business logic for the views of a JSF application. In the solution, a class
named HelloJsfController manages the processing and data for the HelloJsf application. The code for the
controller can be seen in Recipe 17-4. The controller is responsible for exposing fields and action methods
to the JSF views such that data can be submitted directly into the fields and processed accordingly. The
controller also facilitates communication with the end user as messages can be created to clearly indicate if
processing is successful or if issues have occurred, and the messages can be made available to the views.

The view for the application is an XHTML file, index.xhtml, and it includes an HTML form via the
JSF <h:form> tags. At the top of the view, the required namespaces are imported so that PrimeFaces and
JSF HTML components can be utilized. The form is composed of a number of HTML elements and JSF
components. The PrimeFaces components must be prefixed with “p” since the PrimeFaces namespace is
assigned to that letter. Each of the JSF components contains a number of attributes that can be used to set

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

511

values and configure the component’s behavior and functionality. The message component <p:messages>
is used to display messages that are made available via the FacesContext. The p:outputLabel components
render to an HTML labels, and the p:inputText components are rendered to HTML input elements of type
text. The value attribute of the p:inputText components contains JSF expression language, referencing
the HelloJsfController User object fields. Finally, the p:commandButton component renders an HTML
button (input element of type “submit”) to submit the form. The action attribute of the commandButton
also utilizes JSF expression language to invoke the controller action method named createUser(). The
ajax="false" attribute indicates that ajax should not be used to process the form values asynchronously,
but rather, the form should be submitted and refreshed.

This recipe packs a lot of information, but it demonstrates how easy it is to develop a simple JSF view
with a managed controller class. In a real-life application, the data is likely stored in an RDBMS, such as
Oracle or the like. The next recipe covers how to add a database and bind it to the application to store and
retrieve user objects.

17-3. Developing a Model for Data
Problem
You would like to store data from a Java EE application within a relational database.

Solution
Bind the data within the application to Java objects so that the objects can be used to store and retrieve data
from the database. In most cases, the Java Persistence API (JPA) is a suitable choice for working with data
in the form of Java objects. In the previous recipe, a JSF application was developed to submit User objects
to a CDI controller. In this recipe, the data will be bound to an entity class and then stored/retrieved from a
relational data store using JPA.

For the purposes of this recipe, the Apache derby database will be utilized. First, create a database table
to store the User objects. The following SQL can be used to generate the table, which includes a primary key
field identified as ID.

CREATE TABLE HELLO_USER (
ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(100),
LAST_NAME VARCHAR(50),
EMAIL VARCHAR(150));

Once the database table has been created, generate a corresponding entity class. For this solution,
NetBeans IDE will be used to automatically create the class. To do so, right-click the “Source Packages” node
of the HelloJsf project, and creating a package named org.java9recipes.hellojsf.entity. Next, right-click
the newly created package and select “New”->“Entity Classes from Database” from the contextual menu.
Once the “New Entity Classes from Database” dialog appears, select or create a JDBC Data Source for your
Apache Derby database. Once selected, choose the USER table from the listing of available tables and add it
to the “Selected Tables” list, then choose “Next.” On the dialog screens that follow, accept all defaults and
click through to “Finish” and create the entity class (Figure 17-10).

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

512

Once the entity class has been created, develop an EJB or JAX-RS RESTful web service class to work
with the corresponding entity. In this solution, an EJB will be developed using NetBeans IDE by first creating
another new package in the project named org.java9recipes.hellojsf.session. This package will be
used to hold the session beans or EJBs. Next, right-click the newly created package and select “Session Beans
for Entity Classes” from the contextual menu. This will open the dialog which allows entity class(es) to be
selected so that NetBeans IDE can automatically create the corresponding session beans (Figure 17-11).

Figure 17-10. Create entity class from database within NetBeans IDE

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

513

Once selected, choose “Next,” then finally select “Finish” to create the EJB. After doing so, NetBeans
IDE will generate an abstract class entitled AbstractFacade, which will be extended by any entity class that is
generated. The NetBeans IDE will also generate the session bean, HelloJsfFacade. Once these classes have
been generated, the model for the application is complete and the controller will be able to successfully
work with the data.

How It Works
The model for an enterprise application is one of the most important components, because data is at the
heart of the enterprise. To generate a model for a Java EE application, one must have a data store, usually
an RDBMS, and an object-relational mapping strategy must be coded to represent the database in a code
format. In this solution, the model is comprised of three classes: entity class, an abstract class containing
standard object-relational mapping methods, and an EJB that extends the abstract class.

An entity class is essentially a Plain Old Java Object (POJO) that represents a database table as a Java
object. The entity class has a field declared for each of the columns of the database table, and accessor
methods are defined for each of the fields. Annotations make entity classes work like magic, whereby a few
easy annotations perform the task of binding the class, and subsequently the fields, to the database table
and its columns. The @Entity annotation tells the compiler that this is an entity class. Table 17-1 lists some
common entity class annotations.

Figure 17-11. Select entity classes to generate session beans

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

514

The entity class is mapped to a named database table by annotating it with @Table, and specifying the
name of the database table as an attribute. NetBeans IDE also adds a couple of more annotations to the
entity class for convenience, those being @XmlRootElement, and @NamedQueries. The @XmlRootElement
annotation associates an XML root element with the class, thereby making the entity class available with
XML-based APIs, such as JAX-RS and JAXB. The @NamedQueries annotation provides a number of named
queries for the entity (one for each field), making it easy to query the entity class by name, rather than
writing JPQL each time it needs to be queried. Entity classes also always contain a primary key, which is
denoted via the @Id annotation, and each column of the database table are mapped to the class fields with @
Column. Bean validation can also be added to the fields of an entity class, providing validation for any input
or content that is added to the associated entity class field. Lastly, an entity class contains an equals()
method to help compare objects against entities, and a toString() method. The final entity class for
HelloUser should look as follows:

@Entity
@Table(name = "HELLO_USER")
@XmlRootElement
@NamedQueries({
 @NamedQuery(name = "HelloUser.findAll", query = "SELECT h FROM HelloUser h"),
 @NamedQuery(name = "HelloUser.findById", query = "SELECT h FROM HelloUser h

WHERE h.id = :id"),
 @NamedQuery(name = "HelloUser.findByFirstName", query = "SELECT h FROM HelloUser h

WHERE h.firstName = :firstName"),
 @NamedQuery(name = "HelloUser.findByLastName", query = "SELECT h FROM HelloUser h

WHERE h.lastName = :lastName"),
 @NamedQuery(name = "HelloUser.findByEmail", query = "SELECT h FROM HelloUser h

WHERE h.email = :email")})
public class HelloUser implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @NotNull
 @Column(name = "ID")
 private Integer id;
 @Size(max = 100)
 @Column(name = "FIRST_NAME")
 private String firstName;
 @Size(max = 50)
 @Column(name = "LAST_NAME")

Table 17-1. Common Entity Class Annotations

Annotation Description

@Entity Marks a class as an entity class.

@Table Maps the entity class to a database table.

@Id Denotes the primary key field of the entity class.

@XmlRootElement Maps class to an XML Element.

@NamedQueries List of @NamedQuery elements which map names to predefined queries.

@Embeddable Denotes an embedded class.

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

515

 private String lastName;
 // @Pattern(regexp="[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@

(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?",
message="Invalid email")//if the field contains e-mail address consider using this
annotation to enforce field validation

 @Size(max = 150)
 @Column(name = "EMAIL")
 private String email;

 public HelloUser() {
 }

 public HelloUser(Integer id) {
 this.id = id;
 }

 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 @Override
 public int hashCode() {
 int hash = 0;
 hash += (id != null ? id.hashCode() : 0);

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

516

 return hash;
 }

 @Override
 public boolean equals(Object object) {
 // TODO: Warning - this method won't work in the case the id fields are not set
 if (!(object instanceof HelloUser)) {
 return false;
 }
 HelloUser other = (HelloUser) object;
 if ((this.id == null && other.id != null) || (this.id != null && !this.

id.equals(other.id))) {
 return false;
 }
 return true;
 }

 @Override
 public String toString() {
 return "org.java9recipes.hellojsf.entity.HelloUser[id=" + id + "]";
 }

}

Once an entity class has been generated, a session bean can be generated to facilitate work with the
entity class. The session bean (a.k.a. EJB) declares a PersistenceContext, which provides communication
with the underlying data store. It then calls upon the PersistenceContext to perform any number of JPA tasks,
such as creating, updating, or deleting records from a database via the entity class data. The NetBeans IDE
generates the AbstractFacade abstract class, which is extended by all of the entity classes for the project.
This class essentially contains the methods that allow for basic manipulation of the entities: create(),
findAll(), edit(), and remove(), enabling the developer to automatically gain access to such methods
without recoding for each entity class. This leaves the developer with a fully functional session bean without
any coding. If additional queries or work against an entity needs to be created, the developer can modify the
contents of the session bean, in this case HelloJsfFacade, accordingly.

An EJB must be annotated with either @Stateful or @Stateless to designate whether the class will be
a stateful or stateless session bean. A stateful session bean can be bound to a single user session, allowing
state to be managed throughout that user’s session. Stateless is more often used such that the session bean
will be shared across all of the user sessions in the application. The simple stateless session bean named
HelloJsfFacade looks as follows:

@Stateless
public class HelloUserFacade extends AbstractFacade<HelloUser> {

 @PersistenceContext(unitName = "org.java9recipes_HelloJsf_war_1.0-SNAPSHOTPU")
 private EntityManager em;

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

517

 public HelloUserFacade() {
 super(HelloUser.class);
 }

}

The classes and code that has been discussed in this recipe constitute the model of an application. In
summary, the model binds the application to an underlying data store, thus making it possible to create,
remove, update, and delete data using Java objects, rather than working directly with the database via SQL.
For more information on developing entity classes, please see the Java EE Tutorial online: https://docs.
oracle.com/javaee/7/tutorial/.

17-4. Writing View Controllers
Problem
You have developed a JSF view which contains bound fields and a form, and you need to create the business
logic to process the form and facilitate work with the session bean.

Solution
Create a managed bean controller class (CDI bean), which can be used to bind actions and fields to JSF
views and facilitate work that needs to be performed within the EJB session bean. In this solution, the
HelloJsfController class, seen in the following, is used as the CDI controller.

@Named
@ViewScoped
public class HelloJsfController implements java.io.Serializable {

 private User user;

 /**
 * @return the user
 */
 public User getUser() {
 if(user == null){
 user = new User();
 }
 return user;
 }

 /**
 * @param user the user to set
 */
 public void setUser(User user) {
 this.user = user;
 }

 public void createUser(){
 FacesContext context = FacesContext.getCurrentInstance();

https://docs.oracle.com/javaee/7/tutorial/
https://docs.oracle.com/javaee/7/tutorial/

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

518

 context.addMessage(null, new FacesMessage("Successfully Added User: " +
 user.getFirstName() + " " + user.getLastName()));
 user = null;
 }

}

In the previous recipe, a data model was added to the HelloJsf application. Next, the controller class and
view needs to be modified to make use of the data model. To modify the controller, simply add a new private
field of type HelloUser, and generate accessor methods for it. In the getHelloUser method, check first to see if
the field is null, and if so, instantiate a new instance.

...
private HelloUser helloUser;
...
public HelloUser getHelloUser() {
 if(helloUser == null){
 helloUser = new HelloUser();
 }
 return helloUser;
}

public void setHelloUser(HelloUser helloUser) {
 this.helloUser = helloUser;
}
...

Next, inject the EJB into the controller class so that a new HelloUser can be persisted. To do so, inject a
new private field of type HelloUserFacade as follows:

@EJB
private HelloUserFacade helloUserFacade;

Lastly, create a new action method named createAndPersistUser(), which will generally do the same
as the createUser() method. However, this new method will persist a HelloUser object into the database by
calling upon the EJB.

public void createAndPersistUser(){
 FacesContext context = FacesContext.getCurrentInstance();
 helloUserFacade.create(helloUser);
 context.addMessage(null, new FacesMessage("Successfully Persisted User: " +
 user.getFirstName() + " " + user.getLastName()));
 helloUser = null;
}

The data model has now been integrated into the controller logic. When a user clicks the button in
the view, it should invoke the action method createAndPersistUser() within the controller. The fields
contained within the form are processed via the controller as well since the User object was injected and
exposed to the user interface.

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

519

How It Works
A JSF managed bean controller is used to facilitate work between the views and the session beans of a
Java EE application. In the past, managed bean controllers used to adhere to a different set of rules, as JSF
contained its own set of annotations for developing managed beans. In recent releases of Java EE, JSF-
specific managed beans have been phased out, and CDI beans have taken their place, allowing for a more
cohesive and universal controller class.

In the solution, the class implements java.io.Serializable since it may need to be persisted to disk
in the event of the session ending abruptly. The class is annotated with @Named to make it injectable and
accessible via JSF expression language. The class is also annotated with a designated CDI scope, in this case
@ViewScoped, to indicate the CDI scope of the controller. There are a number of different scopes, these are
covered in Recipe 17-6. ViewScoped means that the controller state will be saved for the lifetime of the view.
The User object is declared within the controller as a private field, and it is made accessible as a property
via the accessor methods. Lastly, the class contains a method named createUser(), which is public, and
it creates a FacesMessage object and places it into the current FacesContext to display onscreen. The user
object is then set to null.

The modified version of the controller class, which includes the data model, declares an instance field
of type HelloUser. Accessor methods for the HelloUser field are created, and within the getter method a new
instance is created if the field is null. The HelloUserFacade is injected into the controller so that it can be
utilized to perform data model transactions (a.k.a.: database transactions). The createAndPersistUser()
method calls upon the HelloUserFacade create() method, passing a HelloUser instance to persist the
object into the database. Similarly, if one wished to edit a HelloUser object, the HelloUserFacade edit()
method can be invoked. Lastly, if one wishes to remove a user, the remove() method can be invoked.

A controller class may contain any number of action methods and field declarations, however, it is
important to manage the size of a controller such that the controller is not responsible for performing too
much work. If a controller class contains too much functionality, for instance if it is used to back more than
one view, then it can become cumbersome and difficult to maintain. To learn more about CDI scopes for
controller classes, please see Recipe 17-6.

17-5. Developing Asynchronous Views
Problem
Rather than follow the old-style submit and response web application, you would like to generate a modern
ui which will asynchronously submit data and post responses without refreshing the browser page or re-
rendering the view to provide a better user experience.

Solution
Incorporate Asynchronous JavaScript and XML into your application to asynchronously send data to the
server and render responses without refresh. There are a number of ways to create an AJAX-based view
for a JSF application, and this recipe will demonstrate how to leverage the PrimeFaces AJAX API. In this
solution, a new view will be created named helloAjax.xhtml (Figure 17-12), and it will generally be a copy
of the original index.xhtml view which utilizes AJAX to submit the form. The view will also asynchronously
update the messages component, displaying the message that has been generated by the controller class. A
dataTable component is also added to helloAjax.xhtml, which is asynchronously updated to display the list
of users that has been created and persisted to the database. The enhanced view looks as follows:

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

520

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:p="http://primefaces.org/ui">
 <h:head>
 <title>Facelet Title</title>
 </h:head>
 <h:body>
 Hello from Facelets

 <h:link outcome="welcomePrimefaces" value="Primefaces welcome page" />

 <h:form>
 <h:inputText id="firstNameType" value="#{helloJsfController.freeText}">
 <f:ajax execute="@this" event="keyup" listener="#{helloJsfController.

displayText}"
 render="messages"/>
 </h:inputText>
 <p:messages id="messages"/>

 <p:panelGrid columns="2" style="width: 100%">

 <p:outputLabel for="firstName" value="First: "/>
 <p:inputText id="firstName" value="#{helloJsfController.user.firstName}"/>

 <p:outputLabel for="lastName" value="Last: " />
 <p:inputText id="lastName" value="#{helloJsfController.user.lastName}"/>

 <p:outputLabel for="email" value="Email: " />
 <p:inputText id="email" value="#{helloJsfController.user.email}"/>
 </p:panelGrid>

 <p:commandButton id="submitUser" value="Submit"
 action="#{helloJsfController.createUser()}"
 update="messages, helloUsers"/>

 <p:dataTable id="helloUsers" var="user" value="#{helloJsfController.

helloUserList}">
 <p:column headerText="First Name">
 <h:outputText value="#{user.firstName}"/>
 </p:column>
 <p:column headerText="Last Name">
 <h:outputText value="#{user.lastName}"/>
 </p:column>
 <p:column headerText="Email">
 <h:outputText value="#{user.email}"/>
 </p:column>
 </p:dataTable>

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

521

 </h:form>
 </h:body>
</html>

How It Works
It is very easy to apply the principles of AJAX to a JSF view. There are a few different ways to apply AJAX
functionality, but the easiest is to utilize a sophisticated user interface framework, such as PrimeFaces,
which includes the built-in AJAX functionality. In fact, many of the PrimeFaces components perform
AJAX submits by default, so they include an ajax attribute that can be set to false in order to operate in a
synchronous manner.

In the solution to this recipe, a PrimeFaces commandButton is utilized to asynchronously send
the form contents to the controller class. Once the action method is invoked, the data is persisted and a
FacesMessage is generated, then the response is sent back to the view. When the view receives the response,
it asynchronously updates the components that are listed in the commandButton update attribute, those
being the messages component, and the helloUsers dataTable component.

It is possible to asynchronously submit the contents of a JSF component without PrimeFaces by
embedding the <f:ajax/> tag between the component’s opening and closing tag. The f:ajax tag makes
use of an execute attribute to indicate which part of the view will be executed or submitted asynchronously,
an onevent attribute to indicate which JavaScript event should invoke the asynchronous action, a listener
attribute to bind an action method, amongst others. For example, the following inputText component has
been made asynchronous via the use of the f:ajax tag:

<h:inputText id="firstNameType" value="#{helloJsfController.freeText}">
 <f:ajax execute="@this" event="keyup" listener="#{helloJsfController.displayText}"
 render="messages"/>
</h:inputText>

Figure 17-12. Asychronous form

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

522

In the example, when the keyup event occurs, the value that is typed within the inputText field is
submitted to the helloJsfController.freeText property. The displayText() action method is also
invoked, which places the contents of the freeText property into a FacesMessage, as seen in the following.
Once the action is invoked and the request is sent back, the messages component is updated because the
render attribute of f:ajax specifies its id.

public void displayText(AjaxBehaviorEvent evt){
 FacesContext context = FacesContext.getCurrentInstance();
 System.out.println("test: " + freeText);
 context.addMessage(null, new FacesMessage(freeText));
}

There are a number of different techniques that can be used to asynchronously update JSF views. There
are even more asynchronous components that are available amongst the many UI libraries that are available.
Although this solution demonstrates the use of PrimeFaces, as well as the f:ajax tag, small books could be
written on the topic. JSF is a mature web framework, offering a plethora of tools to get the job done. Choose
which works best for the situation, and enjoy the ease of working with AJAX and limiting exposure to the
underlying JavaScript.

17-6. Applying the Correct Scope
Problem
You are developing a JSF application, and you want to be sure that the controllers are configured to remain
in scope for the correct amount of time, depending upon functionality and requirement.

Solution
Utilize CDI scopes to apply desired scoping to controller classes. For instance, if a controller class
contains logic and data that is pertinent throughout the entire session, annotate the class with the javax.
enterprise.context.SessionScoped. However, if a controller class is only pertinent at the request level,
annotate the class with javax.enterprise.context.RequestScoped. Apply each of the different scopes to
the controller class(es) according to this logic.

How It Works
A controller class scope can change the way that an application functions entirely. The amount of time
in which a controller is in scope can make a big difference across the individual views of an application.
Fortunately, it is an easy task to apply different scopes to different controllers. However, programming
methodology changes drastically depending upon the scope in which a controller class has been placed.
CDI offers a number of scopes that can be utilized, as seen in Table 17-2.

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

523

As mentioned previously, one thing to keep in mind while applying scope is a controller’s chosen scope
will affect the rest of the application. If a controller will be containing data that will be of use throughout
a user’s session, then @SessionScoped may be the best choice. Just keep in mind that all data within a @
SessionScoped bean will be retained throughout the session. Therefore, if a List is declared and populated
within the bean, the content of the bean must be refreshed or altered programmatically. Such is not the
case if using some scope that causes a bean to be refreshed throughout the course of a user’s session. For
instance, if the same bean is @RequestScoped, then the data in the List will be requeried and repopulated
each time a request is made.

 ■ Note Scoping can also have a big impact on interaction with other managed beans. It is important to inject
beans of the same scope

17-7. Generating and Applying a Template
Problem
You would like to apply the same visual template across all the views of an application.

Solution
Utilize a Facelets template and apply to each view. To create a template, you must first develop a new
XHTML view file and then add the appropriate HTML/JSF/ XML markup to it. Content from other views
will displace the ui:insert elements in the template once the template has been applied to one or more
JSF views. The following source is that of a template named template.xhtml this is the template that will be
applied to all views within the HelloJsf application:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:p="http://primefaces.org/ui">

Table 17-2. CDI Scopes

Scope Duration

@ApplicationScoped State is shared across all users’ sessions within an application.

@Dependent Object receives the same lifecycle as a client bean. (Default scope)

@ConversationScoped Developer controls the start and end of the conversation, and state is
maintained throughout the entire conversation.

@RequestScoped State lasts for the duration of a single HTTP request.

@SessionScoped State lasts for the duration of a user’s session.

javax.faces.view.ViewScoped State lasts as long as NavigationHandler does not cause navigation to a
different viewId.

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

524

 <h:head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <h:outputStylesheet library="css" name="default.css"/>
 <h:outputStylesheet library="css" name="cssLayout.css"/>

 <title>Hello JSF</title>

 </h:head>

 <h:body>

 <p:growl id="growl" life="3000" />

 <p:layout fullPage="true">
 <p:layoutUnit position="north" size="65" header="#{bundle.AppName}">
 <h:form id="menuForm">
 <p:menubar>
 <p:menuitem value="Home" outcome="/index.xhtml" icon="ui-icon-home"/>

 <p:menuitem value="Hello Main" outcome="/helloUser.xhtml" />
 <p:menuitem value="PrimeFaces" outcome="/welcomePrimefaces.xhtml" />
 <p:menuitem value="Hello Ajax" outcome="/helloAjax.xhtml" />

 </p:menubar>
 </h:form>
 </p:layoutUnit>

 <p:layoutUnit position="south" size="60">
 <ui:insert name="footer"/>
 </p:layoutUnit>

 <p:layoutUnit position="center">
 <ui:insert name="content"/>
 </p:layoutUnit>

 </p:layout>

 </h:body>

</html>

The template defines the overall structure for the application views. However, it can use a CSS style
sheet to declare the formatting for each of the elements within the template. The style sheet should be
contained within a resources directory in the application so that it will be accessible to the views. It is
also possible to utilize JSF EL within a template. If EL is utilized, typically a session or application scoped
managed bean drives the content. A JSF client view of the template would contain <ui:composition/>
tags surrounding the view content, and <ui:define/> tags surrounding the named segment of markup
that belongs to the corresponding <ui:insert/> tags within the template. The following view would be an
example of a client view of the template shown previously.

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

525

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:p="http://primefaces.org/ui"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">

 <ui:composition template="layout/template.xhtml">

 <ui:define name="content">
 Hello from Facelets

 <h:link outcome="welcomePrimefaces" value="Primefaces welcome page" />

 <h:form>
 <p:messages id="messages"/>

 <p:outputLabel for="firstName" value="First: "/>
 <p:inputText id="firstName" value="#{helloJsfController.user.firstName}"/>

 <p:outputLabel for="lastName" value="Last: " />
 <p:inputText id="lastName" value="#{helloJsfController.user.lastName}"/>

 <p:outputLabel for="email" value="Email: " />
 <p:inputText id="email" value="#{helloJsfController.user.email}"/>

 <p:commandButton id="submitUser" value="Submit"
 action="#{helloJsfController.createUser()}"
 update="messages, helloUsers"/>

 <p:dataTable id="helloUsers" var="user" value="#{helloJsfController.

helloUserList}">
 <p:column headerText="First Name">
 <h:outputText value="#{user.firstName}"/>
 </p:column>
 <p:column headerText="Last Name">
 <h:outputText value="#{user.lastName}"/>
 </p:column>
 <p:column headerText="Email">
 <h:outputText value="#{user.email}"/>
 </p:column>
 </p:dataTable>

 </h:form>
 </ui:define>

 </ui:composition>

</html>

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

526

How It Works
To create a unified application experience, the views should be coherent in that they look similar and
function in a uniform manner. The idea of developing web page templates has been around for a number
of years, but unfortunately many template implementations contain duplicate markup on every application
page. While duplicating the same layout for every separate web page works, it creates a maintenance
nightmare. What happens when there is a need to update a single link within the page header? Such a
conundrum would cause a developer to visit and manually update every web page for an application if the
template was duplicated on every page. The Facelets view definition language provides a robust solution for
the development of view templates, and it is one of the major bonuses of working with the JSF technology.

Facelets provides the ability for a single template to be applied to one or more views within an
application. This means a developer can create one view that constructs the header, footer, and other
portions of the template, and then this view can be applied to any number of other views that are responsible
for containing the main view content. This technique mitigates issues such as changing a single link within
the page header, because now the template can be updated with the new link, and every other view within
the application will automatically reflect the change.

To create a template using Facelets, create an XHTML view, declare the required namespaces, and then
add HTML, JSF, and Facelets tags accordingly to design the layout you desire. The template can be thought
of as an “outer shell” for a web view, in that it can contain any number of other views within it. Likewise, any
number of JSF views can have the same template applied, so the overall look and feel of the application will
remain constant.

Facelets tags that are responsible for controlling the view layout. To utilize these Facelets tags, you’ll
need to declare the XML namespace for the Facelets tag library in the <html> element within the template.
Note that the XML namespace for the standard JSF tag libraries is also specified here.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
...

Facelets contains a number of special tags that can be used to help control page flow and layout.
Table 17-3 in the lists the Facelets tags that are useful for controlling page flow and layout. The only Facelets
tag that is used within the template for this example is ui:insert. The ui:insert tag contains a name
attribute, which is set to the name of the corresponding ui:define element that will be included in the view.
Taking a look at the source for this example, you can see the following ui:insert tag:

<ui:insert name="content">Content</ui:insert>

ChApTer 17 ■ JAVA WeB AppLICATIoNS WITh JAVASerVer FACeS

527

If a view that uses the template, a.k.a. template client, it must list the template within the view
<ui:composition> tag. Within the <ui:composition>, the view must specify a <ui:define> tag with the
same name as the <ui:insert> name, then any content that is placed between the opening and closing
<ui:define> tags will be inserted into the view in that location. However, if the template client does not
contain a <ui:define> tag with the same name as the <ui:insert> tag, then the content between the
opening and closing <ui:insert> tags within the template will be displayed.

Summary
Development of Java EE web applications can be a very large topic, and this chapter just touched upon a few
of the many technologies that can be utilized. The JSF web framework is mature and robust, and offers many
options for developing sophisticated and easy to use applications. Combined with the underlying Java EE
technologies including EJB, JAX-RS, JPA, and others, Java web development is powerful and it is easy to get
started.

Table 17-3. Facelets Page Control and Template Tags

Tag Description

ui:component Defines a template component and specifies a file name for the component

ui:composition Defines a page composition and encapsulates all other JSF markup

ui:debug Creates a debug component, which captures debugging information, namely, the
state of the component tree and the scoped variables in the application, when the
component is rendered

ui:define Defines content that is inserted into a page by a template

ui:decorate Decorates pieces of a page

ui:fragment Defines a template fragment, much like ui:component, except that all content
outside of tag is not disregarded

ui:include Allows another XHTML page to be encapsulated and reused within a view

ui:insert Inserts content into a template

ui:param Passes parameters to an included file or template

ui:repeat Iterates over a collection of data

ui:remove Removes content from a page

529© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_18

CHAPTER 18

Nashorn and Scripting

In Java 6, the javax.script package was included for incorporating scripting languages with Java. It enabled
developers to embed code written in scripting languages directly into Java applications. This began a new
generation of polyglot applications, as developers were able to construct Java solutions containing scripts
written in languages such as JavaScript and Python. The JavaScript engine that was used in Java 6 was called
Rhino. It is an implementation of the JavaScript engine, developed entirely in Java. While it contains a full
JavaScript implementation, it is an older engine and is no longer compliant with current JavaScript Standards.

Java 8 introduced a new JavaScript engine called Nashorn. It is based on the ECMAScript-262 Edition 5.1
language specification and supports the javax.script API introduced in Java 6. Besides bringing a modern
JavaScript engine to the Java platform, Nashorn also contains a few new features that make developing
JavaScript and Java solutions easier and more robust. The new command-line tool called jjs provides
scripting abilities above and beyond those that were available with jrunscript. Nashorn also has full access
to the JavaFX 8 API, allowing developers to construct JavaFX applications completely in JavaScript.

JDK 9 increases the usability of Nashorn even further by including a selected set of features from
EMCAScript 6 specification at release. Over time, more features from EMCAScript 6 will likely be
incorporated in updates of JDK 9 and subsequent releases of the JDK.

This chapter touches on using the Nashorn engine to construct solutions that integrate the worlds
of Java and JavaScript. It does not cover all of the features available with Nashorn, but you with provides
enough to get up and running.

18-1. Loading and Executing JavaScript from Java
Problem
You want to load and execute JavaScript code from within your Java application.

Solution
Execute the JavaScript using the Nashorn engine, the next-generation JavaScript engine that is part of Java 8
and is used to execute JavaScript code. The Nashorn engine can be called upon to process in-line JavaScript,
or an external JavaScript file directly within Java code. Execute an external JavaScript file or in-line JavaScript
code using the Java ScriptEngineManager. Once you’ve obtained a ScriptEngineManager(), you get an
instance of the Nashorn engine to use for JavaScript code execution.

In the following example, a Nashorn ScriptEngine is used to invoke a JavaScript file that resides on the
local file system.

Chapter 18 ■ NashorN aNd sCriptiNg

530

public static void loadExternalJs(){
 ScriptEngineManager sem = new ScriptEngineManager();
 ScriptEngine nashorn = sem.getEngineByName("nashorn");
 try {
 nashorn.eval("load('src/org/java9recipes/chapter18/js/helloNashorn.js')");
 } catch (ScriptException ex) {
 Logger.getLogger(NashornInvoker.class.getName()).log(Level.SEVERE, null, ex);
 }
}

The code that resides in the helloNashorn.js file is as follows:

print("Hello Nashorn!");

Next, let’s take a look at some in-line JavaScript. In the following example, a Nashorn ScriptEngine is
obtained, and then a JavaScript function is created for obtaining the gallons of water for an in-ground pool.
The function is then executed to return a result.

 public static void loadInlineJs(){
 ScriptEngineManager sem = new ScriptEngineManager();
 ScriptEngine nashorn = sem.getEngineByName("nashorn");
 try {
 nashorn.eval("function gallons(width, length, avgDepth){var volume =
 avgDepth * width * length;" +
 "return volume * 7.48; }");
 nashorn.eval("print('Gallons of water in pool: '+ gallons(16,32,5))");
 } catch (ScriptException ex) {
 Logger.getLogger(NashornInvoker.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

}

Results:

run:
Hello Nashorn!
Gallons of water in pool: 19148.800000000003

How It Works
There are a couple of different ways to use the Nashorn engine to execute JavaScript within a Java
application. For example, Nashorn can be invoked from the command-line interface (CLI) named jjs, or
the ScriptEngineManager can be used. In this recipe, the example covers two such techniques for executing
JavaScript with Nashorn, and each of them requires the use of the ScriptEngineManager, which has been part
of the JDK since Java 6. To obtain a Nashorn engine from the ScriptEngineManager, first create a new instance
of the ScriptEngineManager. Once obtained, you can obtain a particular engine by passing the String value
that represents the desired engine to the getEngineByName() method. In this case, you pass the name nashorn
to obtain the Nashorn engine for working with JavaScript. After obtaining the Nashorn engine, you are ready
to invoke a JavaScript file or evaluate inline JavaScript code by calling on the engine’s eval() method.

Chapter 18 ■ NashorN aNd sCriptiNg

531

The first code example in this recipe demonstrates how to pass a JavaScript file to the engine for
invocation. The helloNashorn.js in this case contains a single line of JavaScript that prints a message without
returning any results. Perhaps the most difficult part of executing a .js file is that you must ensure that the file
is contained in the class path, or that you are passing the full path to the file to the eval() method.

The second code example demonstrates how to write and evaluate inline JavaScript. First, a function
identified as gallons is defined and it accepts three parameters and returns the number of gallons based
on the width, length, and average depth of a pool. In a subsequent eval() call, the function is invoked,
passing parameters and returning a result. The important point to note in this example is that although the
JavaScript spanned multiple eval() calls, the scope is maintained so that each eval() call within the engine
can see objects created within previous calls.

Since Java 6, it has been possible to work with scripting languages from within Java code. The Nashorn
engine is obtained in the same manner as others, by passing a String to indicate the engine by name.
The difference between this JavaScript engine and the previous rendition Rhino is that the new JavaScript
engine is much faster and provides better compliance with the EMCA-normalized JavaScript specification.
Since JDK 8 Update 40, some features from the updated EMCAScript 6 specification have been ported into
Nashorn. Since there are a large number of new features in the updated specification, they will be added
over time through various releases of the JDK. JDK 9 introduces support for a significant subset of the
EMCAScript 6 features.

18-2. Executing JavaScript via the Command Line
Problem
You want to execute JavaScript via the command line for prototyping or execution purposes

Solution 1
Invoke the jjs tool, which comes as part of Java. To execute a JavaScript file, invoke the jjs tool from the
command line, and then pass the fully qualified name (path included if not in CLASSPATH) of a JavaScript file
to execute. For example, to execute helloNashorn.js, use the following command:

jjs /src/org/java9recipes/chapter18/js/helloNashorn.js
Hello Nashorn!

To pass arguments to a JavaScript file for processing, call the script in the same manner, but include
trailing dashes --, followed by the argument(s) you want to pass. For example, the following code resides
within a file named helloParameter.js:

#! /usr/bin/env
var parameter = $ARG[0];
print(parameter ? "Hello ${parameter}!": "Hello Nashorn!");

Use the following command to invoke this JavaScript file, passing the parameter Oracle:

jjs /src/org/java9recipes/chapter18/js/helloParameter.js – Oracle

Here is the result:

Hello Oracle!

Chapter 18 ■ NashorN aNd sCriptiNg

532

The jjs tool can also be utilized as an interactive interpreter by simply executing jjs without any
options. The command interpreter allows you to work in a fully interactive JavaScript environment. In the
following lines of code, the jjs tool is invoked to open a command shell, and a function is declared and
executed. Finally, the command shell is exited.

jjs
jjs> function gallon(width, length, avgDepth){return (avgDepth * width * length) * 7.48;}
function gallon(width, length, avgDepth){return (avgDepth * width * length) * 7.48;}
jjs> gallon(16,32,5)
19148.800000000003
jjs> exit()

Solution 2
Make use of the JSR 223 jrunscript tool to execute JavaScript. To execute a JavaScript file, invoke the
jrunscript tool from the command line and pass the fully qualified name (path included if not in CLASSPATH)
of a JavaScript file to execute. For example, to execute helloNashorn.js, use the following command:

jrunscript /src/org/java9recipes/chapter18/js/helloNashorn.js
Hello Nashorn!

Perhaps you want to pass JavaScript code inline, rather than executing a JavaScript file. In this case, you
would invoke jrunscript with the –e flag and pass the script in-line.

jrunscript -e "print('Hello Nashorn')"
Hello Nashorn

 ■ Note string interpolation is not available if you’re using the jrunscript utility. therefore, you must use
concatenation to achieve a similar effect. to learn more about string interpolation, refer to recipe 18-3.

Similarly to jjs, the jrunscript tool also accepts arguments to pass to a JavaScript file for processing.
To pass arguments using the jrunscript tool, simply append them to the command when invoking the
script, with each argument separated by spaces. For instance, to call the file helloParameter.js and pass an
argument, execute the following command:

jrunscript src/org/java9recipes/chapter18/js/helloParameter.js Oracle

Also similar to jjs, the jrunscript tool can execute an interactive interpreter, allowing you to develop
and prototype on the fly as seen in the following illustration.

Chapter 18 ■ NashorN aNd sCriptiNg

533

How It Works
Since the release of Java SE 6, it has been possible to work with scripting languages from Java. In this recipe,
two solutions were demonstrated for executing JavaScript via the command line or terminal. In Solution
1, you looked at the jjs command-line tool, which was new in Java 8. This tool can be used to invoke one
or more JavaScript files, or to start an interactive Nashorn interpreter. In the example, you took a look at
how to invoke a JavaScript file with and without passing arguments. You also took a look at how to invoke
jjs as an interactive interpreter. The tool contains several useful options. To see an entire list, refer to the
documentation online at http://docs.oracle.com/javase/9/docs/technotes/tools/windows/
jjs.html. The jjs tool is the desired tool for use with Nashorn because it contains many more options than
the jrunscript tool, which was demonstrated in Solution 2.

The jrunscript tool was introduced in Java 6 and it allows you to execute scripts from the command
line or invoke an interactive interpreter, similar to jjs. The difference is that jrunscript also allows you to
use other scripting languages by passing the –l flag, along with the scripting engine name.

jrunscript –l js myTest.js

The jrunscript tool also contains options, but it is limited in comparison to those available with jjs. To see
all of the options available for jrunscript, refer to the online documentation at http://docs.oracle.com/
javase/9/docs/technotes/tools/windows/jrunscript.html.

18-3. Embedding Expressions in Strings
Problem
You want to refer to expressions or values within a String when invoking JavaScript via the jjs utility.

Solution
When using Nashorn as a shell scripting language via the jjs tool, it is possible to embed expressions or
values in Strings by enclosing them within dollar signs $ and curly brackets {} in a double quoted String of
text. The following JavaScript resides in a file named recipe18_3.js, and it can be executed by the jjs tool
as a shell script. The String interpolation works in this example because the script has been made executable
by adding the shebang as the first line. Refer to Recipe 18-10 for more information on the shebang.

#! /usr/bin/env
function gallons(width, length, avgDepth){var volume = avgDepth * width * length;
 return volume * 7.48; }
print("Gallons of water in pool: ${gallons(16,32,5)}");

Execute the JavaScript file via jjs as follows:

jjs src/org/java9recipes/chapter18/js/recipe18_3.js
Gallons of water in pool: 19148.800000000003

 ■ Note this example Javascript file cannot be run from a scriptengineManager because it contains a
shebang (it is an executable script).

http://docs.oracle.com/javase/9/docs/technotes/tools/windows/jjs.html
http://docs.oracle.com/javase/9/docs/technotes/tools/windows/jjs.html
http://docs.oracle.com/javase/9/docs/technotes/tools/windows/jrunscript.html
http://docs.oracle.com/javase/9/docs/technotes/tools/windows/jrunscript.html

Chapter 18 ■ NashorN aNd sCriptiNg

534

How It Works
When you’re using Nashorn’s shell scripting features, you can embed expressions or values in double-
quoted Strings of text by enclosing them in dollar signs and curly braces ${...}. This concept is known a
String interpolation in the Unix world, and Nashorn borrows the concept to make it easy to develop shell
scripts for evaluating and displaying information. String interpolation makes it possible alter the contents of
a String, replacing variables and expressions with values. Using this feature, it is easy to embed the contents
of a variable in-line within a String without performing manual concatenation.

In the example for this recipe, a script that is stored within a .js file contains an embedded expression,
and it calls on a JavaScript function to return the calculated number of liquid gallons. This is likely the most
useful technique for real-world scenarios, but it is also possible to make use of embedded expressions when
using the jjs tool as an interactive interpreter.

jjs -scripting
jjs> "The current date is ${Date()}"
The current date is Wed Apr 30 2014 23:44:41 GMT-0500 (CDT)

 ■ Note if you’re not using the scripting features of jjs, string interpolation will not be available. also, double
quotes must be placed around the string of text, as strings in single quotes are not interpolated. in the example,
the shebang (#! usr/bin/env) is used to make the script executable, thereby invoking the scripting features of
jjs.

18-4. Passing Java Parameters
Problem
You want to pass Java parameters to JavaScript for use.

Solution
Utilize a javax.script.SimpleBindings instance to provide a String-based name for any Java field, and
then pass the SimpleBindings instance to the JavaScript engine invocation. In the following example, a Java
String parameter is passed to the Nashorn engine, and then it’s printed via JavaScript.

String myJavaString = "This is a Java parameter!";
SimpleBindings simpleBindings = new SimpleBindings();
simpleBindings.put("myString", myJavaString);
ScriptEngineManager sem = new ScriptEngineManager();
ScriptEngine nashorn = sem.getEngineByName("nashorn");
nashorn.eval("print (myString)", simpleBindings);

Here is the result:

This is a Java parameter!

More than one Java type value can be passed in a SimpleBindings instance. In the following example, three
float values are passed in a single SimpleBindings instance, and then they’re passed to a JavaScript function.

Chapter 18 ■ NashorN aNd sCriptiNg

535

float width = 16;
float length = 32;
float depth = 5;
SimpleBindings simpleBindings2 = new SimpleBindings();
simpleBindings2.put("globalWidth", width);
simpleBindings2.put("globalLength", length);
simpleBindings2.put("globalDepth", depth);
nashorn.eval("function gallons(width, length, avgDepth){var volume = avgDepth * width *
length; "+
 " return volume * 7.48; } " +
 "print(gallons(globalWidth, globalLength, globalDepth));", simpleBindings2);

Result:

19148.800000000003

How It Works
To pass Java field values to JavaScript, use the javax.script.SimpleBindings construct, which is basically a
HashMap that can be used for binding and passing values to the ScriptEngineManager. When values are passed
to the Nashorn engine in this manner, they can be accessed as global variables within the JavaScript engine.

18-5. Passing Return Values from JavaScript to Java
Problem
You want to invoke a JavaScript function and return the result to the Java class that invoked it.

Solution
Create a ScriptEngine for use with Nashorn and then pass the JavaScript function to it for evaluation. Next,
create an Invocable from the engine and then call its invokeFunction() method, passing the String-based
name of the JavaScript function, along with an array of the arguments to be used. In the following example,
a JavaScript function named gallons is passed to the ScriptEngine for evaluation, and it is later invoked
using this technique. It then returns a double value.

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("nashorn");

// JavaScript code in a String
String gallonsFunction = "function gallons(width, length, avgDepth){var volume = avgDepth *
width * length; "
 + " return volume * 7.48; } ";
try {
 // evaluate script
 engine.eval(gallonsFunction);
 double width = 16.0;
 double length = 32.0;
 double depth = 5.0;

Chapter 18 ■ NashorN aNd sCriptiNg

536

 Invocable inv = (Invocable) engine;
 double returnValue = (double) inv.invokeFunction("gallons",
 new Double[]{width,length,depth});
 System.out.println("The returned value:" + returnValue);

} catch (ScriptException | NoSuchMethodException ex) {
 Logger.getLogger(Recipe18_5.class.getName()).log(Level.SEVERE, null, ex);
}

Here’s the result:

run:
The returned value:19148.800000000003

In the following example, a JavaScript file is invoked and returns a String value. The name of the
JavaScript file is recipe18_5.js and its contents are as follows:

function returnName(name){
 return "Hello " + name;
}

Next, use the ScriptEngine to create an Invocable and call on the JavaScript function within the
external JavaScript file.

engine.eval("load('/path-to/src/org/java9recipes/chapter18/recipe18_05/js/recipe18_5.js')");
Invocable inv2 = (Invocable) engine;
String returnValue2 = (String) inv2.invokeFunction("returnName", new String[]{"Nashorn"});
System.out.println("The returned value:" + returnValue2);

How It Works
One of the most useful features of embedded scripting is the ability to integrate the code invoked via a script
engine along with a Java application. In order to effectively integrate script engine code and Java code,
the two must be able to pass values to each other. This recipe covers the concept of returning values from
JavaScript back to Java. To do so, set up a ScriptEngine and then coerce it into a javax.script.Invocable
object. The Invocable object can then be used to execute script functions and methods, returning values
from those invocations.

An Invocable object enables you to execute a named JavaScript function or method and return values
to the caller. Invocable can also return an interface that will provide a way to invoke the member functions
of the scripting object. To provide this functionality, the Invocable object contains several methods (see
Table 18-1).

Before an Invocable can be generated, the JavaScript file or function must be evaluated by the
ScriptEngine. The example demonstrates calling on the eval() method to evaluate an in-line JavaScript
function (a String named gallonsFunction), and it shows how to evaluate an external JavaScript file. Once
the eval() method has been called, the ScriptEngine can be coerced into an Invocable object, as follows:

Invocable inv = (Invocable) engine;

Invocable can then be called upon to execute functions or methods within the evaluated script code.
Table 18-1 lists the methods of Invocable that can be used.

Chapter 18 ■ NashorN aNd sCriptiNg

537

In this recipe’s examples, the invokeFunction method is used to call on the functions contained in the
script. The first argument to invokeFunction is the String-based name of the function being called upon,
and the second argument is a list of Objects that are being passed as arguments. The Invocable returns an
Object from the JavaScript function call, which can be coerced into the appropriate Java type.

Sharing values between Java and ScriptEngine instances is very useful. In a real-life scenario, it may be
very useful to call on an external JavaScript file, and have the ability to pass values back and forth between
the Java code and the script. The underlying JavaScript file can be modified, if needed, without recompiling
the application. This situation can be very useful when your application contains some business logic that
needs to change from time to time. Imagine that you have a rules processor that can be used to evaluate
Strings, and the rules are constantly evolving. In this case, the rule engine can be written as an external
JavaScript file, enabling dynamic changes to that file.

18-6. Using Java Classes and Libraries
Problem
You want to call upon Java classes and libraries within your Nashorn solution.

Solution
Create JavaScript objects based on Java classes or libraries using the Java.type() function. Pass the fully
qualified String-based name of the Java class that you want to utilize to this function and assign it to a
variable. The following code represents a Java object named Employee, which will be utilized via a JavaScript
file in this application.

package org.java9recipes.chapter18.recipe18_06;

import java.util.Date;
public class Employee {
 private int age;
 private String first;
 private String last;
 private String position;
 private Date hireDate;

Table 18-1. Invocable Methods

Method Description

getInterface(Class<T>) Returns an implementation of an interface using the
functions compiled by the interpreter.

getInterface(Object, Class<T>) Returns an implementation of an interface using member
functions of a scripting object that has been compiled in the
interpreter.

invokeFunction(String, Object) Calls on top-level procedures and functions. Returns an
object.

invokeFunction(Object, String, Object) Calls a method on a script object that was compiled during
a previous execution.

Chapter 18 ■ NashorN aNd sCriptiNg

538

 public Employee(){

 }

 public Employee(String first,
 String last,
 Date hireDate){
 this.first = first;
 this.last = last;
 this.hireDate = hireDate;
 }

 /**
 * @return the first
 */
 public String getFirst() {
 return first;
 }

 /**
 * @param first the first to set
 */
 public void setFirst(String first) {
 this.first = first;
 }

 /**
 * @return the last
 */
 public String getLast() {
 return last;
 }

 /**
 * @param last the last to set
 */
 public void setLast(String last) {
 this.last = last;
 }

...
}

Next, let’s take a look the JavaScript file that makes use of the Employee class. This JavaScript code
creates a couple of Employee instances and then prints them back out. It also uses the java.util.Date class
to demonstrate using standard Java classes.

var oldDate = Java.type("java.util.Date");
var array = Java.type("java.util.ArrayList");
var emp = Java.type("org.java9recipes.chapter18.recipe18_06.Employee");

Chapter 18 ■ NashorN aNd sCriptiNg

539

var empArray = new array();
var emp1 = new emp("Josh", "Juneau", new oldDate());
var emp2 = new emp("Joe", "Blow", new oldDate());
empArray.add(emp1);
empArray.add(emp2);
empArray.forEach(function(value, index, ar){
 print("Employee: " + value);
 print("Hire Date: " + value.hireDate);
});

Lastly, you execute the JavaScript file using a ScriptEngineManager:

ScriptEngineManager sem = new ScriptEngineManager();
ScriptEngine nashorn = sem.getEngineByName("nashorn");
try {
 nashorn.eval("load('/path-to/employeeFactory.js');");
} catch (ScriptException ex) {
 Logger.getLogger(NashornInvoker.class.getName()).log(Level.SEVERE, null, ex);
}

Here are the results:

Employee: Josh Juneau
Hire Date: Thu April 24 23:03:53 CDT 2016
Employee: Joe Blow
Hire Date: Fri April 25 12:00:00 CDT 2016

How It Works
It is very natural to use Java classes and libraries from within a Nashorn solution. The example in this recipe
demonstrates how to use a Java class that has been generated specifically for use with a custom application,
as well as how to use Java classes and libraries that are part of Java SE. In order to make such classes available
to JavaScript, you must call the Java.type function from within the JavaScript and pass the String-based fully
qualified name of the Java class to be used. The Java.type function returns a JavaScript reference to the Java
type. In the following excerpt from the example, the java.util.Date, java.util.ArrayList, and Employee
classes are made available to JavaScript using this technique.

var oldDate = Java.type("java.util.Date");
var array = Java.type("java.util.ArrayList");
var emp = Java.type("org.java9recipes.chapter18.recipe18_06.Employee");

Once the types have been made available to JavaScript, they can be invoked in a similar manner to their
Java counterparts. For instance, new oldDate() is used to instantiate a new instance of java.util.Date in
the example. An important difference is that you don’t use getters and setters to call upon Java properties.
Rather, you omit the “get” or “set” portion of the method and begin with a lowercase letter for the field
name, thereby calling upon the fields directly. This makes property access from within JavaScript quite easy
and much more productive and readable. An example of such access can be seen from within the forEach
loop in the script. To access the employee hireDate property, simply call employee.hireDate rather than
employee.getHireDate().

The ability to access Java seamlessly from within JavaScript makes it possible to create seamless Java
and JavaScript integrations.

Chapter 18 ■ NashorN aNd sCriptiNg

540

18-7. Accessing Java Arrays and Collections in Nashorn
Problem
You need to gain access to a Java array or collection from within your Nashorn solution.

Solution
Use the Java.type function to coerce Java arrays to JavaScript. Once coerced, you instantiate the arrays by
calling new and then accessing the members by specifying their index by number. In the following example, a
Java int array type is created within JavaScript, and then it is instantiated and used for storage.

jjs> var intArray = Java.type("int[]");
jjs> var intArr = new intArray(5);
jjs> intArr[0] = 0;
0
jjs> intArr[1] = 1;
1
jjs> intArr[0]
0
jjs> intArr.length
5

Working with collections is quite similar. To access a Java Collection type, you call upon the Java.type
function, passing the String-based name of the type you want to create. Once the type reference has been
obtained, it can be instantiated and accessed from JavaScript.

jjs> var ArrayList = Java.type("java.util.ArrayList")
jjs> var array = new ArrayList();
jjs> array.add('hi');
true
jjs> array.add('bye');
true
jjs> array
[hi, bye]
jjs> var map = Java.type("java.util.HashMap")
jjs> var jsMap = new map();
jjs> jsMap.put(0, "first");
null
jjs> jsMap.put(1, "second");
null
jjs> jsMap.get(1);
second

How It Works
To make use of Java arrays and collections from within JavaScript, you invoke the Java.type() function and pass
the name of the Java type that you want to access, assigning it to a JavaScript variable. The JavaScript variable can
then be instantiated and utilized in the same manner as the Java type would be used from within Java code. The
examples in this recipe demonstrate how to access Java arrays, ArrayLists, and HashMaps from within JavaScript.

Chapter 18 ■ NashorN aNd sCriptiNg

541

When working with a Java array type from JavaScript, the type of array must be passed to the Java.type()
function, including an empty set of brackets. Once the type has been obtained and assigned to a JavaScript
variable, it can be instantiated by including the static size of the array within brackets, just as an array would
be instantiated in the Java language. Similarly, the array can be accessed by specifying indices to assign and
retrieve values from the array. To go backward and pass a JavaScript array to Java, use the Java.to() function,
passing the JavaScript array to its Java-type counterpart. In the following code, a JavaScript String array is
coerced into a Java type.

jjs> var strArr = ["one","two","three"]
jjs> var javaStrArr = Java.type("java.lang.String[]");
jjs> var javaArray = Java.to(strArr, javaStrArr);
jjs> javaArray[1];
two
jjs> javaArray.class
class [Ljava.lang.String;

Collections are very similar to arrays, in that the Java.type() function must be used to obtain the Java
type and assign it to a JavaScript variable. The variable is then instantiated and the Collection type is then
accessed in the same manner as it would be in the Java language.

18-8. Implementing Java Interfaces
Problem
You want to make use of a Java interface from your Nashorn solution.

Solution
Create a new instance of the interface, passing a JavaScript object consisting of properties. The JavaScript
object properties will implement the methods defined in the interface. In the following example, an
interface used for declaring employee position types is implemented within a JavaScript file. The example
demonstrates custom method implementation, as well as use of a default method. The following code is the
interface, PositionType, which will be implemented in JavaScript.

import java.math.BigDecimal;

public interface PositionType {

 public double hourlyWage(BigDecimal hours, BigDecimal wage);

 /**
 * Hourly salary calculation
 * @param wage
 * @return
 */
 public default BigDecimal yearlySalary(BigDecimal wage){
 return (wage.multiply(new BigDecimal(40))).multiply(new BigDecimal(52));
 }
}

Chapter 18 ■ NashorN aNd sCriptiNg

542

Next, let’s take a look at the code within the JavaScript file that implements the PositionType interface.

var somePosition = new org.java9recipes.chapter18.recipe18_08.PositionType({
 hourlyWage: function(hours, wage){
 return hours * wage;
 }
});

print(somePosition instanceof Java.type("org.java9recipes.chapter18.recipe18_08.
PositionType"));
var bigDecimal = Java.type("java.math.BigDecimal");

print(somePosition.hourlyWage(new bigDecimal(40), new bigDecimal(12.75)));

How It Works
Using a Java interface in JavaScript can be beneficial for creating objects that adhere to the implementation
criteria. However, using interfaces in JavaScript is a bit different than using them in a Java solution. For
example, interfaces cannot be instantiated in Java. This is not the case when using them in JavaScript; you
must actually instantiate an object of the interface type in order to use it.

The example demonstrates the implementation of an interface, PositionType, which is used for
defining a number of methods within an employee position. The methods are used for calculating an
employee’s hourly and yearly wage. To make use of the PositionType interface from JavaScript, the
new keyword is used to instantiate an instance of that interface, assigning it to a JavaScript variable.
When instantiating the interface, a JavaScript object is passed to the constructor. The object contains
implementations for each of the nondefault methods within the interface by identifying the name of the
method, followed by the implementation. In the example, there is only one method implemented on
instantiation, and it is identified as hourlyWage(). If there had been more than one method implemented,
the implementations would be separated by commas.

Although using Java interfaces is a bit different in JavaScript, they certainly provide a benefit. In reality,
they are performing the same task within JavaScript as they are within Java. In Java, in order to implement an
interface, you must create an object that implements it. You do the same thing within JavaScript, except that
in order to create the implementing object, you must instantiate an instance of the interface.

18-9. Extending Java Classes
Problem
You want to extend a concrete Java class in your Nashorn JavaScript solution.

Solution
First obtain a reference to the Java class that is to be extended by calling the Java.type() function within
your JavaScript file. Then create the subclass by calling on the Java.extend() function and passing the
reference to the class that will be extended, along with a JavaScript object containing the implementations
that will be altered.

The following code is that of the Employee class, which will later be extended from within a JavaScript file.

Chapter 18 ■ NashorN aNd sCriptiNg

543

package org.java9recipes.chapter18.recipe18_09;

import java.math.BigDecimal;
import java.util.Date;

public class Employee {
 private int age;
 private String first;
 private String last;
 private String position;
 private Date hireDate;

 ...

 public BigDecimal grossPay(BigDecimal hours, BigDecimal rate){
 return hours.multiply(rate);
 }
}

Here’s the JavaScript code used to extend the class and use it:

var Employee = Java.type("org.java9recipes.chapter18.recipe18_09.Employee");
var bigDecimal = Java.type("java.math.BigDecimal");
var Developer = Java.extend(Employee, {
 grossPay: function(hours, rate){
 var bonus = 500;
 return hours.multiply(rate).add(new bigDecimal(bonus));
 }
});

var javaDev = new Developer();
javaDev.first = "Joe";
javaDev.last = "Dynamic";
print(javaDev + "'s gross pay for the week is: " + javaDev.grossPay(new bigDecimal(60),
 new bigDecimal(80)));

Here’s the result:

Joe Dynamic's gross pay for the week is: 5300

How It Works
To extend a standard Java class from within JavaScript, you call on the Java.extend() function, passing the
Java class that you’d like to extend, along with a JavaScript object containing any fields or functions that will be
altered in the subclass. For the example in this recipe, a Java class entitled Employee is extended. However, the
same technique can be used to extend any other Java interface, such as Runnable, Iterator, and so on.

In this example, to obtain the Employee class in JavaScript, the Java.type() function is called upon,
passing the fully qualified class name. The object that is received from the call is stored in a JavaScript
variable named Employee. Next, the class is extended by calling on the Java.extend() function and passing
the Employee class, along with a JavaScript object. In the example, the JavaScript object that is sent to the
Java.extend() function includes a different implementation of the Employee class grossPay() method. The
object that is returned from the Java.extend() function is then instantiated and accessed via JavaScript.

Chapter 18 ■ NashorN aNd sCriptiNg

544

Extending Java classes within JavaScript can be a very useful feature when you’re working with a
Nashorn solution. The ability to share objects from Java makes it possible to access exiting Java solutions and
build on them.

18-10. Creating Executable Scripts in Unix
Problem
You want to enable your JavaScript file to become executable.

Solution
Make a JavaScript file executable by adding a shebang (#!) as the first line of the script, followed by the
path to the location of the jjs executable. In the following example, a very simple JavaScript file is made
executable by the inclusion of a shebang, which points to the symbolic link of the jjs tool.

#! /usr/bin/env jjs
print('I am an executable');

To execute the script, it must be given the proper permissions. Apply the chmod a+x permissions
(in Unix) to make the script executable.

chmod a+x src/org/java9recipes/chapter18/recipe18_10/jsExecutable.js

The script can now be invoked as an executable, as shown in the following command:

Juneau$./src/org/java9recipes/chapter18/recipe18_10/jsExecutable.js
I am an executable

How It Works
To make a script executable, you simply add a shebang to the first line. The shebang is used in Unix-based
operating systems to tell the program loader that the script’s first line should be treated as an interpreter
directive, and that the script should be passed to that interpreter for execution. In the solution to this recipe, the
first line of the script tells the program loader that the script’s contents should be executed using the jjs tool:

#! /usr/bin/env jjs

By invoking the jjs tool in this manner, the scripting options are automatically enabled, allowing you to
utilize scripting features within the script. The following list includes extra scripting features that can be used
when executing via jjs with scripting options are enabled:

•	 String interpolation: (See Recipe 18-3)

var threeyr = 365 * 3;
print("The number of days in three years is ${threeyr}");

•	 Shell invocations: The ability to invoke external programs

•	 Special environment variables are available for use ($ARG and $ENV)

Chapter 18 ■ NashorN aNd sCriptiNg

545

The ability to develop executable scripts in JavaScript can be very powerful. Not only is the world of
JavaScript available at your fingertips, but the entire Java world is available, since you can import Java classes
and libraries into your scripts.

18-11. Implementing JavaFX with Nashorn
Problem
You wish to implement a Java GUI using JavaScript.

Solution 1
Develop a JavaFX application using JavaScript and store it in a JavaScript file. Invoke the file using the
jjs tool, along with the –fx option. The following code is a JavaFX application that is written in JavaScript.
The JavaFX application can be used for collecting car data.

var ArrayList = Java.type("java.util.ArrayList");
var Scene = javafx.scene.Scene;
var Button = javafx.scene.control.Button;
var TextField = javafx.scene.control.TextField;
var GridPane = javafx.scene.layout.GridPane;
var Label = javafx.scene.control.Label;
var TextArea = javafx.scene.control.TextArea;

var carList = new ArrayList();
var carCount = "There are currently no cars";
var car = {
 make:"",
 model:"",
 year:"",
 description:""
};
print(carCount);
function start(primaryStage) {

 primaryStage.title="Car Form JS Demo";

 var grid = new GridPane();
 grid.hgap = 10;
 grid.vgap = 10;

 var makeLabel = new Label("Make:");
 grid.add(makeLabel, 0, 1);

 var makeText = new TextField();
 grid.add(makeText, 1, 1);

 var modelLabel = new Label("Model:");
 grid.add(modelLabel, 0, 2);

Chapter 18 ■ NashorN aNd sCriptiNg

546

 var modelText = new TextField();
 grid.add(modelText, 1, 2);

 var yearLabel = new Label("Year:");
 grid.add(yearLabel, 0, 3);

 var yearText = new TextField();
 grid.add(yearText, 1, 3);

 var descriptionLabel = new Label("Description:");
 grid.add(descriptionLabel, 0, 4);

 var descriptionText = new TextArea();
 grid.add(descriptionText, 1, 4);

 var button = new Button("Add Car");
 button.onAction = function(){
 print("Adding Car:" + makeText.text);
 car.make=makeText.text;
 car.model=modelText.text;
 car.year=yearText.text;
 car.description=descriptionText.text;
 carList.add(car);
 carCount = "The number of cars is: "+ carList.size();
 print(carCount);
 };
 grid.add(button, 0,5);

 primaryStage.scene = new Scene(grid, 800, 500);
 primaryStage.show();
}

The resulting application looks like that shown in Figure 18-1.

Chapter 18 ■ NashorN aNd sCriptiNg

547

Solution 2
Write a JavaFX application using Java and embed the JavaScript application implementation using
a ScriptEngine. The following Java class is called CarCollector.java and it implements javafx.
application.Application. The Java class implements the start() method, which contains a ScriptEngine
to embed the JavaScript code that implements the application.

package org.java9recipes.chapter18.recipe18_11;

import java.io.FileReader;
import javafx.application.Application;
import javafx.stage.Stage;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class CarCollector extends Application {

 private final String SCRIPT = getClass().getResource("carCollector.js").getPath();

 public static void main(String args[]) {
 launch(args);
 }

Figure 18-1. JavaFX application written in JavaScript

Chapter 18 ■ NashorN aNd sCriptiNg

548

 @Override
 public void start(Stage stage) {
 try {
 ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");
 engine.put("primaryStage", stage);
 engine.eval(new FileReader(SCRIPT));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Next, let’s take a look at the JavaScript file named carCollector.js, which implements the application.
Note that the code does not contain a start() function, because the application start() method is already
implemented in the Java code. The JavaScript file merely contains the implementation.

var ArrayList = Java.type("java.util.ArrayList");
var Scene = javafx.scene.Scene;
var Button = javafx.scene.control.Button;
var TextField = javafx.scene.control.TextField;
var GridPane = javafx.scene.layout.GridPane;
var Label = javafx.scene.control.Label;
var TextArea = javafx.scene.control.TextArea;

var carList = new ArrayList();
var carCount = "There are currently no cars";
var car = {
 make: "",
 model: "",
 year: "",
 description: ""
};
print(carCount);

primaryStage.title = "Car Form JS Demo";

var grid = new GridPane();
grid.hgap = 10;
grid.vgap = 10;

var makeLabel = new Label("Make:");
grid.add(makeLabel, 0, 1);

var makeText = new TextField();
grid.add(makeText, 1, 1);

var modelLabel = new Label("Model:");
grid.add(modelLabel, 0, 2);

var modelText = new TextField();
grid.add(modelText, 1, 2);

Chapter 18 ■ NashorN aNd sCriptiNg

549

var yearLabel = new Label("Year:");
grid.add(yearLabel, 0, 3);

var yearText = new TextField();
grid.add(yearText, 1, 3);

var descriptionLabel = new Label("Description:");
grid.add(descriptionLabel, 0, 4);

var descriptionText = new TextArea();
grid.add(descriptionText, 1, 4);

var button = new Button("Add Car");
button.onAction = function() {
 print("Adding Car:" + makeText.text);
 car.make = makeText.text;
 car.model = modelText.text;
 car.year = yearText.text;
 car.description = descriptionText.text;
 carList.add(car);
 carCount = "The number of cars is: " + carList.size();
 print(carCount);
};
grid.add(button, 0, 5);

primaryStage.scene = new Scene(grid, 800, 500);
primaryStage.show();

How It Works
The Nashorn engine has full access to the JavaFX API. This means that it is possible to construct JavaFX
applications that are written either entirely or partially in JavaScript. The two solutions to this recipe
demonstrate each of these techniques. The first solution demonstrates how to develop a JavaFX application
entirely of JavaScript. When you’re using the technique demonstrated in Solution 1, the JavaScript
implementation can be executed by using the jjs tool and specifying the –fx option, as follows:

jjs –fx recipe18_11.js

Solution 2 demonstrates how to construct a JavaFX application from Java code, embedding the
implementation code written in JavaScript. To use this technique, construct a standard JavaFX application
class by extending the javafx.application.Application class and overriding the start() method.
Within the start() method, create a Nashorn ScriptEngine object and use it to embed a JavaScript file
that contains the application implementation. Prior to calling the engine’s eval() method and passing the
JavaScript file, pass the JavaFX stage to the engine using the engine’s put() method.

engine.put("primaryStage", stage);

Digging into the JavaScript code a bit, any of the JavaFX API classes can be imported by using the
Java.type() function and passing the fully qualified class name. Assign the imported classes to JavaScript
variables, which will later be used in the application construction. When written entirely in JavaScript, a
start() function must be created to contain the JavaFX application stage construction. On the other hand,

Chapter 18 ■ NashorN aNd sCriptiNg

550

when you’re using Java code to launch the application, there is no need to create a start() function. In
the example, a GridPane layout is used to construct a form for capturing car data. The form fields are each
constructed with a Label and a TextField or TextArea. The car data is stored in a JavaScript object when a
button is clicked.

There are a few things to note about the JavaScript code in both implementations. The syntax is a bit
different than Java code because getters and setters are not used. Also, the implementation for the button
action handler is a simple JavaScript function.

Constructing JavaFX applications using JavaScript can be a fun alternative to using Java code. The
syntax has the feel of using the prior JavaFX Script language, and it is a bit less verbose than Java. It is also
nice to be able to change the application without having to recompile if you’re using the full JavaScript
implementation.

18-12. Utilizing ECMAScript6 Features
Problem
You wish to make use of some ECMAScript6 features, such as template Strings, more scoping options, and
new looping constructs.

Solution
Utilize a subset of the new ECMAScript6 features in Java 9. The initial release includes a small subset of the
new ECMAScript6 features, but the feature set will expand with subsequent Java 9 releases.

To make use of these new features, utilize one of the solutions described in previous recipes within
this chapter, using the updated ECMAScript6 syntax. In this recipe, open up the jjs utility and type in the
following examples to see the new features.

The template String feature works by allowing Strings to contain dynamic variables such that the
variables can be changed, altering the text of the String. The following example demonstrates how to utilize a
template String:

jjs> var customer = {name:"Josh"}
jjs> var message = `Hello ${customer.name}`

The let keyword has been added to ECMAScript, allowing for block-scoped variables:

let name = "Josh";
console.log("first: " + name)
if (name.length > 1){
 let name = "Duke";
 console.log(name);
}
console.log(name);

Output:

first: Josh
Duke
Josh

Chapter 18 ■ NashorN aNd sCriptiNg

551

ECMAScript6 contains new looping constructs, such as for-in:

var names = ['Josh', 'Duke']
for (var x of names){
 console.log(x);
}

How It Works
There are many new features in ECMAScript 6, and some of those features are part of Nashorn in Java 9.
Actually, a few of the new features made it into Java 8, Update 40, those being let, const, and block scope. The
list of new features is so large, that it would be a daunting task to try and put each of them into Nashorn in a
single release. Therefore, the initial release of Nashorn for Java 9 contains another subset of the new features,
and more new features will be added in subsequent Java 9 releases.

The initial release of Java 9 contains the following new Nashorn ECMAScript 6 features:

•	 Template Strings

•	 let, const, and block scope

•	 Iterators for..of loops

•	 Map, Set, WeakMap, and WeakSet

•	 Symbols

•	 Binary and Octal literals

The following features are planned for future releases the Nashorn engine in Java 9:

•	 Arrow functions

•	 Enhanced object literals

•	 Destructuring assignment

•	 Default, rest, and spread parameters

•	 Unicode

•	 Subclassable built-ins

•	 Promises

•	 Proxies

•	 Math, Number, String, and Object APIs

•	 Reflection API

Summary
Nashorn enables developers to make use of modern JavaScript capabilities from within the Java ecosystem.
The Nashorn engine has full access to all of the Java APIs, including JavaFX. The new jjs tool provides
scripting capabilities, allowing developers to create executable scripts written entirely in JavaScript. Lastly,
we covered some new features of ECMAScript6 that have been added to the Nashorn engine in Java 9.

553© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_19

CHAPTER 19

E-mail

E-mail notification is an integral part of today’s enterprise systems. Java enables e-mail notification by
offering JavaMail API. Using this API, you can send e-mail communications in response to an event (say a
completed form or a finalized script). You can also use the JavaMail API to check an IMAP or POP3 mailbox.

To follow along with the recipes in this chapter, make sure that you have set up your firewall to allow
e-mail communication. Most of the time, firewalls allow outbound communications to e-mail servers
without an issue, but if you are running your own local SMTP (e-mail) server, you may need to configure
your firewall to allow the e-mail server to operate correctly.

 ■ Note The JavaMail API is included as part of the Java EE download. If you are using Java SE, you will need
to download and install the JavaMail API.

19-1. Installing JavaMail
Problem
You want to install JavaMail for use by your application in sending e-mail notifications.

Solution
Download JavaMail from Oracle’s JavaMail website. Currently, the download you need is found at

http://www.oracle.com/technetwork/java/javamail/.

Once you download it, unzip it and add the JavaMail .jar files as dependencies from your project
(both mail.jar and lib*.jar).

How It Works
The JavaMail API is included in the Java EE SDK, but if you are working with the Java SE SDK, you will
need to download and add the JavaMail API to your Java SE project. By downloading and adding the
dependencies, you get access to the robust e-mail API that allows you to send and receive e-mails.

 ■ Note If you are not using Java SE 6 or newer, you will also need the JavaBeans Activation Framework (JAF)
to use JavaMail. It is included in Java SE 6 and newer.

http://www.oracle.com/technetwork/java/javamail/

ChAPTEr 19 ■ E-MAIl

554

19-2. Sending an E-Mail
Problem
You need your application to send an e-mail.

Solution
Using the Transport() methods, you can send an e-mail to specific recipients. In this solution, an e-mail
message is constructed and sent through the smtp.somewhere.com server:

private void start() {
 Properties properties = new Properties();
 properties.put("mail.smtp.host", "smtp.somewhere.com");
 properties.put("mail.smtp.auth", "true");

 Session session = Session.getDefaultInstance(properties, new MessageAuthenticator("user
name","password"));

 Message message = new MimeMessage(session);
 try {
 message.setFrom(new InternetAddress("someone@somewhere.com"));
 message.setRecipient(Message.RecipientType.TO, new InternetAddress("someone@

somewhere.com"));
 message.setSubject("Subject");
 message.setContent("This is a test message", "text/plain");
 Transport.send(message);
 } catch (MessagingException e) {
 e.printStackTrace();
 }
}

class MessageAuthenticator extends Authenticator {
 PasswordAuthentication authentication = null;

 public MessageAuthenticator(String username, String password) {
 authentication = new PasswordAuthentication(username,password);
 }

 @Override
 protected PasswordAuthentication getPasswordAuthentication() {
 return authentication;
 }
}

How It Works
To utilize the JavaMail API, start by creating a Properties object that works as a standard Map object (in
fact, it inherits from it), in which you put the different properties that the JavaMail service might need. The
hostname is set using the mail.smtp.host property, and if the host requires authentication then you must

ChAPTEr 19 ■ E-MAIl

555

set the mail.smtp.auth property to true. After the properties object is configured, fetch a javax.mail.
Session that will hold the connection information for the e-mail message.

When you’re creating a session, you can specify the login information if the service requires
authentication. This might be necessary when connecting to an SMTP service that is outside of your
local area network. To specify the login information, you must create an Authenticator object,
which will contain the getPasswordAuthentication() method. In this example, there is a new
class identified as MessageAuthenticator, which extends the Authenticator class. By making the
getPasswordAuthentication() method return a PasswordAuthentication object, you can specify the
username/password used for the SMTP service.

The Message object represents an actual e-mail message and exposes e-mail properties such as
From/To/Subject and Content. After setting these properties, you call the Transport.send() static method
to send the e-mail message.

 ■ Tip If you don’t need authentication information, you can call the Session.
getDefaultInstance(properties, null) method, passing a null for the Authenticator parameter.

19-3. Attaching Files to an E-Mail Message
Problem
You need to attach one or more files to an e-mail message.

Solution
Creating a message that contains different parts (called a multipart message) is what allows you to send
attachments such as files and images. You can specify the body of the e-mail message and an attachment.
Messages that contain different parts are referred to as Multipurpose Internet Mail Extensions (MIME)
messages. They are represented in the javax.mail API by the MimeMessage class. The following code creates
such a message:

Message message = new MimeMessage(session);
message.setFrom(new InternetAddress(from));
message.setRecipient(Message.RecipientType.TO, new InternetAddress(to));
message.setSubject("Subject");

// Create Mime "Message" part
MimeBodyPart messageBodyPart = new MimeBodyPart();
messageBodyPart.setContent("This is a test message", "text/plain");

// Create Mime "File" part
MimeBodyPart fileBodyPart = new MimeBodyPart();
fileBodyPart.attachFile("<path-to-attachment>/attach.txt");

MimeBodyPart fileBodyPart2 = new MimeBodyPart();
fileBodyPart2.attachFile("<path-to-attachment>/attach2.txt");

ChAPTEr 19 ■ E-MAIl

556

// Piece the body parts together
Multipart multipart = new MimeMultipart();
multipart.addBodyPart(messageBodyPart);
multipart.addBodyPart(fileBodyPart);
//add another body part to supply another attachment
multipart.addBodyPart(fileBodyPart2);

// Set the content of the message to be the MultiPart
message.setContent(multipart);
Transport.send(message);

How It Works
Within the JavaMail API you can create a MIME e-mail. This type of message allows it to contain different
body parts. In the example, a plain text body part is generated (which contains the text that the e-mail
displays), and then two attachment body parts containing the attachments you are trying to send are
created. Depending on the type of attachments, the Java API will automatically choose an appropriate
encoding for the attachment body part.

After each of the body parts are created, they are combined by creating a MultiPart object and adding
each individual part (the plain text and the attachments) to it. Once the MultiPart object has been assembled
to contain all the parts, it is assigned as the content of the MimeMessage and sent (just like in Recipe 19-2).

19-4. Sending an HTML E-Mail
Problem
You want to send an e-mail that contains HTML.

Solution
You specify the content type of the e-mail as text/html and send a String of HTML as the message body. In
the following example, an e-mail is constructed using HTML content and then it is sent.

MimeMessage message = new MimeMessage(session);
try {
 message.setFrom(new InternetAddress(from));
 message.setRecipient(Message.RecipientType.TO, new InternetAddress(to));
 message.setSubject("Subject Test");

 // Create Mime Content
 MimeBodyPart messageBodyPart = new MimeBodyPart();
 String html = "<H1>Important Message</H1>" +
 "This is an important message..."+
 "

" +
 "<i>Be sure to code your Java today!</i>" +
 "<H2>It is the right thing to do!</H2>";
 messageBodyPart.setContent(html, "text/html; charset=utf-8");

 MimeBodyPart fileBodyPart = new MimeBodyPart();
 fileBodyPart.attachFile("/path-to/attach.txt");

ChAPTEr 19 ■ E-MAIl

557

 MimeBodyPart fileBodyPart2 = new MimeBodyPart();
 fileBodyPart2.attachFile("/path-to/attach2.txt");

 Multipart multipart = new MimeMultipart();
 multipart.addBodyPart(messageBodyPart);
 multipart.addBodyPart(fileBodyPart);
 //add another body part to supply another attachment
 multipart.addBodyPart(fileBodyPart2);
 message.setContent(multipart);
 Transport.send(message);
} catch (MessagingException | IOException e) {
 e.printStackTrace();
}

How It Works
Sending an e-mail message that contains HTML content is basically the same as sending an e-mail with
standard text—the only difference is the content type. When you’re setting the content on the message body
part of the e-mail, you set the content to text/html to have the content treated as HTML. There are various
ways to construct the HTML content, including using links, photos, or any other valid HTML markup. In this
example, a few basic HTML tags have been embedded into a String.

Although the example code may not be very useful in real-life systems, it is easy to generate dynamic
HTML content for inclusion within an e-mail. At its most basic form, dynamically generated HTML can be
Strings of text that are concatenated to formulate the HTML.

19-5. Sending E-Mail to a Group of Recipients
Problem
You want to send the same e-mail to multiple recipients.

Solution
Use the setRecipients() method from the JavaMail API to send e-mail to multiple recipients. The
setRecipients() method allows you to specify more than one recipient at a time. For example:

// Main send body
 message.setFrom(new InternetAddress("someone@somewhere.com"));
 message.setRecipients(Message.RecipientType.TO, getRecipients(emails));
 message.setSubject("Subject");
 message.setContent("This is a test message", "text/plain");
 Transport.send(message);

// ------------------

 private Address[] getRecipients(List<String> emails) throws AddressException {
 Address[] addresses = new Address[emails.size()];
 for (int i =0;i < emails.size();i++) {
 addresses[i] = new InternetAddress(emails.get(i));
 }
 return addresses;
 }

ChAPTEr 19 ■ E-MAIl

558

How It Works
By using the setRecipients() method of the Message object, you can specify multiple recipients on the
same message. The setRecipients() method accepts an array of Address objects. In this recipe, because
you have a collection of Strings, you create the array as the size of the collection and create InternetAddress
objects to fill the array. Sending e-mails using multiple e-mail addresses (as opposed to individual e-mails)
is much more efficient because only one message is sent from your client to the target mail servers. Each
target mail server will then deliver to all recipients that it has mailboxes for. For example, if you’re sending
to five different yahoo.com accounts, the yahoo.com mail server will need to receive only one copy of the
message and it will deliver the message to all the yahoo.com recipients specified in the message.

 ■ Tip If you want to send bulk messages, you might want to specify the recipient Type as BCC, so
that the e-mail received doesn’t show everyone else that is getting the e-mail. To do so, specify Message.
RecipientType.BCC in the setRecipients() method.

19-6. Checking E-Mail
Problem
You need to check if a new e-mail has arrived for a specified e-mail account.

Solution
You can use javax.mail.Store to connect, query, and retrieve messages from an Internet Message Access
Protocol (IMAP) e-mail account. For example, the following code connects to an IMAP account, retrieves the
last five messages from that IMAP account, and marks the messages as read.

Session session = Session.getDefaultInstance(properties, null);
Store store = session.getStore("imaps");
 store.connect(host,username,password);
 System.out.println(store);
 Folder inbox = store.getFolder(folder);
 inbox.open(Folder.READ_WRITE);
 int messageCount = inbox.getMessageCount();
 int startMessage = messageCount - 5;
 int endMessage = messageCount;
 if (messageCount < 5) startMessage =0;
 Message messages[] = inbox.getMessages(startMessage,endMessage);
for (Message message : messages) {
 boolean hasBeenRead = false;
 for (Flags.Flag flag :message.getFlags().getSystemFlags()) {
 if (flag == Flags.Flag.SEEN) {
 hasBeenRead = true;
 break;
 }
 }
 message.setFlag(Flags.Flag.SEEN, false);

ChAPTEr 19 ■ E-MAIl

559

 System.out.println(message.getSubject() + " "+ (hasBeenRead? "(read)" : "") + message.
getContent());

}
inbox.close(true);

How It Works
A Store object allows you to access e-mail mailbox information. By creating a Store and then requesting
the Inbox folder, you gain access to the messages in the main mailbox of your IMAP account. With the
folder object, you can request to download the messages from the inbox. To do so, you use the getMessages
(start, end) method. The inbox also provides a getMessageCount() method, which allows you to know
how many e-mails are in the inbox. Keep in mind that the messages start at index 1.

Each message will have a set of flags that can then tell whether the message has been read (Flags.Flag.
SEEN) or whether the message has been replied to (Flags.Flag.ANSWERED). By parsing the SEEN flag, you can
then process messages that haven’t been read before.

To set a message as being read (or answered), call the message.setFlag() method. This method allows
you to set (or reset) e-mail flags. If you’re setting message flags, you need to open the folder as READ_WRITE,
which allows you to make changes to e-mail flags. You also need to call inbox.close(true) at the end of
your code, which will tell the JavaMail API to flush the changes to the IMAP store.

 ■ Tip For IMAP over SSl, you should use session.getStore("imaps"). This creates a secure IMAP store.

19-7. Monitoring an E-Mail Account
Problem
You want to monitor when e-mails arrive to a certain account, and you want to process them depending
upon their content.

Solution
Begin with the implementation from Recipe 19-6. Then add IMAP flag manipulation to create a robust
e-mail monitor for your application. In the following example, the checkForMail() method is used to
process mail that is being sent to a mailing list. In this scenario, users can subscribe or unsubscribe from
the list by placing one of those words in the subject line. The following example checks the subject of new
messages and deals with them appropriately. The example also uses message flags to delete processed
messages so they need not be read twice. Messages that can’t be processed are marked as read but left in the
server for troubleshooting by a human.

private void checkForMail() {
 System.out.println("Checking for mail");
 Properties properties = new Properties();
 String username = "username";
 String password = "password";
 String folder = "Inbox";
 String host = "imap.server.com";

ChAPTEr 19 ■ E-MAIl

560

 try {
 Session session = Session.getDefaultInstance(properties, null);
 Store store = session.getStore("imaps");
 store.connect(host,username,password);
 Folder inbox = store.getFolder(folder);
 inbox.open(Folder.READ_WRITE);
 int messageCount = inbox.getMessageCount();
 Message messages[] = inbox.getMessages(1,messageCount);
 for (Message message : messages) {
 boolean hasBeenRead = false;
 if (Arrays.asList(message.getFlags().getSystemFlags()).contains(Flags.Flag.

SEEN)) {
 continue; // not interested in "seen" messages
 }
 if (processMessage(message)) {
 System.out.println("Processed :"+message.getSubject());
 message.setFlag(Flags.Flag.DELETED, true);
 } else {
 System.out.println("Couldn't Understand :"+message.getSubject());
 // set it as seen, but keep it around
 message.setFlag(Flags.Flag.SEEN, true);
 }
 }
 inbox.close(true);
 } catch (MessagingException e) {
 e.printStackTrace();
 }
 }

 private boolean processMessage(Message message) throws MessagingException {
 boolean result = false;

 String subject = message.getSubject().toLowerCase();
 if (subject.startsWith("subscribe")) {
 String emailAddress = extractAddress (message.getFrom());
 if (emailAddress != null) {
 subscribeToList(emailAddress);
 result = true;
 }

 } else if (subject.startsWith("unsubscribe")) {
 String emailAddress = extractAddress (message.getFrom());
 if (emailAddress != null) {
 unSubscribeToList(emailAddress);
 result = true;
 }
 }

 return result;
 }

ChAPTEr 19 ■ E-MAIl

561

 private String extractAddress(Address[] addressArray) {
 if ((addressArray == null) || (addressArray.length < 1)) return null;
 if (!(addressArray[0] instanceof InternetAddress)) return null;
 InternetAddress internetAddress = (InternetAddress) addressArray[0];
 return internetAddress.getAddress();
 }

How It Works
After connecting to the IMAP server, the example requests all messages received. The code skips over the
ones that are marked as SEEN. To do so, the recipe uses the Arrays.AsList to convert the array of system
message flags into an ArrayList. Once the list is created, it is a matter of querying the list to see whether it
contains the Flag.SEEN enum value. If that value is present, the example skips to the next item.

When an unread message is found, the message is processed by the processMessage() method. The
method subscribes or unsubscribes the sender of the message depending on the start of the subject line.
(This is akin to a mailing list, where sending a message with the subject of “subscribe” adds the sender to the
mailing list.)

After determining which command to execute, the code proceeds to extract the sender’s e-mail from
the message. To do so, the processMessage() calls the extractEmail() method. Each message contains
an array of possible “From” addresses. These Address objects are generic because the Address object
can represent Internet or newsgroup addresses. After checking that the Address object is indeed an
InternetAddress, the code casts the Address object as an InternetAddress and calls the getAddress()
method, which contains the actual e-mail address.

Once the e-mail address is extracted, the recipe calls subscribe or unsubscribe, depending on
the subject line. If the message could be understood (meaning that the message was processed), the
processMessage() method returns true (if it couldn’t understand the message, it returns false). In the
checkForMail() method, when the processMessage() method returns true, the message is flagged for
deletion (by calling message.setFlag(Flags.Flag.DELETED, true); otherwise, the message is just flagged
as Seen. This allows the message to still be around if it wasn’t understood or deleted if it was processed.
Finally, to commit the new flags on the messages (and expunge deleted messages), you need to call the
inbox.close(true) method.

19-8. Summary
E-mail plays an important role in many systems that we use today. The Java language includes the JavaMail
API, which enables developers to include robust e-mail functionality within their Java applications. The
recipes in this chapter covered the JavaMail API from installation through advanced usage. To learn more
about JavaMail, and also about mail integration with Java applications deployed to enterprise applications
servers, please refer to the online documentation: http://www.oracle.com/technetwork/java/javamail/
index-141777.html.

http://www.oracle.com/technetwork/java/javamail/index-141777.html
http://www.oracle.com/technetwork/java/javamail/index-141777.html

563© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_20

CHAPTER 20

JSON and XML Processing

JSON is one of the newest, yet most widely used forms of media for sending communications between two
or more machines. In expanded form, it stands for JavaScript Object Notation. In the planning stages for
Java 9, there were plans to include a standard JSON processing (JSON-P) API with the release, however,
the enhancement proposal did not make it int o the release. Instead, it is still very easy to work with JSON
data by simply including the JSON-P library, which is currently included in Java EE. Part of the plan for an
upcoming release of JSON-P is to provide direct support for Java SE.

XML APIs have always been available to the Java developer, usually supplied as third-party libraries
that could be added to the runtime class path. Beginning in Java 7, the Java API for XML Processing (JAXP),
Java API for XML Binding (JAXB), and the Java API for XML Web Services (JAX-WS) were included in the
core runtime libraries. The most fundamental XML processing tasks that you will encounter involve only a
few use cases: writing and reading XML documents, validating those documents, and using JAXB to assist in
marshalling/unmarshalling Java objects.

This chapter provides recipes for performing XML and JSON-P tasks. The JSON-P recipes will require
inclusion of the JSON-P API, which can be done by adding the dependencies to a maven application. In this
chapter, you will learn how to create JSON, as well as write it to disk and perform parsing.

 ■ Note The source code for this chapter’s examples is available in the org.java9recipes.chapter20 package.

20-1. Writing an XML File
Problem
You want to create an XML document to store application data.

Solution
To write an XML document, use the javax.xml.stream.XMLStreamWriter class. The following code iterates
over an array of Patient objects and writes the data to an .xml file. This sample code comes from the org.
java9recipes.chapter20.recipe20_1.DocWriter example:

import javax.xml.stream.XMLOutputFactory;
import javax.xml.stream.XMLStreamException;
import javax.xml.stream.XMLStreamWriter;

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

564

...
public void run(String outputFile) throws FileNotFoundException, XMLStreamException,
 IOException {
 List<Patient> patients = new ArrayList<>();
 Patient p1 = new Patient();
 Patient p2 = new Patient();
 Patient p3 = new Patient();
 p1.setId(BigInteger.valueOf(1));
 p1.setName("John Smith");
 p1.setDiagnosis("Common Cold");
 p2.setId(BigInteger.valueOf(2));
 p2.setName("Jane Doe");
 p2.setDiagnosis("Broken Ankle");
 p3.setId(BigInteger.valueOf(3));
 p3.setName("Jack Brown");
 p3.setDiagnosis("Food Allergy");
 patients.add(p1);
 patients.add(p2);
 patients.add(p3);
 XMLOutputFactory factory = XMLOutputFactory.newFactory();
 try (FileOutputStream fos = new FileOutputStream(outputFile)) {
 XMLStreamWriter writer = factory.createXMLStreamWriter(fos, "UTF-8");
 writer.writeStartDocument();
 writer.writeCharacters("\n");
 writer.writeStartElement("patients");
 writer.writeCharacters("\n");
 for (Patient p : patients) {
 writer.writeCharacters("\t");
 writer.writeStartElement("patient");
 writer.writeAttribute("id", String.valueOf(p.getId()));
 writer.writeCharacters("\n\t\t");
 writer.writeStartElement("name");
 writer.writeCharacters(p.getName());
 writer.writeEndElement();
 writer.writeCharacters("\n\t\t");
 writer.writeStartElement("diagnosis");
 writer.writeCharacters(p.getDiagnosis());
 writer.writeEndElement();
 writer.writeCharacters("\n\t");
 writer.writeEndElement();
 writer.writeCharacters("\n");
 }
 writer.writeEndElement();
 writer.writeEndDocument();
 writer.close();
 }

}

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

565

The previous code writes the following file contents:

<?xml version="1.0" ?>
<patients>
 <patient id="1">
 <name>John Smith</name>
 <diagnosis>Common Cold</diagnosis>
 </patient>
 <patient id="2">
 <name>Jane Doe</name>
 <diagnosis>Broken ankle</diagnosis>
 </patient>
 <patient id="3">
 <name>Jack Brown</name>
<diagnosis>Food allergy</diagnosis>
</patient>
</patients>

How It Works
The Java standard library provides several ways to write XML documents. One model is the Simple API for
XML (SAX). The newer, simpler, and more efficient model is the Streaming API for XML (StAX). This recipe
uses StAX defined in the javax.xml.stream package. Writing an XML document takes five steps:

 1. Create a file output stream.

 2. Create an XML output factory and an XML output stream writer.

 3. Wrap the file stream in the XML stream writer.

 4. Use the XML stream writer’s write methods to create the document and write the
XML elements.

 5. Close the output streams.

Create a file output stream using the java.io.FileOutputStream class. You can use a try-block to
open and close this stream. Learn more about the new try-block syntax in Chapter 9.

The javax.xml.stream.XMLOutputFactory provides a static method that creates an output factory. Use
the factory to create a javax.xml.stream.XMLStreamWriter.

Once you have the writer, wrap the file stream object in the XML writer instance. You will use the
various write methods to create the XML document elements and attributes. Finally, you simply close the
writer when you finish writing to the file. Some of the more useful methods of the XMLStreamWriter instance
are these:

•	 writeStartDocument()

•	 writeStartElement()

•	 writeEndElement()

•	 writeEndDocument()

•	 writeAttribute()

After creating the file and XMLStreamWriter, you always should begin the document by calling
the writeStartDocumentMethod() method. Follow this by writing individual elements using the

http://dx.doi.org/10.1007/978-1-4842-1976-8_9

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

566

writeStartElement() and writeEndElement() methods in combination. Of course, elements can have
nested elements. You have the responsibility to call these in proper sequence to create well-formed
documents. Use the writeAttribute() method to place an attribute name and value into the current
element. You should call writeAttribute() immediately after calling the writeStartElement() method.
Finally, signal the end of the document with the writeEndDocument() method and close the Writer instance.

One interesting point of using the XMLStreamWriter is that it does not format the document output.
Unless you specifically use the writeCharacters() method to output space and newline characters, the
output will stream to a single unformatted line. Of course, this doesn’t invalidate the resulting XML file,
but it does make it inconvenient and difficult for humans to read. Therefore, you should consider using
the writeCharacters() method to output spacing and newline characters as needed to create a human
readable document. You can safely ignore this method of writing additional whitespace and line breaks if
you do not need a document for human readability. Regardless of the format, the XML document will be
well formed because it adheres to correct XML syntax.

The command-line usage pattern for this example code is this:

java org.java9recipes.chapter20.recipe20_1.DocWriter <outputXmlFile>

Invoke this application to create a file named patients.xml in the following way:

java org.java9recipes.chapter20.recipe20_1.DocWriter patients.xml

20-2. Reading an XML File
Problem
You need to parse an XML document, retrieving known elements and attributes.

Solution 1
Use the javax.xml.stream.XMLStreamReader interface to read documents. Using this API, your code will
pull XML elements using a cursor-like interface similar to that in SQL to process each element in turn. The
following code snippet from org.java9recipes.DocReader demonstrates how to read the patients.xml file
that was generated in the previous recipe:

public void cursorReader(String xmlFile)
throws FileNotFoundException, IOException, XMLStreamException {
 XMLInputFactory factory = XMLInputFactory.newFactory();
 try (FileInputStream fis = new FileInputStream(xmlFile)) {
 XMLStreamReader reader = factory.createXMLStreamReader(fis);
 boolean inName = false;
 boolean inDiagnosis = false;
 String id = null;
 String name = null;
 String diagnosis = null;

 while (reader.hasNext()) {
 int event = reader.next();
 switch (event) {
 case XMLStreamConstants.START_ELEMENT:
 String elementName = reader.getLocalName();

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

567

 switch (elementName) {
 case "patient":
 id = reader.getAttributeValue(0);
 break;
 case "name":
 inName = true;
 break;
 case "diagnosis":
 inDiagnosis = true;
 break;
 default:
 break;
 }
 break;
 case XMLStreamConstants.END_ELEMENT:
 String elementname = reader.getLocalName();
 if (elementname.equals("patient")) {
 System.out.printf("Patient: %s\nName: %s\nDiagnosis: %s\n\n",id, name,
 diagnosis);
 id = name = diagnosis = null;
 inName = inDiagnosis = false;
 }
 break;
 case XMLStreamConstants.CHARACTERS:
 if (inName) {
 name = reader.getText();
 inName = false;
 } else if (inDiagnosis) {
 diagnosis = reader.getText();
 inDiagnosis = false;
 }
 break;
 default:
 break;
 }
 }
 reader.close();
 }
}

Solution 2
Use the XMLEventReader to read and process events using an event-oriented interface. This API is called
an iterator-oriented API as well. The following code is much like the code in Solution 1, except that it
uses the event-oriented API instead of the cursor-oriented API. This code snippet is available from the same
org.java9recipes.chapter20.recipe20_1.DocReader class used in Solution 1:

public void eventReader(String xmlFile)
 throws FileNotFoundException, IOException, XMLStreamException {
 XMLInputFactory factory = XMLInputFactory.newFactory();
 XMLEventReader reader = null;

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

568

 try(FileInputStream fis = new FileInputStream(xmlFile)) {
 reader = factory.createXMLEventReader(fis);
 boolean inName = false;
 boolean inDiagnosis = false;
 String id = null;
 String name = null;
 String diagnosis = null;

 while(reader.hasNext()) {
 XMLEvent event = reader.nextEvent();
 String elementName = null;
 switch(event.getEventType()) {
 case XMLEvent.START_ELEMENT:
 StartElement startElement = event.asStartElement();
 elementName = startElement.getName().getLocalPart();
 switch(elementName) {
 case "patient":
 id = startElement.getAttributeByName(QName.valueOf("id")).getValue();
 break;
 case "name":
 inName = true;
 break;
 case "diagnosis":
 inDiagnosis = true;
 break;
 default:
 break;
 }
 break;
 case XMLEvent.END_ELEMENT:
 EndElement endElement = event.asEndElement();
 elementName = endElement.getName().getLocalPart();
 if (elementName.equals("patient")) {
 System.out.printf("Patient: %s\nName: %s\nDiagnosis: %s\n\n",id,

name, diagnosis);
 id = name = diagnosis = null;
 inName = inDiagnosis = false;
 }
 break;
 case XMLEvent.CHARACTERS:
 String value = event.asCharacters().getData();
 if (inName) {
 name = value;
 inName = false;
 } else if (inDiagnosis) {
 diagnosis = value;
 inDiagnosis = false;
 }
 break;
 }
 }
 }

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

569

 if(reader != null) {
 reader.close();
 }
}

How It Works
Java provides several ways to read XML documents. One way is to use StAX, a streaming model. It is better
than the older SAX API because it allows you to both read and write XML documents. Although StAX is not
quite as powerful as a DOM API, it is an excellent and efficient API that is less taxing on memory resources.

StAX provides two methods for reading XML documents: a cursor API and an iterator API. The
cursor-oriented API utilizes a cursor that can walk an XML document from start to finish, pointing to one
element at a time, and always moving forward. The iterator API represents an XML document stream as a
set of discrete event objects, provided in the order that they are read in the source XML. The event-oriented,
iterator API is preferred over the cursor API at this time because it provides XMLEvent objects with the
following benefits:

•	 The XMLEvent objects are immutable and can persist even though the StAX parser
has moved on to subsequent events. You can pass these XMLEvent objects to other
processes or store them in lists, arrays, and maps.

•	 You can subclass XMLEvent, creating your own specialized events as needed.

•	 You can modify the incoming event stream by adding or removing events, which is
more flexible than the cursor API.

To use StAX to read documents, create an XML event reader on your file input stream. Check that events
are still available with the hasNext() method and read each event using the nextEvent() method. The
nextEvent() method will return a specific type of XMLEvent that corresponds to the start and stop elements,
attributes, and value data in the XML file. Remember to close your readers and file streams when you’re
finished with those objects.

You can invoke the example application like this, using the patients.xml file as your <xmlFile> argument:

java org.java9recipes.chapter20.recipe20_2.DocReader <xmlFile>

20-3. Transforming XML
Problem
You want to convert an XML document to another format, for example to HTML.

Solution
Use the javax.xml.transform package to transform an XML document to another document format.

The following code demonstrates how to read a source document, apply an Extensible Stylesheet
Language (XSL) transform file, and produce the transformed, new document. Use the sample code from the
org.java9recipes.chapter20.recipe20_3.TransformXml class to read the patients.xml file and create a
patients.html file. The following snippet shows the important pieces of this class:

import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

570

import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
...
public void run(String xmlFile, String xslFile, String outputFile)
 throws FileNotFoundException, TransformerConfigurationException,

TransformerException {
 InputStream xslInputStream = new FileInputStream(xslFile);
 Source xslSource = new StreamSource(xslInputStream);
 TransformerFactory factory = TransformerFactory.newInstance();
 Transformer transformer = factory.newTransformer(xslSource);
 InputStream xmlInputStream = new FileInputStream(xmlFile);
 StreamSource in = new StreamSource(xmlInputStream);
 StreamResult out = new StreamResult(outputFile);
 transformer.transform(in, out);
 ...
}

How It Works
The javax.xml.transform package contains all the classes you need to transform an XML document into
any other document type. The most common use case is to convert data-oriented XML documents into user-
readable HTML documents.

Transforming from one document type to another requires three files:

•	 An XML source document

•	 An XSL transformation document that maps XML elements to the new document
elements

•	 A target output file

The XML source document is, of course, your source data file. It will most often contain data-oriented
content that is easy to parse programmatically. However, people don’t easily read XML files, especially complex,
data-rich files. Instead, people are much more comfortable reading properly rendered HTML documents.

The XSL transformation document specifies how an XML document should be transformed into a
different format. An XSL file will usually contain an HTML template that specifies dynamic fields that will
hold the extracted contents of a source XML file.

In this example’s source code, you’ll find two source documents:

•	 chapter20/recipe20_3/patients.xml

•	 chapter20/recipe20_3/patients.xsl

The patients.xml file is short and contains the following data:

<?xml version="1.0" encoding="UTF-8"?>
<patients>
 <patient id="1">
 <name>John Smith</name>
 <diagnosis>Common Cold</diagnosis>
 </patient>

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

571

 <patient id="2">
 <name>Jane Doe</name>
 <diagnosis>Broken ankle</diagnosis>
 </patient>
 <patient id="3">
 <name>Jack Brown</name>
 <diagnosis>Food allergy</diagnosis>
 </patient>
</patients>

The patients.xml file defines a root element called patients. It has three nested patient elements.
The patient elements contain three pieces of data:

•	 Patient identifier, provided as the id attribute of the patient element

•	 Patient name, provided as the name subelement

•	 Patient diagnosis, provided as the diagnosis subelement

The transformation XSL document (patients.xsl) is quite small as well, and it simply maps the patient
data to a more user-readable HTML format using XSL:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
<xsl:template match="/">
<html>
<head>
 <title>Patients</title>
</head>
<body>
 <table border="1">
 <tr>
 <th>Id</th>
 <th>Name</th>
 <th>Diagnosis</th>
 </tr>
 <xsl:for-each select="patients/patient">
 <tr>
 <td>
 <xsl:value-of select="@id"/>
 </td>
 <td>
 <xsl:value-of select="name"/>
 </td>
 <td>
 <xsl:value-of select="diagnosis"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

572

</body>
</html>
 </xsl:template>
 </xsl:stylesheet>

Using this style sheet, the sample code transforms the XML into an HTML table containing all the
patients and their data. Rendered in a browser, the HTML table should look like the one in Figure 20-1.

Figure 20-1. A common rendering of an HTML table

The process for using this XSL file to convert the XML to an HTML file is straightforward, but every step
can be enhanced with additional error checking and processing. For this example, refer to the previous code
in the solution section.

The most basic transformation steps are these:

 1. Read the XSL document into your Java application as a Source object.

 2. Create a Transformer instance and provide your XSL Source instance for it to use
during its operation.

 3. Create a SourceStream that represents the source XML contents.

 4. Create a StreamResult instance for your output document, which is an HTML
file in this case.

 5. Use the Transformer object’s transform() method to perform the conversion.

 6. Close all the relevant streams and file instances, as needed.

If you choose to execute the sample code, you should invoke it in the following way, using patients.
xml, patients.xsl, and patients.html as arguments:

java org.java9recipes.chapter20.recipe20_3.TransformXml <xmlFile><xslFile><outputFile>

20-4. Validating XML
Problem
You want to confirm that your XML is valid—that it conforms to a known document definition or schema.

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

573

Solution
Validate that your XML conforms to a specific schema by using the javax.xml.validation package. The
following code snippet from org.java9recipes.chapter20.recipe20_4.ValidateXml demonstrates how to
validate against an XML schema file:

import java.io.File;
import java.io.IOException;
import javax.xml.XMLConstants;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schema;
import javax.xml.validation.SchemaFactory;
import javax.xml.validation.Validator;
import org.xml.sax.SAXException;
...
public void run(String xmlFile, String validationFile) {
 boolean valid = true;
 SchemaFactory sFactory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
 try {
 Schema schema = sFactory.newSchema(new File(validationFile));
 Validator validator = schema.newValidator();
 Source source = new StreamSource(new File(xmlFile));
 validator.validate(source);
 } catch (SAXException | IOException | IllegalArgumentException ex) {
 valid = false;
 }
 System.out.printf("XML file is %s.\n", valid ? "valid" : "invalid");
}
...

How It Works
When utilizing XML, it is important to validate it to ensure that the correct syntax is in place, and to ensure
that an XML document is an instance of the specified XML schema. The validation process involves
comparing the schema and the XML document to find any discrepancies. The javax.xml.validation
package provides all the classes needed to reliably validate an XML file against a variety of schemas. The
most common schemas that you will use for XML validation are defined as constant URIs within the
XMLConstants class:

•	 XMLConstants.W3C_XML_SCHEMA_NS_URI

•	 XMLConstants.RELAXNG_NS_URI

Begin by creating a SchemaFactory for a specific type of schema definition. A SchemaFactory knows
how to parse a particular schema type and prepares it for validation. Use the SchemaFactory instance
to create a Schema object. The Schema object is an in-memory representation of the schema definition
grammar. You can use the Schema instance to retrieve a Validator instance that understands this grammar.
Finally, use the validate() method to check your XML. The method call will generate several exceptions if
anything goes wrong during the validation. Otherwise, the validate() method returns quietly, and you can
continue to use the XML file.

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

574

 ■ Note The XML Schema was the first to receive “recommendation” status from the World Wide Web
consortium (W3C) in 2001. Competing schemas have since become available. One competing schema is the
regular Language for XML Next generation (reLaX Ng) schema. reLaX Ng may be a simpler schema and its
specification also defines a non-XML, compact syntax. This recipe’s example uses the XML schema.

Run the example code using the following command-line syntax, preferably with the sample .xml file
and validation files provided as resources/patients.xml and patients.xsl, respectively:

java org.java9recipes.chapter20.recipe20_4.ValidateXml <xmlFile><validationFile>

20-5. Creating Java Bindings for an XML Schema
Problem
You want to generate a set of Java classes (Java bindings) that represent the objects in an XML schema.

Solution
The JDK provides a tool that can turn schema documents into representative Java class files. Use the
<JDK_HOME>/bin/xjc command-line tool to generate Java bindings for your XML schemas. To create the Java
classes for the patients.xsd file from Recipe 20-3, you could issue the following command from within a
console:

xjc –p org.java9recipes.chapter20.recipe20_5 patients.xsd

This command will process the patients.xsd file and create all the classes needed to process an XML
file that validates with this schema. For this example, the patients.xsd file looks like the following:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="patients">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" name="patient" type="Patient"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="Patient">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="diagnosis" type="xs:string"/>
</xs:sequence>
<xs:attribute name="id" type="xs:integer" use="required"/>
</xs:complexType>
</xs:schema>

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

575

Executed on the previous xsd file, the xjc command creates the following files in the org.
java9recipes.chapter20.recipe20_5 package:

•	 ObjectFactory.java

•	 Patients.java

•	 Patient.java

How It Works
The JDK includes the <JDK_HOME>/bin/xjc utility. The xjc utility is a command-line application that creates
Java bindings from schema files. The source schema files can be several types, including XML Schemas,
RELAX NG, and others.

The xjc command has several options for performing its work. Some of the most common options
specify the source schema file, the package of the generated Java binding files, and the output directory that
will receive the Java binding files.

You can get detailed descriptions of all the command-line options by using the tools’ –help option:

xjc –help

A Java binding contains annotated fields that correspond to the fields defined in the XML Schema file.
These annotations mark the root element of the schema file and all other subelements. This is useful during
the next step of XML processing, which involves either unmarshalling or marshalling these bindings.

20-6. Unmarshalling XML to a Java Object
Problem
You want to unmarshall an XML file and create its corresponding Java object tree.

Solution
Unmarshalling is the process of converting a data format, in this case XML, into a memory representation of
the object so that can be used to perform a task. JAXB provides an unmarshalling service that parses an XML
file and generates the Java objects from the bindings you created in Recipe 20-4. The following code can read
the file patients.xml from the org.java9recipes.chapter20.recipe20-6 package to create a Patients
root object and its list of Patient objects:

public void run(String xmlFile, String context)
 throws JAXBException, FileNotFoundException {
 JAXBContext jc = JAXBContext.newInstance(context);
 Unmarshaller u = jc.createUnmarshaller();
 FileInputStream fis = new FileInputStream(xmlFile);
 Patients patients = (Patients)u.unmarshal(fis);
 for (Patient p: patients.getPatient()) {
 System.out.printf("ID: %s\n", p.getId());
 System.out.printf("NAME: %s\n", p.getName());
 System.out.printf("DIAGNOSIS: %s\n\n", p.getDiagnosis());
 }
}

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

576

If you run the sample code on the chapter20/recipe20_6/patients.xml file and use the org.
java9recipes.chapter20 context, the application will print the following to the console as it iterates over
the Patient object list:

ID: 1
NAME: John Smith
DIAGNOSIS: Common Cold

ID: 2
NAME: Jane Doe
DIAGNOSIS: Broken ankle

ID: 3
NAME: Jack Brown
DIAGNOSIS: Food allergy

 ■ Note The previous output comes directly from instances of the Java Patient class that was created from
XML representations. The code does not print the contents of the XML file directly. instead, it prints the contents
of the Java bindings after the XML has been marshalled into appropriate Java binding instances.

How It Works
Unmarshalling an XML file into its Java object representation has at least two criteria:

•	 A well-formed and valid XML file

•	 A set of corresponding Java bindings

The Java bindings don’t have to be autogenerated from the xjc command. Once you’ve gained some
experience with Java bindings and the annotation features, you may prefer to create and control all aspects
of Java binding by handcrafting your Java bindings. Whatever your preference, Java’s unmarshalling service
utilizes the bindings and their annotations to map XML objects to a target Java object and to map XML
elements to target object fields.

Execute the example application for this recipe using this syntax, substituting patients.xml and org.
java9recipes.chapter20.recipe20_6 for the respective parameters:

java org.java9recipes.chapter20.recipe20_6.UnmarshalPatients <xmlfile><context>

20-7. Building an XML Document with JAXB
Problem
You need to write an object’s data to an XML representation.

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

577

Solution
Assuming you have created Java binding files for your XML schema as described in Recipe 20-4, you use a
JAXBContext instance to create a Marshaller object. You then use the Marshaller object to serialize your
Java object tree to an XML document. The following code demonstrates this:

public void run(String xmlFile, String context)
 throws JAXBException, FileNotFoundException {
 Patients patients = new Patients();
 List<Patient> patientList = patients.getPatient();
 Patient p = new Patient();
 p.setId(BigInteger.valueOf(1));
 p.setName("John Doe");
 p.setDiagnosis("Schizophrenia");
 patientList.add(p);

 JAXBContext jc = JAXBContext.newInstance(context);
 Marshaller m = jc.createMarshaller();
 m.marshal(patients, new FileOutputStream(xmlFile));
}

The previous code produces an unformatted but well-formed and valid XML document. For readability,
the XML document is formatted here:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <patients>
 <patient id="1">
 <name>John Doe</name>
 <diagnosis>Schizophrenia</diagnosis>
 </patient>
 </patients>

 ■ Note The getPatient() method in the previous code returns a list of patient objects instead of a single
patient. This is a naming oddity of the JaXB code generation from the XSd schema in this example.

How It Works
A Marshaller object understands JAXB annotations. As it processes classes, it uses the JAXB annotations to
provide the context needed to create the object tree in XML.

You can run the previous code from the org.java9recipes.chapter20.recipe20_7.MarshalPatients
application using the following command line:

java org.java9recipes.chapter20.recipe20_7.MarshalPatients <xmlfile><context>

The context argument refers to the package of the Java classes that you will marshal. In the previous
example, because the code marshals a Patients object tree, the correct context is the package name of the
Patients class. In this case, the context is org.java9recipes.chapter20.

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

578

20-8. Parsing an XML Catalog
Problem
You need to parse an XML catalog in order to direct remote external references to a local catalog for security
purposes, or some other need.

Solution
Utilize the standard XML Catalog API that is part of Java 9. In this example, a local catalog is read and parsed
using the API.

public static void main(String[] args) {
 // Create a CatalogFeatures object
 CatalogFeatures defaults = CatalogFeatures.defaults();

 // Resolve using properties
 // System.setProperty("javax.xml.catalog.files", "catalog.xml");

 // Resolve by passing
 Catalog catalog = CatalogManager.catalog(defaults, "catalog.xml", "catalog-alt.xml");

 // Use CatalogFeatures to specify catalog files and/or additional features
 // CatalogFeatures catalogFeatures = CatalogFeatures.builder()
 // .with(Feature.FILES, "catalog.xml")
 // .with(Feature.RESOLVE, "ignore")
 // .build();

 // Stream and filter to find the catalog matching your specification
 Optional<Catalog> cat = catalog.catalogs()
 .filter((c)->c.matchURI("calstblx.dtd") != null)
 .findFirst();

 // Do something with catalog
 }

How It Works
The JDK has historically had an XML resolver as part of its core. However, this resolver was private and
utilized only by the JDK. As time moved on, the need to implement a public XML resolver became evident,
so the private resolver was revamped into a new public API. The API allows one to manage the creation of
XML Catalogs and resolvers, it implements the OASIS XML Catalogs 1.1 specification, and it implements the
existing JAXP interfaces.

There are a number of key interfaces and classes that comprise the Catalog API. The Catalog interface
can be used to represent an entity catalog. A CatalogManager is used to parse a Catalog by passing a
CatalogFeatures configuration object, along with a variable argument containing the paths to the XML
catalog files. It can also be used to generate CatalogResolvers. It is also possible to pass paths to one or
many catalog files by specifying the “javax.xml.catalog.files” property, as seen in the example.

System.setProperty("javax.xml.catalog.files", "catalog.xml");

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

579

The CatalogFeatures object holds a number of properties and features, and a default implementation
can be obtained calling upon the CatalogFeatures.defaults() method. To specify different values for
a CatalogFeatures object, you can utilize the builder pattern to indicate values for each of the different
features. These features can be seen in Table 20-1.

Table 20-1. Catalog Features

Feature Property Description

FILES javax.xml.catalog.files Semicolon-delimited list of catalog files.

PREFER javax.xml.catalog.prefer Indicates preference between public and system identifiers.

DEFER javax.xml.catalog.defer Indicates that delegate catalogs will not be read until needed.

RESOLVE javax.xml.catalog.resolve Determines action to take if no matching catalog has been found.

For more information on CatalogFeatures, refer to the JavaDoc (http://download.java.net/java/
jdk9/docs/api/javax/xml/catalog/CatalogFeatures.html).

The Catalog.catalogs() method can be called upon to generate a Stream of alternative Catalogs using
the nextCatalog entries within the current catalog. This parsing can used to match the entries that reside
within the XML catalog.

The XML Catalog API is a nice addition to the JDK, making it easy to utilize local catalogs, rather than
remote, when needed. Java has long had a resolver for catalogs, but it was not accessible for use outside of
the internals of the JDK. The new API is a rejuvenated form of the older private API, and it is fully compliant
with the OASIS XML Catalogs 1.1 specification.

20-9. Working with JSON
Problem
You are interested in working with JSON in your Java SE 9 application.

Solution
Add the JSON-P API as a dependency to your Java SE 9 application. There are a couple of options for adding
the dependency. One can download the JAR and place it into the CLASSPATH, or if using a build tool such as
Maven, simply add the coordinates of the project repository. The following lines are excerpted from the POM
file (Project Object Module for Maven), indicating how to add the dependency.

<dependencies>
 <dependency>
 <groupId>javax.json</groupId>
 <artifactId>javax.json-api</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.json</artifactId>

http://download.java.net/java/jdk9/docs/api/javax/xml/catalog/CatalogFeatures.html)
http://download.java.net/java/jdk9/docs/api/javax/xml/catalog/CatalogFeatures.html)

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

580

 <version>1.0.4</version>
 </dependency>
...
</dependencies>

How It Works
The JavaScript Object Notation (JSON-P) API was added to the Java Enterprise platform with the release of
Java EE 7. JSON-P, also referred to as “JSON Processing,” has become the standard way to build JSON objects
using Java. Since Java 9 does not come bundled with a JSON building and parsing API, one must pull in the
required dependencies to utilize the standardized JSON-P API. JSON-P is part of Java EE, but support has
been left out of Java SE at this point. As such, it is easy to include the API by adding the downloaded JAR files
to the CLASSPATH, or adding the Maven coordinates to the project POM file. In the solution, I covered how
to utilize the Maven coordinates. However, be sure to update the version accordingly.

20-10. Building a JSON Object
Problem
You would like to build a JSON object within your Java application.

Solution
Utilize the JSON-P API to build a JSON object. In the following code, a JSON object pertaining to a book is built.

public JsonObject buildBookObject() {
 JsonBuilderFactory factory = Json.createBuilderFactory(null);
 JsonObject obj = factory.createObjectBuilder()
 .add("title", "Java 9 Recipes")
 .add("author", "Josh Juneau")
 .add("projectCoordinator", "Jill Balzano")
 .add("editor", "Jonathan Gennick")
 .build();

 return obj;
}

How It Works
The JSON-P API includes a helper class that can be used to create JSON objects using the builder pattern.
Using the JsonObjectBuilder, JSON objects can be built using a series of method calls, each building upon
each other—hence, the builder pattern. Once the JSON object has been built, the JsonObjectBuilder.
build() method can be called to return a JsonObject.

In the example to this recipe, you construct a JSON object that provides details regarding a book. The
JsonObjectBuilder.beginObject() method is used to denote that a new object is being created. The add
method is used to add more a name/value properties, much like that of a Map. Therefore, the following line
adds a property named title with a value of “Java 9 Recipes”:

.add("title", "Java 9 Recipes")

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

581

Objects can be embedded inside of each other, creating a hierarchy of subsections within one
JsonObject. For example, after the first call to add(), another object can be embedded inside the initial
JsonObject by calling JsonBuilderFactory.createObjectBuilder() as the value to an add() operation,
and passing the name of the embedded object. Embedded objects can also contain properties; so to add
properties to the embedded object, call the add() method within the embedded object. JsonObjects can
embody as many embedded objects as needed. The following lines of code demonstrate the beginning and
end of an embedded object definition if we were to modify the sources in the example to break down the
author by first and last name:

.add("author", factory.createObjectBuilder()
 .add("first", "Josh")
 .add("last", "Juneau"))
.add("projectCoordinator", "Jill Balzano")

It is also possible that a JsonObject may have an array of related subobjects. To add an array of
subobjects, call the JsonBuilderFactory.createArrayBuilder() method, passing the name of the array as
an argument. Arrays can consist of objects, and even hierarchies of objects, arrays, and so forth.

Once a JsonObject has been created, it can be passed to a client. WebSockets work well for passing
JsonObjects back to a client, but there is a bevy of different technologies available for communicating
with JSON.

20-11. Writing a JSON Object to File
Problem
You’ve generated or parsed a JSON object, and you would like to store it on disk in file format.

Solution
Utilize the JSON-P API to build a JSON object, and then store it to the file system. The JsonWriter class
makes it possible to create a file on disk, and then write the JSON to that file. In the following example, the
JsonObject that was generated in Recipe 20-10 is written to disk using this technique.

public static void writeJson() {
 JsonObject jsonObject = buildBookObject();
 try (javax.json.JsonWriter jsonWriter = Json.createWriter(new FileWriter("Book.json"))) {
 jsonWriter.writeObject(jsonObject);
 } catch (IOException ex) {
 System.out.println(ex);
 }
}

How It Works
The JsonWriter class can be utilized to write a JsonObject to a Java writer object. A JsonWriter is
instantiated by passing a Writer object as an argument to the Json.createWriter() method. After
that JsonWriter has been created, the JsonWriter.writeObject() method can be invoked, passing the
JsonObject that is to be written. Once the JsonObject has been written, the JsonWriter can be closed by

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

582

calling its close() method. These are the only steps that are necessary for writing a JSON object to a Java
Writer class type.

20-12. Parsing a JSON Object
Problem
The application you’ve created requires the ability to read a JSON object and parse it accordingly.

Solution
Utilize a JsonReader object to read a JSON object, and then make use of a JsonParser object to perform
actions against the JSON data. The following example demonstrates how to read a file from disk, and then
parse it to display some content.

public void parseObject() {
 Reader fileReader = new InputStreamReader(getClass().getResourceAsStream("Book.json"));
 JsonParser parser = Json.createParser(fileReader);
 while (parser.hasNext()) {
 Event ev = parser.next();
 System.out.println(ev);
 if (ev.equals(Event.VALUE_STRING)) {
 System.out.println(parser.getString());
 }
 }
}

In the example, the Json file named Book.json is read and parsed. When a VALUE_STRING event is
encountered during the parsing, the String is printed. Each encountered event is also printed. The following
output is the result:

START_OBJECT
KEY_NAME
VALUE_STRING
Java 9 Recipes
KEY_NAME
VALUE_STRING
Josh Juneau
KEY_NAME
VALUE_STRING
Jill Balzano
KEY_NAME
VALUE_STRING
Jonathan Gennick
END_OBJECT

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

583

How It Works
Once a JSON object has been persisted to disk, it will later need to be read back in for utilization. The
JsonReader object takes care of this task. To create a JsonReader object, call the Json.createReader()
method, passing either an InputStream or Reader object. Once a JsonReader object has been created, it can
produce a JsonObject by calling its readObject method.

In order to perform some tasks, a JSON object must be parsed to find only the content that is desired
and useful for the current task. Utilizing a JSON parser can make jobs such as these easier, as a parser is able
to break the object down into pieces so that each different piece can be examined as needed, to produce the
desired result.

The javax.json.Json class contains a static factory method, createParser(), that accepts a bevy
of input and returns an iterable JsonParser. Table 20-2 lists the different possible input types that are
accepted via the createParser() method.

Table 20-2. createParser Method Input Types

Input Type Method Call

InputStream createParser(InputStream in)

JsonArray createParser(JsonArray arr)

JsonObject createParser(JsonObject obj)

Reader createParser(Reader reader)

Table 20-3. JSON Object Events

Event Occurrence

START_OBJECT Start of an object.

END_OBJECT End of an object.

START_ARRAY Start of an array.

END_ARRAY End of an array.

KEY_NAME Name of a key.

VALUE_STRING Value of a name/value pair in String format.

VALUE_NUMBER Value of a name/value pair in numeric format.

VALUE_TRUE Value of a name/value pair in Boolean format.

VALUE_FALSE Value of a name/value pair in Boolean format.

VALUE_NULL Value of a name/value pair as NULL.

Once a JsonParser has been created, it can be made into an Iterator of Event objects. Each Event
correlates to a different structure within the JSON object. For instance, when the JSON object is created, a
START_OBJECT event occurs, adding a name/value pair will trigger both a KEY_NAME and VALUE_STRING event.
These events can be utilized to obtain the desired information from a JSON object. In the example, the event
names are merely printed to a server log. However, in a real-life application, a conditional would most likely
test each iteration to find a particular event and then perform some processing. Table 20-3 lists the different
JSON events, along a description of when each occurs.

ChapTer 20 ■ JSON aNd XML prOCeSSiNg

584

Summary
XML is commonly used to transfer data between disparate applications or to store data of some kind to a
file. Therefore, it is important to understand the fundamentals for working with XML in your application
development platform. This chapter provided an overview of how to perform some key tasks for working
with XML using Java. This chapter began with the basics of writing and reading XML. It then demonstrated
how to transform XML into different formats, and how to validate against XML schemas.

The chapter also touched upon working with JSON. Although Java SE 9 does not ship with a JSON API,
the JSON-P API can be easily utilized to generate, write, and parse JSON data. This chapter demonstrated
how to perform each of those tasks.

585© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_21

CHAPTER 21

Networking

Today, writing an application that does not communicate over the Internet in some fashion is rare. From
sending data to another machine, to scraping information off remote web pages, networking plays an
integral part in today’s computing world. Java makes it easy to communicate over a network using the New
I/O (NIO) and more new I/O features for the Java platform (NIO.2) APIs. Java SE 7 included a few new
features, enabling easier multicasting among other things. With the addition of these new features, the Java
platform contains a plethora of programming interfaces to help accomplish network tasks. Java 9 introduces
the new HTTP/2 client, which provides a simple and concise API, as well as performance improvements
over the older HTTP/1.1 client.

This chapter does not attempt to cover every networking feature that is part of the Java language, as the
topic is quite large. However, it does provide a handful of recipes that are the most useful to a broad base
of developers. You learn about a few of the standard networking concepts, such as sockets, as well as some
newer concepts that were introduced with the latest release of the Java language. If you find this chapter
interesting and want to learn more about Java networking, you can find lots of resources online. Perhaps the
best place to go for learning more is the Oracle documentation at http://download.oracle.com/javase/
tutorial/networking/index.html.

21-1. Listening for Connections on the Server
Problem
You want to create a server application that will listen for connections from a remote client.

Solution
Set up a server-side application that makes use of java.net.ServerSocket to listen for requests on a
specified port. The following Java class is representative of one that would be deployed onto a server, and it
listens for incoming requests on port 1234. When a request is received, the incoming message is printed to
the command line and a response is sent back to the client.

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;

public class SocketServer {

http://download.oracle.com/javase/tutorial/networking/index.html
http://download.oracle.com/javase/tutorial/networking/index.html

Chapter 21 ■ NetworkiNg

586

public static void main(String a[]) {
 final int httpd = 1234;
 ServerSocket ssock = null;
 try {
 ssock = new ServerSocket(httpd);
 System.out.println("have opened port 1234 locally");

 Socket sock = ssock.accept();
 System.out.println("client has made socket connection");

 communicateWithClient(sock);

System.out.println("closing socket");
} catch (Exception e) {
System.out.println(e);
} finally {
try{
ssock.close();
} catch (IOException ex) {
System.out.println(ex);
}
}
}
 public static void communicateWithClient(Socket socket) {
 BufferedReader in = null;
 PrintWriter out = null;

 try {
 in = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 out = new PrintWriter(
 socket.getOutputStream(), true);

 String s = null;
 out.println("Server received communication!");
 while ((s = in.readLine()) != null) {
 System.out.println("received from client: " + s);
 out.flush();
 break;
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 try {
 in.close();
 out.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 }
}

Chapter 21 ■ NetworkiNg

587

This recipe works in concert with Recipe 21-2, whereby this example initiates the server and this
Executing this program will simply print “have opened port 1234 locally,” but executing it along with the
client that is built in Recipe 21-2 will result in the following output from the SocketServer:

have opened port 1234 locally
client has made socket connection
received from client: Here is a test.
closing socket

 ■ Note to run the two recipes so that they work with each other, first start the SocketServer program so
that the client can create a socket using the port that is opened in the server program. after the SocketServer
starts, initiate the SocketClient program to see the two work together.

 ■ Caution this SocketServer program opens a port on your machine (1234). Be sure that you have a
firewall set running on your machine; otherwise, you will be opening port 1234 to everyone. this could result
in your machine being attacked. open ports create vulnerabilities for attackers to break into machines, kind
of like leaving a door in your house open. Note that the example in this recipe has a minimal attack profile
because the server is run through only one pass and will print only a single message from the client before
the session is closed.

How It Works
Server applications can be used to enable work to be performed on a server via direct communication from
one or more client applications. Client applications normally communicate to the server application, send
messages or data to the server for processing, and then disconnect. The server application typically listens
for client applications, and then performs some processing against a client request once a connection
is received and accepted. In order for a client application to connect to a server application, the server
application must be listening for connections and then processing the connection data somehow. You
cannot simply run a client against any given host and port number combination because doing so would
likely result in a refused connection error. The server-side application must do three things: open a port,
accept and establish client connections, and then communicate with the client connection in some way. In
the solution to this recipe, the SocketServer class does all three.

Starting with the main() method, the class begins by opening a new socket on port 1234. This is done
by creating a new instance of ServerSocket and passing a port number to it. The port number must not
conflict with any other port that is currently in use on the server. It is important to note that ports below 1024
are usually reserved for operating system use, so choose a port number above that range. If you attempt to
open a port that is already in use, the ServerSocket will not successfully be created, and the program will
fail. Next, the ServerSocket object’s accept() method is called, returning a new Socket object. Calling the
accept() method will do nothing until a client attempts to connect to the server program on the port that
has been set up. The accept() method will wait idly until a connection is requested and then it will return
the new Socket object bound to the port that was set up on the ServerSocket. This socket also contains the
remote port and hostname of the client attempting the connection, so it contains the information on two
endpoints and uniquely identifies the Transmission Control Protocol (TCP) connection.

Chapter 21 ■ NetworkiNg

588

At this point, the server program can communicate with the client program, and it does so using the
PrintWriter and BufferedReader objects. In the solution to this recipe, the communicateWithClient()
method contains all the code necessary to accept messages from the client program, sends messages
back to the client, and then returns control to the main() method that closes the ServerSocket. A new
BufferedReader object can be created by generating a new InputStreamReader instance using the socket’s
input stream. Similarly, a new PrintWriter object can be created using the socket’s output stream. Notice
that this code must be wrapped in a try-catch block in case these objects are not successfully created.

in = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
out = new PrintWriter(
 socket.getOutputStream(), true);

Once these objects have been successfully created, the server can communicate with the client. It uses a
loop to do so, reading from the BufferedReader object (the client input stream) and sending messages back
to the client using the PrintWriter object. In the solution to this recipe, the server closes the connection by
issuing a break, which causes the loop to end. Control then returns to the main() method.

out.println("Server received communication!");
while ((s = in.readLine()) != null) {
 System.out.println("received from client: " + s);
 out.flush();
 break;
}

In a real-life server program, the server would most likely listen endlessly without using a break to end
communication. To handle multiple concurrent clients, each client connection would spawn a separate
Thread to handle communication. The server would do something useful with the client communication as
well. In the case of an HTML server, it would send back an HTML message to the client. On an SMTP server,
the client would send an e-mail message to the server, and the server would then process the e-mail and
send it. Socket communication is used for just about any TCP transmission, and both the client and servers
create new sockets to perform a successful communication.

21-2. Defining a Network Connection to a Server
Problem
You need to establish a connection to a remote server.

Solution
Create a Socket connection to the remote server using its name and port number where the server is
listening for incoming client requests. The following example class creates a Socket connection to a remote
server. The code then sends a textual message to the server and receives a response. In the example, the
server that the client is attempting to contact is named server-name and the port number is 1234.

 ■ Tip to create a connection to a local program running on the client machine, set the server-name equal to
127.0.0.1. this is done within the source listing for this recipe. Usually local connections such as this are used
for testing purposes only.

Chapter 21 ■ NetworkiNg

589

public class SocketClient {

 public static Socket socket = null;
 public static PrintWriter out;
 public static BufferedReader in;

 public static void main(String[] args) {
 createConnection("127.0.0.1", 1234);
 }

 public static void createConnection(String host, int port) {

 try {
 //Create socket connection
 socket = new Socket(host, port);
 // Obtain a handle on the socket output
 out = new PrintWriter(socket.getOutputStream(),
 true);
 // Obtain a handle on the socket input
 in = new BufferedReader(new InputStreamReader(
 socket.getInputStream()));
 testConnection();
 System.out.println("Closing the connection...");
 out.flush();
 out.close();
 in.close();
 socket.close();
 System.exit(0);
 } catch (UnknownHostException e) {
 System.out.println(e);
 System.exit(1);
 } catch (IOException e) {
 System.out.println(e);
 System.exit(1);
 }
 }

 public static void testConnection() {
 String serverResponse = null;
 if (socket != null && in != null && out != null) {
 System.out.println("Successfully connected, now testing...");

 try {
 // Send data to server
 out.println("Here is a test.");
 // Receive data from server
 while((serverResponse = in.readLine()) != null)
 System.out.println(serverResponse);
 } catch (IOException e) {
 System.out.println(e);
 System.exit(1);

Chapter 21 ■ NetworkiNg

590

 }
 }
 }
}

If you’re testing this client against a server that successfully accepts the request, you will see the
following result:

Successfully connected, now testing...

 ■ Note this program will do nothing on its own. to create a server-side socket application that will accept
this connection for a complete test, see recipe 21-1. if you attempt to run this class without specifying a server
host that is listening on the provided port, you will receive this exception: java.net.ConnectException:
Connection refused.

How It Works
Every client/server connection occurs via a socket, which is an endpoint in a communication link between
two different programs. Sockets have port numbers assigned to them, which act as an identifier for the TCP/
IP layer to use when attempting a connection. A server program that accepts requests from client machines
typically listens for new connections on a specified port number. When a client wants to make a request to
the server, it creates a new socket utilizing the hostname of the server and the port on which the server is
listening and attempts to establish a connection with that socket. If the server accepts the socket, then the
connection is successful.

This recipe discusses the client side of the socket connection, so we will not go into the details of what
occurs on the server side at this time. However, more information regarding the server side of a connection
is covered in Recipe 21-1. The example class in the solution to this recipe is representative of how a client-
side program attempts and establishes connections to a server-side program. In this recipe, a method
named createConnection() performs the actual connection. It accepts a server hostname and port number,
which will be used to create the socket. Within the createConnection() method, the server hostname and
port number are passed to the Socket class constructor, creating a new Socket object. Next, a PrintWriter
object is created using the Socket object’s output stream, and a BufferedReader object is created using the
Socket object’s input stream.

//Create socket connection
socket = new Socket(host, port);
// Obtain a handle on the socket output
out = new PrintWriter(socket.getOutputStream(),
 true);
// Obtain a handle on the socket input
in = new BufferedReader(new InputStreamReader(
 socket.getInputStream()));

After creating the socket and obtaining the socket’s output stream and input stream, the client can
write to the PrintWriter in order to send data to the server. Similarly, to receive a response from the server,
the client reads from the BufferedReader object. The testConnection() method is used to simulate a
conversation between the client and the server program using the newly created socket. To do this, the
socket, in, and out variables are checked to ensure that they are not equal to null. If they are not equal to

Chapter 21 ■ NetworkiNg

591

null, the client attempts to send a message to the server by sending a message to the output stream using
out.println("Here is a test."). A loop is then created to listen for a response from the server by calling
the in.readLine() method until nothing else is received. It then prints the messages that are received.

if (socket != null && in != null && out != null) {
 System.out.println("Successfully connected, now testing...");

 try {
 // Send data to server
 out.println("Here is a test.");
 // Receive data from server
 while((serverResponse = in.readLine()) != null)
 System.out.println(serverResponse);
 } catch (IOException e) {
 System.out.println(e);
 System.exit(1);
 }
}

The java.net.Socket class is true to the nature of the Java programming language. It enables
developers to code against a platform-independent API in order to communicate with network protocols
that are specific to different platforms. It abstracts the details of each platform from the developer and
provides a straightforward and consistent implementation for enabling client/server communications.

21-3. Bypassing TCP for InfiniBand to Gain Performance Boosts
Problem
Your application, which is deployed on Linux or Solaris, needs to move data very quickly and efficiently, and
you need to remove any bottlenecks that could slow things down.

Solution
Use the Sockets Direct Protocol (SDP) to bypass TCP, a possible bottleneck in the process. In order to do this,
create an SDP configuration file and set the system property to specify the configuration file location.

 ■ Note the SDp was added to the Java Se 7 release for applications deployed in the Solaris or Linux
operating systems only. SDp was developed to support stream connections over infiniBand fabric, which Solaris
and Linux both support. the Java Se 7 release supports the 1.4.2 and 1.5 versions of openFabrics enterprise
Distribution (oFeD).

This configuration file is an example of one that could be used to enable the use of SDP:

Use SDP when binding to 192.0.2.1
bind 192.0.2.1 *

Use SDP when connecting to all application services on 192.0.2.*
connect 192.0.2.0/24 1024-*

Chapter 21 ■ NetworkiNg

592

Use SDP when connecting to the HTTP server or a database on myserver.org
connect myserver.org 8080
connect myserver.org 1521

The following excerpt is taken from the terminal. It is the execution of a Java application named
SDPExample, specifying the SDP system property:

% java -Dcom.sun.sdp.conf=sdp.conf -Djava.net.preferIPv4Stack=true SDPExample

How It Works
Sometimes it is essential that an application be as fast as possible while performing network
communications. Transfers over TCP can sometimes decrease performance, so bypassing TCP can be
beneficial. Since the release of Java SE 7, support for the SDP has been included for certain platforms.
The SDP supports stream connections over InfiniBand fabric. Both Solaris and Linux include support for
InfiniBand, so SDP can be useful on those platforms.

You don’t need to make any programmatic changes to your applications in order to support SDP. The
only differences when using SDP are that you must create an SDP configuration file, and the JVM must be
told to use the protocol by passing a flag when running the application. Because the implementation is
transparent, applications can be written for any platform, and those that support SDP can merely include
the configuration file and bypass TCP.

The SDP configuration file is a text file that is composed of bind and connect rules. A bind rule indicates
that the SDP protocol transport should be used when a TCP socket binds to an address and port that match
the given rule. A connect rule indicates that the SDP protocol transport should be used when an unbound
TCP socket attempts to connect to an address and port that match the given rule. The rule begins with either
the bind or connect keyword indicating the rule type, followed by the hostname or IP address, and a single
port number or range of port numbers. Per the online documentation, a rule has the following form:

("bind"|"connect")1*LWSP-char(hostname|ipaddress)["/"prefix])1*LWSP-char("*"|port)É
["-"("*"|port)]

In the rule format shown here, 1*LWSP-char means that any number of tabs or spaces can separate the
tokens. Anything contained within square brackets indicates optional text, and quotes indicate literal text. In
the solution to the recipe, the first rule indicates that SDP can be used for any port (* indicates a wildcard) on
the IP address of 192.0.2.1, a local address. Each local address that is assigned to an InfiniBand adaptor should
be specified with a bind rule in the configuration file. The first connect rule in the configuration file specifies
that SDP should be used whenever connecting to the IP address of 192.0.2.*, using a port of 1024 or greater.

connect 192.0.2.0/24 1024-*

This rule uses some special syntax that should be noted. Specifically, the /24 suffix of the IP address
indicates that the first 24 bits of the 32-bit IP address should match a specified address. Because each
portion of an IP address is eight bits, this means that the 192.0.2 should match exactly, and the final byte
can be any value. The dash -* within the port identifier specifies the range of 1024 or greater because the
wildcard character is used. The third and fourth connect rules in the configuration file specify that SDP
should be used with the hostname of myserver.org and a port of 8080 or 1521.

Next, in order to enable SDP, the –Dcom.sun.sdp.conf property should be specified along with the
location to the SDP configuration file when starting the application. Also, notice in the solution that the
property -Djava.net.preferIPv4Stack is set to true. This indicates that the IPv4 address format will be
used. This is necessary because IPv4 addresses mapped to IPv6 are currently not available in the Solaris OS
or under Linux.

Chapter 21 ■ NetworkiNg

593

Although the SDP is available only with Solaris or Linux, it is a nice addition to the JDK for users of those
platforms. Any performance booster is always viewed as a bonus, and the solution to this recipe certainly
falls into that category.

21-4. Broadcasting to a Group of Recipients
Problem
You want to broadcast datagrams to zero or more hosts identified by a single address.

Solution
Make use of datagram multicasting using the DatagramChannel class. The DatagramChannel class enables
more than one client to connect to a group and listen for datagrams that have been broadcasted from a
server. The following sets of code demonstrate this technique using a client/server approach. The class
demonstrates a multicast client.

package org.java9recipes.chapter21.recipe21_4;

import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardProtocolFamily;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;
import java.nio.channels.MembershipKey;

public class MulticastClient {

 public MulticastClient() {
 }

 public static void main(String[] args) {
 try {
 // Obtain Supported network Interface
 NetworkInterface networkInterface = null;
 java.util.Enumeration<NetworkInterface> enumNI = NetworkInterface.getNetworkInterfaces();
 java.util.Enumeration<InetAddress> enumIA;
 NetworkInterface ni;
 InetAddress ia;
 ILOOP:
 while (enumNI.hasMoreElements()) {
 ni = enumNI.nextElement();
 enumIA = ni.getInetAddresses();
 while (enumIA.hasMoreElements()) {
 ia = enumIA.nextElement();
 if (ni.isUp() && ni.supportsMulticast()

Chapter 21 ■ NetworkiNg

594

 && !ni.isVirtual() && !ni.isLoopback()
 && !ia.isSiteLocalAddress()) {
 networkInterface = ni;
 break ILOOP;
 }
 }
 }

 // Address within range
 int port = 5239;
 InetAddress group = InetAddress.getByName("226.18.84.25");

 final DatagramChannel client = DatagramChannel.open(StandardProtocolFamily.INET);

 client.setOption(StandardSocketOptions.SO_REUSEADDR, true);
 client.bind(new InetSocketAddress(port));
 client.setOption(StandardSocketOptions.IP_MULTICAST_IF, networkInterface);

 System.out.println("Joining group: " + group + " with network interface " + networkInterface);
 // Multicasting join
 MembershipKey key = client.join(group, networkInterface);
 client.open();

 // receive message as a client
 final ByteBuffer buffer = ByteBuffer.allocateDirect(4096);
 buffer.clear();
 System.out.println("Waiting to receive message");
 // Configure client to be passive and non.blocking
 // client.configureBlocking(false);
 client.receive(buffer);
 System.out.println("Client Received Message:");
 buffer.flip();
 byte[] arr = new byte[buffer.remaining()];
 buffer.get(arr, 0, arr.length);

 System.out.println(new String(arr));
 System.out.println("Disconnecting...performing a single test pass only");
 client.disconnect();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
}

Next, a server class can be used to broadcast datagrams to the address that multicast clients are
connected to. The following code demonstrates a multicast server:

package org.java9recipes.chapter21.recipe21_4;

import java.io.IOException;
import java.net.InetAddress;

Chapter 21 ■ NetworkiNg

595

import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;

public class MulticastServer extends Thread {

 protected ByteBuffer message = null;

 public MulticastServer() {
 }

 public static void main(String[] args) {

 MulticastServer server = new MulticastServer();
 server.start();

 }

 @Override
 public void run() {

 try {

 // send the response to the client at "address" and "port"
 InetAddress address = InetAddress.getByName("226.18.84.25");
 int port = 5239;

 DatagramChannel server = DatagramChannel.open().bind(null);
 System.out.println("Sending datagram packet to group " + address + " on port " + port);
 message = ByteBuffer.wrap("Hello to all listeners".getBytes());
 server.send(message, new InetSocketAddress(address, port));

 server.disconnect();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

The server can broadcast a message to each client that is a member of the group. The client should be
initiated first, followed by the server. Once the server is started, it will broadcast the message, and the client
will receive it.

How It Works
Multicasting is the ability to broadcast a message to a group of listeners in a single transmission. A good
analogy of multicasting is radio. Thousands of people can tune into a single broadcast event and listen to
the same message. Computers can do similar things when sending messages to listeners. A group of client
machines can tune into the same address and port number to receive a message that a server broadcasts
to that address and port. The Java language provides multicasting functionality via datagram messaging.
Datagrams are independent, nonguaranteed messages that can be delivered over the network to clients.

Chapter 21 ■ NetworkiNg

596

(Being nonguaranteed means that the arrival, arrival time, and content are not predictable.) Unlike
messages sent over TCP, sending a datagram is a nonblocking event, and the sender is not notified of the
receipt of the message. Datagrams are sent using the User Datagram Protocol (UDP) rather than TCP. The
ability to send multicast messages via UDP is one benefit over TCP, as long as the ordering, reliability, and
data integrity of the message are not mission-critical.

Java facilitates multicast messaging via the MulticastChannel interface. Classes that implement the
MulticastChannel interface have multicasting enabled and can therefore broadcast to groups and receive
group broadcasts. One such class is the DatagramChannel, which is a selectable channel for datagram-oriented
sockets. In the solution to this recipe, both a client and a server program are used to communicate via multicast
messaging, and the DatagramChannel class is used on both sides of the communication. A DatagramChannel
must be configured in a specific way if it is to be used for accepting multicast messages. Specifically, there are
options that need to be set on the DatagramChannel client that is opened. We will discuss those options shortly.
The following steps are required for creating a client that receives multicast messages.

 1. Open a DatagramChannel.

 2. Set the DatagramChannel options that are required to multicast.

 3. Join the client to a multicast group and return a MembershipKey object.

 4. Open the client.

In the solution to this recipe, the client application begins by obtaining a reference to the network
interface that will be used for receiving the broadcast messages. Setting up a NetworkInterface is required
for multicasting. Next, a port number is chosen, as well as a multicasting IP address. The group or registered
listeners will use the IP address in order to listen for broadcasts. The port number must not be in use or an
exception will be thrown. For IPv4 multicasting, the IP address must range from 224.0.0.0 to 239.255.255.255,
inclusive. This port and IP address is the same one used by a server to broadcast the message. Next, a new
DatagramChannel is opened using StandardProtocolFamily.INET. The choices for opening a DatagramChannel
are StandardProtocolFamily.INET or StandardProtocolFamily.INET6, corresponding to IPv4 and IPv6,
respectively. The first option that is set on the DatagramChannel is StandardSocketOptions.SO_REUSEADDR, and
it is set to true. This indicates that multiple clients will be able to “reuse” the address or use it at the same time.
This needs to be set for a multicast to occur. The client is then bound to the port using a new InetSocketAddress
instance. Last, the StandardSocketOptions.IP_MULTICAST_IF option is set to the network interface that is used.
This option represents the outgoing interface for multicast datagrams sent by the datagram-oriented socket.

client.setOption(StandardSocketOptions.SO_REUSEADDR, true);
client.bind(new InetSocketAddress(port));
client.setOption(StandardSocketOptions.IP_MULTICAST_IF, networkInterface);

Once these options have been set and the port has been bound to the DatagramChannel, it is ready
to join the group of listeners. This can be done by calling the DatagramChanneljoin(InetAddress,
NetworkInterface) method, passing the group address and network interface that will be used by the client.
As a result, a java.nio.channels.MembershipKey object is produced, which is a token that represents the
membership of an IP multicast group. Last, the DatagramChannelopen() method is called, which opens the
channel to listen for broadcasts. At this point, the client is ready to receive multicast messages and it waits
for a message to be received.

MembershipKey key = client.join(group, networkInterface);
client.open();

The next lines of code in the client take care of receiving messages from the server. In order to receive
a broadcasted message, a ByteBuffer is created and then eventually passed to the DatagramChannel’s
receive() method. Once the receive() method is called, the client will pause until a message is received.

Chapter 21 ■ NetworkiNg

597

You can disable this feature by calling the DatagramChannel configureBlocking(boolean) method and
passing a false value. Next, the ByteBuffer is converted to a String value and printed out by repositioning the
buffer index at 0 using the flip() method, and then pulling the text starting at index 0 to the last index into a
byte[]. Finally, be sure to disconnect the client when you’re finished. That wraps up the client code portion.

// Configure client to be passive and non.blocking
// client.configureBlocking(false);
client.receive(buffer);
// client pauses until a message is received... in this case
System.out.println("Client Received Message:");
buffer.flip();
byte[] arr = new byte[buffer.remaining()];
buffer.get(arr, 0, arr.length);

System.out.println(new String(arr));
System.out.println("Disconnecting...performing a single test pass only");
client.disconnect();

 ■ Note in the example to this recipe, a single pass is performed, and the client is then disconnected. For
extended listening, you would need a loop with a timeout and provide tests for an ending state.

The server code is fairly basic. You can see that the MulticastServer class extends Thread. This
means that this server application could run in a thread separate from other code within an application. If
there were another class that initiated the MulticastServer class’s run() method, it would run in a thread
separate from the class that initiated it. The run() method must exist in any class that extends Thread. For
more information regarding threading and concurrency, refer to Chapter 10.

The bulk of the server code resides in the run() method. A new InetAddress object is created using
the same IP address that the client registered with in order to join the multicast group. The same port
number is also declared in the server code, and these two objects will be used later in the code block to
send the message. A new DatagramChannel is opened and bound to null. The null value is important
because by setting the SocketAddress equal to null, the socket will be bound to an address that is
assigned automatically. Next, a ByteBuffer is created that contains a message that will be broadcast to any
listeners. The message is then sent using the DatagramChannel’s send(ByteBuffer, InetSocketAddress)
method. The send() method in the solution accepts the message as a ByteBuffer object, as well as a new
InetSocketAddress that is created by using the address and port, which was declared at the beginning of the
block. Told you we’d get back to those!

server.send(message, new InetSocketAddress(address, port));

At this point, the client would receive the message that was sent by the server. As for the client that is
demonstrated in the solution to this recipe, it would then disconnect. Normally in a real-world scenario, a
different class would most likely initiate the server, and its run() method would contain a loop that would
continue to execute until all messages have been broadcast or the loop was told to stop. The client would
probably not disconnect until after a user initiated a shutdown.

 ■ Note if your laptop or server is using a different network protocol other than standard ipv4, then results may
vary. please be sure to do a sufficient amount of testing before sending your code to a production environment.

http://dx.doi.org/10.1007/978-1-4842-1976-8_10

Chapter 21 ■ NetworkiNg

598

21-5. Generating and Reading from URLs
Problem
You want to generate URLs programmatically in your application. Once the URLs have been created, you’d
like to read data from them for use in your application.

Solution
Make use of the java.net.URL class in order to create a URL. There are a few different ways to generate a
URL depending on the address you are attempting to work with. This solution demonstrates some of these
options for creating URL objects, along with comments indicating the differences. Once the URL objects
have been created, one of the URLs is read into a BufferedReader and printed to the command line.

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;

public class GenerateAndReadUrl {

 public static void main(String[] args) {
 try {
 // Generate absolute URL
 URL url1 = new URL("http://www.java.net");
 System.out.println(url1.toString());
 // Generate URL for pages with a common base
 URL url2 = new URL(url1, "search/node/jdk8");

 // Generate URL from different pieces of data
 URL url3 = new URL("http", "java.net", "search/node/jdk8");

 readFromUrl(url1);

 } catch (MalformedURLException ex) {
 ex.printStackTrace();
 }
 }

 /**
 * Open URL stream as an input stream and print contents to command line.
 *
 * @param url
 */
 public static void readFromUrl(URL url) {
 try {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 url.openStream()));

Chapter 21 ■ NetworkiNg

599

 String inputLine;

 while ((inputLine = in.readLine()) != null) {
 System.out.println(inputLine);
 }

 in.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
}

Running this program will result in the HTML from the URL resource identified as url1 being printed to
the command line.

How It Works
Creating URLs in Java code is fairly straightforward thanks to the java.net.URL class, which does all of the
heavy lifting. A URL is a character String that points to a resource on the Internet. Sometimes it is useful to
create URLs in Java code so that you can read content from, or push content to, the Internet resource that the
URL is pointing to. In the solution to this recipe, a few different URL objects are created, demonstrating the
different constructors that are available for use.

The easiest route to use for creating a URL is to pass the standard readable URL String for a resource
that is located on the Internet to the java.net.URL class to create a new instance of the URL. In the solution,
an absolute URL is passed to the constructor to create the url1 object.

URL url1 = new URL("http://www.java.net");

Another useful way to create a URL is to pass two arguments to the URL constructor and create a
relative URL. It is useful to base relative URLs on the location of another URL. For instance, if a particular site
has a number of different pages, you could create a URL pointing to one of the subpages relative to the URL
of the main site. Such is the case with the url2 object in the solution to this recipe.

URL url2 = new URL(url1, "search/node/jdk8");

As you can see, the path search/node/jdk8 is relative to the URL that is known as url1. In the end, the
human-readable format of the url2 object is represented as http://www.java.net/search/node/jdk8.
There are a couple more constructors for creating URL objects that take more than two arguments. Those
constructors are as follows:

new URL (String protocol, String host, String port, String path);
new URL (String protocol, String host, String path);

In the solution, the second of the two constructors shown here is demonstrated. The protocol,
hostname, and path of the resource are passed to the constructor to create the url3 object. These last two
constructors are usually most useful when you’re dynamically generating a URL.

http://www.java.net/search/node/jdk8

Chapter 21 ■ NetworkiNg

600

21-6. Parsing a URL
Problem
You want to programmatically gather information from a URL for use within your application.

Solution
Parse the URL using the built-in URL class methods. In the following example class named ParseUrl, a URL
object is created and then parsed using the built-in URL class methods to gather information regarding the
URL. After the information has been retrieved from the URL, it is printed to the command line and then used
to create another URL.

import java.net.MalformedURLException;
import java.net.URL;

public static void main(String[] args) {
URL url1 = null;
URL url2 = null;
try {
 // Generate absolute URL
 url1 = new URL("http://www.apress.com/catalogsearch/result/?q=juneau");

 String host = url1.getHost();
 String path = url1.getPath();
 String query = url1.getQuery();
 String protocol = url1.getProtocol();
 String authority = url1.getAuthority();
 String ref = url1.getRef();

 System.out.println("The URL " + url1.toString() + " parses to the following:\n");
 System.out.println("Host: " + host + "\n");
 System.out.println("Path: " + path + "\n");
 System.out.println("Query: " + query + "\n");
 System.out.println("Protocol: " + protocol + "\n");
 System.out.println("Authority: " + authority + "\n");
 System.out.println("Reference: " + ref + "\n");

 url2 = new URL(protocol + "://" + host + path + "?q=java");

 } catch (IOException ex) {
 ex.printStackTrace();

 }
 }

Chapter 21 ■ NetworkiNg

601

When this code is executed, the following lines will be displayed:

The URL http://www.apress.com/catalogsearch/result/?q=juneau parses to the following:

Host: www.apress.com

Path: /catalogsearch/result/

Query: q=juneau

Protocol: http

Authority: www.apress.com

Reference: null

How It Works
When constructing and working with URLs in an application, it is sometimes beneficial to extract
information pertaining to a URL. This can be easily done using the URL built-in class methods, which can
call a given URL and return Strings of information. Table 21-1 explains the accessor methods available in the
URL class for obtaining information.

Each of these accessor methods returns a String value that can be used for informational purposes or
for constructing other URLs dynamically, as was done in the example. If you take a look at the results from
the solution to this recipe, you can see the information that was obtained regarding the URL via the accessor
methods listed in Table 21-1. Most of the accessors are self-explanatory. However, a couple of them could
use further explanation. The getFile() method returns the file name of the URL. The file name is the same
as the result of concatenating the value returned from getPath() with the value returned from getQuery().
The getRef() method may not be very straightforward. The reference component that is returned by calling
the getRef() method refers to the “fragment” that may be appended to the end of a URL. For instance,
a fragment is indicated using the pound character (#), followed by a String that usually corresponds to a
subsection on a particular web page. Given the URL such as the following, recipe21_6 would be returned
using the getRef() method.

http://www.java9recipes.org/chapters/chapter21#recipe21_6

Table 21-1. Accessor Methods for Querying URLs

Method URL Information Returned

getAuthority() Authority component

getFile() File name component

getHost() Hostname component

getPath() Path component

getProtocol() Protocol identifier component

getRef() Reference component

getQuery() Query component

http://www.java9recipes.org/chapters/chapter21#recipe21_6

Chapter 21 ■ NetworkiNg

602

Although it’s not always needed, the ability to parse a URL to obtain information can come in very
handy at times. Because the Java language has helper methods built into the java.net.URL class, it makes
gathering information pertaining to URLs a piece of cake.

21-7. Making HTTP Requests and Working with HTTP
Responses
Problem
You would like to initiate an HTTP request from within an application, and process the response accordingly.

Solution
Make use of the HTTP/2 client API and make requests in either a synchronous or asynchronous manner.
In the following example code, a request is made to the Apress website. The example demonstrates a
synchronous request, so the code will block until a response is received.

public static void synchronousRequest() {
 try {
 HttpResponse resp = HttpRequest.create(
 new URI("http://www.apress.com/us/")).GET().response();
 int statusCode = resp.statusCode();
 String body = resp.body(HttpResponse.asString());
 System.out.println("Status Code: " + statusCode);
 // Do something with body text
 } catch (URISyntaxException | IOException | InterruptedException ex) {
 Logger.getLogger(HttpClient.class.getName()).log(Level.SEVERE, null, ex);
 }
}

The output from running this example should be as follows, unless the site is down or there are network
communication issues:

Status Code: 200

To perform an asynchronous request, simply call upon the responseAsync() method, rather than
response(). Doing so will return a CompleteableFuture, upon which you can check status to determine
whether or not the response has returned.

public static void asynchronousRequest() {
 try {
 CompletableFuture<HttpResponse> cf = HttpRequest.create(
 new URI("http://www.apress.com/us/")).GET().responseAsync();
 System.out.println("Request made...");

 System.out.println("Check if done...");
 while (!cf.isDone()) {
 System.out.println("Perform some other tasks while waiting...");
 // Periodically check CompletableFuture.isDone()
 }

Chapter 21 ■ NetworkiNg

603

 System.out.println("Response Received:");
 HttpResponse response = cf.get();
 int statusCode = response.statusCode();
 System.out.println("Status Code: " + statusCode);
 String body = response.body(HttpResponse.asString());
 // Do something with body text

 } catch (URISyntaxException | InterruptedException | ExecutionException ex) {
 Logger.getLogger(HttpClient.class.getName()).log(Level.SEVERE, null, ex);
 }
}

The output from the asynchronous example would resemble the following:

Request made...
Check if done...
Perform some other tasks while waiting...
Perform some other tasks while waiting...
Perform some other tasks while waiting...
...
Response Received:
Status Code: 200

How It Works
The HTTP/1.1 client had been a part of the JDK for years. In fact, it has remained largely unchanged
since its inception in JDK 1.1. HTTP/1.1 has become outdated, and is no longer the preferred method
of communicating via HTTP. The newer standard, HTTP/2 resolves many issues that have been around
for years as part of working with HTTP/1.1. In Java 9, a new HTTP/2 client API has been added, allowing
developers to easily make use of newer methodologies, while still remaining backward compatible.

Performance was oftentimes an issue with HTTP/1.1 due to issues such as head-of-line blocking and
numerous request/response cycles. The HTTP/2 protocol was introduced in 2015, and it resolves many of
these older issues. For instance, binary frames are now used when sending messages, reducing the complexity
of parsing messages. Everything can now be sent over one TCP connection, rather than creating multiple TCP
connections to send numerous messages. This only scratches the surface, and there have been many more
improvements in HTTP/2…but this provides a sound understanding of why the changes were needed.

As mentioned previously, in Java 9 a new HTTP/2 client API has been added, making it easy to perform
HTTP requests and receive HTTP responses either synchronously or asynchronously. In the first example, the
synchronous API is demonstrated, invoking the HttpRequest.create() method, and passing a URI, followed
by calling GET() and response() methods in a builder-style pattern. This returns an HttpResponse object.

 HttpResponse resp = HttpRequest.create(
 new URI("http://www.apress.com/us/")).GET().response();

This is a blocking call, of course, as one will need to wait until a response is received before further
processing can be completed. Once received, the HttpResponse object can be used to return the body, HTTP
status code, and a number of other items. In this example, the HTTP status code is merely printed out, and in
many cases the status code is used along with a conditional to determine how to perform processing.

Chapter 21 ■ NetworkiNg

604

Taking a look at the second asynchronous example, it is easy to notice the differences in code when
the HttpRequest.create() method is invoked. After the URI is passed to the create() method, the GET()
method is called again, followed by the responseAsync() method. The call to responseAsync() returns
a CompletableFuture, and in this case generics are used to enforce that HttpResponse is returned. The
CompletableFuture can then be checked to determine if the response has been returned by using the
isDone() method. Appropriate actions can be taken to maintain a check again at a later time if the response
has not yet been returned, or handle a received response accordingly. In this example, a while loop is used
to continue looping until the response is finally returned. To make this code more production ready, a
conditional could be used to halt the loop after a certain number of iterations have been completed.

The updated HTTP/2 client brings a more modern API for handling HTTP to Java. The updated API
ensures that one can perform synchronous or asynchronous request/response lifecycles.

Summary
This chapter covered a few basic networking features of the Java language. In the recent releases, there have
been some nice new features added, such as the SDP. However, much of the java.net package has been
unchanged for years, and it is robust and easy to use. This chapter delved into using socket connections and
URLs and broadcasting messages via DatagramChannel. Lastly, the updated HTTP/2 client was covered.

605© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8_22

CHAPTER 22

Java Modularity

One of the most important new features of Java 9 is the modular system, which came to fruition via Project
Jigsaw. Project Jigsaw may also be referred to as JSR 376: The Java Platform Module System. The purpose of
the project was to construct a system that provided reliable configuration which would replace the classpath
system. It also focused on providing strong encapsulation between different modules. The module system
is composed of all modules that constitute the Java Platform, as the platform was reconstructed from the
ground up and modularized as part of this project. Application developers and library creators can also
create modules…whether they be single modules that perform a specific task, or a number of modules that
together create an application.

In this chapter, the basic fundamentals for development and management of modules will be touched
upon. Although Java Modularity is a very large topic, this chapter is terse, providing enough information
to get started with module development quickly. I recommend reading more in-depth books and
documentation for those interested in learning more details about Java Modularity.

22-1. Constructing a Module
Problem
You wish to create a simple module that will print a message to the command line or via a logger.

Solution
Develop a module so that it can be executed via the java executable. Begin by creating a new directory
somewhere on your file system…in this case name it “recipe22-1.” Create a new file named module-info.
java, which is the module descriptor. In this file, list the module name as follows:

module org.firstModule {}

Next, create a folder named org within the recipe22-1 directory that was created previously. Next, create
a folder named firstModule within the org folder. Now, create the bulk of the module by adding a new file
named Main.java inside of the org.firstModule folder. Place the following code within the Main.java file:

package org.firstModule;
public class Main {
 public static void main(String[] args) {
 System.out.println("This is my first module");
 }
}

Chapter 22 ■ Java Modularity

606

How It Works
The easiest modules can be built with two files, those being the module descriptor and a single Java class
file that contains the business logic. The solution to this example follows this pattern to create a very basic
module that performs a single task of printing a phrase to the command line. The module is packaged
inside of a directory that is entitled the same as the module name. In the example, this directory is named
org.firstModule, as it follows the standard module naming convention. In reality, a module can be named
anything, so long as it does not conflict with other module names. However, it is recommended to utilize
the inverse-domain-name pattern of packages. This causes the module name to become prefixed with its
containing package names.

In this solution, the module descriptor contains the module name, followed by opening and closing
braces. In a more complex module, the names of other module dependencies can be placed within the
braces, along with the names of packages that this module exports for others to use. The module descriptor
should be located at the root of the module directory. Inclusion of this file indicates to the JVM that this is
a module. This directory can be made into a JAR file as I will discuss later in the chapter, and this creates a
Modular JAR.

The other file that must be created to develop a simple module is the Java class file containing the
business logic. This file should be placed inside of the org/firstModule directory, and the package should
indicate org.firstModule. In this solution, the Main method will be invoked when the module is executed.
Note that any dependencies that the module would require must be listed within the module descriptor. In
this simple module, there are no dependencies. After setting up this directory structure and placing these
two files into their respective locations, the module development is complete.

22-2. Compiling and Executing a Module
Problem
You’ve developed a basic module. Now you would like to compile the module and execute it.

Solution
Make use of the javac utility to compile the module, specifying the d flag to list the folder into which the
compiled code will be placed. After the d option, each of the source files to be compiled must be listed,
including the module-info.java descriptor. Separate each of the file paths with a space. The following
command compiles the sources that were developed in Recipe 22-1 and places the result into a directory
named mods/org.firstModule.

javac d src/mods/org.firstModule src/org.firstModule/module-info.java src/org.firstModule/
org/firstModule/Main.java

Now that the code has been compiled, it is time to execute the module. This can be done with the
standard java executable. However, the --module-path option, which is new in Java 9, must be used to
indicate the path of the module sources. The -m option is used to specify the Main class of the module.

java --module-path mods -m org.firstModule/org.firstModule.Main

The output from executing the module should be as follows:

This is my first module

Chapter 22 ■ Java Modularity

607

If there were more than one module that was going to be compiled, they could be compiled separately
using a similar technique to the one described previously, or they could be compiled all at once. The syntax
for compiling two modules that contain a dependency is as follows:

javac -d mods --module-source-path src $(find src -name "*.java")

How It Works
As you know, before a Java application can be executed, it must be compiled. Modules are the same way in
that they must be compiled before they can be used. The standard javac utility has been enhanced so that it
can accommodate the compilation of modules by simply listing out the fully qualified paths to the module-
info.java file and each subsequent .java file contained within the module. The d option is used to specify the
destination for the compiled sources. In the solution, the javac utility is invoked and the destination is set
the location src/mods/org.firstModule. Each of the .java files that constitute the module are listed afterward,
separated by a space. If a particular module included many .java source files, then simply specifying an
asterisk (*) wildcard in the path after each package, rather than the individual file names, would suffice to
compile each .java file contained within the specified package(s).

javac -d mods/src/org.firstModule src/org.firstModule/module-info.java src/org.firstModule/
org/firstModule/*

The same java executable that is used to execute most Java applications can be used to execute a
module. With the help of some new options, the java executable is able to execute a module with all of the
required dependencies. The --module-path option specifies the path to where the compiled module resides.
If there are a number of modules that comprise an application, specify the path to the module that contains
the application entry point. The -m option is used to specify the path application entry point class, as well as
its fully qualified name. In the solution, the main class resides within a directory named org.firstModule,
and within a package named org.firstModule.

22-3. Creating a Module Dependency
Problem
You wish to develop a module that depends upon and utilizes another module.

Solution
Develop at least two modules, where one of the modules depends upon the other. Then specify the
dependency within the module descriptor. The module that was developed in the previous recipes will
be used in this solution as well, but it will be altered a bit to make use of another module named org.
secondModule. This second module will accept a number and then calculate a room rate.

To start, create the module org.secondModule by creating a new directory within the src directory.
Next, create a .java file named module-info.java and place it into that location. The contents of the module
descriptor should look as follows:

module org.secondModule {
 exports org.secondModule;
}

Chapter 22 ■ Java Modularity

608

The module will be making sources contained within the org.secondModule package available to
other modules that require it. The sources for the module should be placed into a class named Calculator.
java, and this file should be placed into the src/org.secondModule/org/secondModule directory. Copy the
following code into Calculator.java:

package org.secondModule;
import java.math.BigDecimal;
public class Calculator {
 public static BigDecimal calculateRate(BigDecimal days, BigDecimal rate) {
 return days.multiply(rate);
 }
}

The code that was originally used for org.firstModule (Recipes 22-1, and 22.2) should be modified to
make use of org.secondModule as follows:

package org.firstModule;
import org.secondModule.Calculator;
import java.math.BigDecimal;
public class Main {
 public static void main(String[] args) {
 System.out.println("This is my first module.");
 System.out.println("The hotel stay will cost " + Calculator.calculateRate(
 BigDecimal.TEN, new BigDecimal(22.95)
));
 }
}

The module descriptor for org.firstModule must be modified to require the dependency:

module org.firstModule {
 requires org.secondModule;
}

To compile the modules, specify the javac command, using a wildcard to compile all code within the src
directory:

javac -d mods --module-source-path src $(find src -name "*.java")

Lastly, to execute org.firstModule along with its dependency, use the same syntax that was used
previously to execute the module. The module system takes care of gathering the required dependencies.

How It Works
A module can contain zero or many dependencies. The readability of a module depends upon what has
been exported in the module descriptor of that module. Likewise, a module must require another module
in order to read from it. The module system practices strong encapsulation. A module always is readable
to itself, but other modules can only make use of those packages that are exported from the module.
Furthermore, only public methods and so on are available for use by other modules.

Chapter 22 ■ Java Modularity

609

To make one module dependent upon another, a required declaration must be placed in the module
descriptor, specifying the name of the module on which it is dependent. In the solution, org.firstModule
is dependent upon org.secondModule since the module descriptor declares it. This means that org.
firstModule is able to utilize any public features residing within the org.secondModule package of the
org.secondModule module. If there were more packages contained within org.secondModule, then they
would not be available to org.firstModule since they have not been exported within the module descriptor
for org.secondModule.

Utilization of the module descriptor for Java 9 modules trumps the classpath, as it is a much more
robust means of declaring dependencies. However, if a Java 9 module were packaged as a JAR (see Recipe
22-4), it can be used on older versions of Java by placing the JAR into the classpath, and the module
descriptor will be ignored.

Modules can be compiled separately using the javac command as demonstrated in Recipe 22-2, or
they can be compiled using the wildcard notation, as also seen in Recipe 22-2 and in this recipe solution.
Execution of the module is the same, whether it depends upon zero or more other modules.

22-4. Packaging a Module
Problem
Your module has been developed and you wish to package it to make it portable.

Solution
Utilize the enhanced jar utility to package modules and also to make executable modules. To package the
module that was developed in Recipe 22-2, navigate to the directory which contains the mods and src
directories. From within that directory, execute the following commands via the command line:

mkdir lib
jar --create --file=lib/org.firstModule@1.0.jar --module-version=1.0 --main-class=org.
firstModule.Main -C mods/org.firstModule .

This utility will package the module into a JAR file within the lib directory. The JAR file can then be
executed with the java executable as follows:

java -p lib -m org.firstModule

How It Works
The jar utility has been enhanced for Java 9 to include a number of new options, including a few that make
module packaging easier. Table 22-1 lists the options of the jar utility.

Chapter 22 ■ Java Modularity

610

Looking at the table, there are a couple of options that are important for working with modules.
Specifically, as seen in the example, the --module-version option allows a version to be specified. The
other module-specific option is --module-path, which specifies the location of module dependence for
generating a hash.

New options aside, creation of a JAR file using modules is not too much different than standard JAR file
generation. Perhaps the most difficult part is ensuring that you are in the correct directory when initiating
the command. As seen in the solution, simply specify the main class that will be executed when the JAR
is invoked by using the --main-class or -e option. After that, perform a -C directory change inside of the
module root, and then end the command with a “.” to indicate the current directory.

Once a JAR file is created, the module will become portable, which means that it can be used on other
systems.

22-5. Listing Dependencies or Determining JDK-Internal
API Use
Problem
You would like to determine whether an existing application relies upon any of the inaccessible internal JDK
APIs with Java 9.

Table 22-1. jar Utility Options

Option Description

-c, --create Create an archive

-I, --generate-index=FILE Generate index information for specified jar files

-t, --list List an archive’s table of contents

-u, --update Update an existing jar file

-x, --extract Extract one or more files from a jar file

-C DIR Change to the directory that is specified and include file

-f, --file=FILE Name of the jar file

-v, --verbose Generate verbose output

-e, --main-class=NAME The main class or entry point for a module that will be packaged into the jar

-m, --manifest=FILE Include specified manifest file information with the jar

-M, --no-manifest Omit manifest

--module-version=VERSION Module version

--hash-modules=PATTERN Compute and record hashes of modules matched by the specified pattern

-P, --module-path Location of module dependency for generation of hash

-0, --no-compress Specifies that no ZIP compression shall be used

Chapter 22 ■ Java Modularity

611

Solution
Use the jdeps tool to list module dependencies from the command line. To see the list of dependencies for a
given module, specify the --list-deps option as follows:

jdeps --list-deps <<your-jar.jar>>

Invoking this command will initiate output that includes each of the packages that the specified JAR
file depends upon. For example, choosing a random JAR file from the GlassFish application server modules
directory would produce something similar to the following:

jdeps --list-deps acc-config.jar
 java.base
 java.xml.bind
 unnamed module: acc-config.jar

There are also applications that may make use of JDK-Internal APIs, which are now inaccessible to
standard applications starting with Java 9. The jdeps tool can list such dependencies, making it possible to
determine whether an application will run on Java 9 without issue. To utilize this functionality, specify the
-jdkinternals option as follows:

jdeps –jdkinternals <<your-jar.jar>>

Invoking the jdeps utility to review a JAR that contains dependencies upon JDK-Internal APIs will
produce output such as the following:

jdeps -jdkinternals security.jar
security.jar -> java.base
 com.sun.enterprise.common.iiop.security.GSSUPName ->

sun.security.util.ObjectIdentifier JDK internal API (java.base)
 com.sun.enterprise.common.iiop.security.GSSUtilsContract ->

sun.security.util.ObjectIdentifier JDK internal API (java.base)
 com.sun.enterprise.security.auth.login.LoginContextDriver ->

sun.security.x509.X500Name JDK internal API (java.base)
 com.sun.enterprise.security.auth.login.LoginContextDriver$4 ->

sun.security.x509.X500Name JDK internal API (java.base)
 com.sun.enterprise.security.auth.realm.certificate.CertificateRealm ->

sun.security.x509.X500Name JDK internal API (java.base)
 com.sun.enterprise.security.auth.realm.ldap.LDAPRealm ->

sun.security.x509.X500Name JDK internal API (java.base)
 com.sun.enterprise.security.ssl.JarSigner ->

sun.security.pkcs.ContentInfo JDK internal API (java.base)
 com.sun.enterprise.security.ssl.JarSigner ->

sun.security.pkcs.PKCS7 JDK internal API (java.base)
 com.sun.enterprise.security.ssl.JarSigner ->

sun.security.pkcs.SignerInfo JDK internal API (java.base)
 com.sun.enterprise.security.ssl.JarSigner ->

sun.security.x509.AlgorithmId JDK internal API (java.base)
 com.sun.enterprise.security.ssl.JarSigner ->

sun.security.x509.X500Name JDK internal API (java.base)

Chapter 22 ■ Java Modularity

612

Warning: JDK internal APIs are unsupported and private to JDK implementation that are
subject to be removed or changed incompatibly and could break your application.
Please modify your code to eliminate dependence on any JDK internal APIs.
For the most recent update on JDK internal API replacements, please check:
https://wiki.openjdk.java.net/display/JDK8/Java+Dependency+Analysis+Tool

JDK Internal API Suggested Replacement
---------------- ---------------------
sun.security.x509.X500Name Use javax.security.auth.x500.X500Principal @since 1.4

How It Works
The jdeps (Java Dependency Analysis) tool was introduced in Java 8, and it is a command-line tool that is
useful for listing static dependencies of JAR files.

Java 9 encapsulates many of the internal JDK APIs, making them inaccessible to standard applications.
Prior to Java 9, there were circumstances that required applications to make use of such internal APIs. Those
applications will not run as expected on Java 9, so it is imperative such dependencies are found and resolved
before attempting to run older code on Java 9. The jdeps tool can be very useful for finding whether a JAR
depends upon these internal APIs by listing out the dependencies if they exist. If you wish to list the output
in the .dot file format, specify the -dotoutput option along with -jdkinternals, as follows:

jdeps -dotoutput /java_dev/security-dependencies.dot -jdkinternals security.jar

The jdeps tool can also be helpful for determining JAR dependencies, in general. The tool contains a
--list-deps option to do just that. Simply put, the --list-deps option lists each of the modules a specified
JAR depends upon.

22-6. Providing Loose Coupling Between Modules
Problem
You would like to provide loose coupling between modules, such that one module may call upon another
module as a service.

Solution
Make use of the service architecture that has been built into the Java 9 modularity system. A service
consumer can specify loose coupling by specifying a “uses” clause in the module descriptor to indicate that
the module makes use of a particular service. The following example could be used for a module that may
have the task of providing a web service discovery API. In the example, the org.java9recipes.serviceDiscovery
module both requires and exports modules. It also then specifies that it uses the org.java9recipes.spi.
ServiceRegistry service.

module org.java9recipes.serviceDiscovery {
 requires public.java.logging;
 exports org.java9recipes.serviceDiscovery;
 uses org.java9recipes.spi.ServiceRegistry;
}

Chapter 22 ■ Java Modularity

613

Similarly, a service provider must specify that it is providing an implementation of a particular
service. One can do so by including a “provide” clause within the module descriptor. In this example, the
following module descriptor indicates that the service provider module provides the org.java9recipes.spi.
ServiceRegistry with the implementation of org.dataregistry.DatabaseRegistry.

module org.dataregistry {
 requires org.java9recipes.serviceDiscovery;
 provides org.java9recipes.spi.ServiceRegistry
 with org.dataregistry.DatbaseRegistry;
}

The corresponding modules can now be compiled and used, and they will enforce loose coupling.

How It Works
The concept of module services allows for loose coupling to be had between two or more modules. A
module that makes use of a provided service is known as a service consumer, whereas a module that
provides a service is known as a service provider. Service consumers do not use any of a service provider’s
implementation classes, rather, they utilize interfaces. For the loose coupling to work, the module system
must be able to easily identify any uses of previously resolved modules, and on the contrary, search for
service providers through a set of observable modules. To make the identification of the use of services easy,
we specify the “uses” clause in a module descriptor to indicate that a module will make use of a provided
service. On the flip side, a service provider can easily be found by the module system as we specify the
“provides” clause within the module descriptor of a service provider.

Utilizing the module service API, it is very easy for the compiler and runtime to see which modules
make use of services, and also which modules provide. This enforces even stronger decoupling, as the
compiler along with linking tools can ensure that providers are appropriately compiled and linked to such
services.

22-7. Linking Modules
Problem
You wish to link a set of modules in an effort to create a modular runtime image.

Solution
Make use of the jlink tool to link said set of modules, along with their transitive dependencies. In the
following excerpt, a runtime image is created from the module that was created in Recipe 22-1.

jlink --module-path $JAVA_HOME/jmods:mods --add-modules org.firstModule --output
firstmoduleapp

Chapter 22 ■ Java Modularity

614

How It Works
Sometimes it is handy to generate a runtime image of modules to make for easier transportation. The jlink
tool provides this functionality, amongst others. In the solution, a runtime image named firstmoduleapp is
created from the module named org.firstModule. The --module-path option first indicates the path to the
JVM jmods directory, followed by any directories that contain modules to be incorporated in the runtime
image. The --add-modules option is used to specify the names of each module that should be included in
the image.

The jlink tool contains a bevy of options, as indicated in Table 22-2.

Table 22-2. jlink Options

Option Description

--add-modules Named modules to be resolved.

-c, --compress=<0|1|2> Enables compression or resources.

--disable-plugin <name> Disables named plugin.

--endian <little|big> Specifies byte order of generated image.

--ignore-signing-information Suppress fatal error when linked image will contain modular JARs
which are signed. Signature-related files of signed modular jars will
not be included.

--limit-modules Limit the amount of observable modules.

--list-plugins List available plugins.

-p,--module-path Module path.

--no-header-files Exclude header files from path.

--no-man-pages Exclude man pages from path.

--output <path> Output location.

--plugin-module-path Custom plugin module path.

--save-opts <filename> Save jlink options in specified file.

-G,--strip-debug Strip debug information.

--version Version information.

@<filename> Read options from specified file.

Summary
This chapter provided a brief summary of the Java 9 Module System. In this chapter, you learned how to
define a module, compile, and execute it. You also learned how to package a module and how to create
modular dependencies. You learned about a couple of useful tools for working with modules for the
purposes of listing dependencies, uses of JDK Internal APIs, and linking modules. Lastly, this chapter
demonstrated how to create loose coupling via the use of module services.

615© Josh Juneau 2017
J. Juneau, Java 9 Recipes, DOI 10.1007/978-1-4842-1976-8

��������� A
acceptChanges() method, 335
Annotations, 270
Assert.assertEquals method, 270
AutoCloseable interface, 229
Automatic Resource Management (ARM)

feature, 228
await() method, 254
awaitTermination() method, 249

��������� B
BigDecimal class, 73
Binary large objects (BLOBs), 349

��������� C
CachedRowSet

acceptChanges() method, 335
connection properties, 333
CreateConnection class, 334
execute() method, 334
executeQuery() method, 334
fetching methods, 334
insertRow() method, 335
main() method, 330
moveToCurrentRow() method, 335
moveToInsertRow() method, 334
output, 333
RowSetFactory, 333
setCommand() method, 334
setKeys() method, 334
SyncResolver object, 335
updateRow() method, 335

calculateDaysPlayed() abstract method, 130
CallableStatement, 350
Cascading Style Sheet (CSS), 463

code implementation, 463
Control Style 1 Look and Feel, 467
enableCss() method, 468

loadSkin() method, 468
Modena Look and Feel, 466
setStyle() method, 469
setUserAgentStylesheet() method, 467

catch exceptions, 222
Character large object (CLOB)

BLOBs, 349
ClobgetString() method, 349
ConnectioncreateClob() method, 349
executeUpdate() method, 349
getAsciiStream() method, 349
loadClob() method, 349
PreparedStatement setClob() method, 349
setString() method, 349
VARCHAR fields, 348

Character large object (CLOB) data type, 347
ClobgetString() method, 349
Cloneable interface, 117
Closures, 138
Command-line interpreter

compiling and execution, 17
class path, 19
-cp parameter, 19
-d option, 19
main() method, 18

jShell utility, 27
keyboard input

BufferedReader class, 29
exception handling, 28
InputStreamReader class, 29
terminal input, 29

passing arguments, 25
commit() method, 325
compareToIgnoreCase() method, 51
Concurrency

collections helper class, 245
CopyOnWriteArrayList, 244
different collections coordination

atomic operation, 247
fulfillOrder() method, 245
inventoryLock.lock() method, 246

Index

■ INDEX

616

inventoryLock.unlock() method, 246
locking, 248
lock.unlock() method, 248
ReentrantLock object, 248
setFair property, 248

discrete units, 258
key insertion, 242
run() method, 240
runnable interface, 239
startUpdatingThread() method, 244
synchronizedList() method, 244
threads, 240

await() method, 254
awaitTermination() method, 249
blockingQueue queue, 253
CorePoolSize, 250
CountDownLatch, 251
inventoryThread.join() method, 252
join() method, 254
JVM’s thread scheduler, 253
KeepAliveTime, 250
MaximumPoolSize, 250
objectToSync, 254
prestartAllCoreThreads() method, 250
processOrder() method, 250
Queue, 249
shutdown() method, 250
ThreadpoolExecutor instance, 249
TimeUnit, 250
wait() method, 254
WorkQueue, 250

threadsafe sbjects
creation, 255
implementation, 257

updation, 240
user and daemon user thread, 240

ConnectioncreateClob() method, 349
Connection management

CreateConnection class, 316, 318
DataSource, 318
db_props.properties, 317
DriverManager, 318
JNDI, 318
strategic connection methodology, 318

Contexts and Dependency Injection (CDI), 507
CreateConnection class, 316, 318
createPlayer(String) method, 104
Create, retrieve, update, and delete (CRUD)

operations, 312
code, 312
executeQuery() method, 315
executeUpdate() method, 315
vs. DML, 315
format, 314

performCreate() method, 315
performDelete() method, 315
performRead() method, 315
performUpdate() method, 315
result, 314
Statement executeQuery() method, 315

CSS. See Cascading Style Sheet (CSS)

��������� D
Databases

automatic resource handling, 352
Connection object, 308
create_database.sql script, 305
create_user.sql script, 305
CRUD operations

code, 312
executeQuery() method, 315
executeUpdate() method, 315
vs. DML, 315
format, 314
performCreate() method, 315
performDelete() method, 315
performRead() method, 315
performUpdate() method, 315
result, 314
Statement executeQuery() method, 315

data caching, disconnected state
(see CachedRowSet)

FilteredRowSet
AuthorFilter, 345–346
evaluate() methods, 345
executeQuery() method, 346
FilteredRowSetImpl class, 346
implementation, 341
implementFilteredRowSet()

method, 343, 346
main() method, 343
output, 345
setCommand() method, 346
setFilter() method, 346
WHERE clause, 345–346

JDBC Connection object
DataSource object, 306–307
DataSource registration, 308
DriverManager object, 307
getConnection() method, 305
InitialContext, 308
java.naming.NamingException

exception, 308
java.sql.Connection object, 307
java.sql.SQLException, 308
management (see Connection

management)
SQL exceptions, 308

Concurrency (cont.)

■ INDEX

617

JoinRowSet
addRowSet() method, 340
AUTHOR_WORK table, 340
BOOK_AUTHOR table, 340
foreign key, 336
getInt() method, 341
getString() method, 341
SQL JOIN query, 340
joinRowQuery() method, 340
main() method, 340
primary key, 336
queryAuthorBook() method, 340
queryBookAuthor() method, 340
RowSets, 335

large object query and storage (see Character
large object)

LocalDate object, 351
query and result retrieval

Connection object, 310
executeQuery() method, 310
java.sql.Connection object, 310
next() method, 311
ResultSet getInt() method, 311
ResultSet getString() method, 311
rs.next(), 311
Statement object, 310
System.out() method, 311

scrollable ResultSet
code, 326
constants, 327
createStatement() method, 327
forward and backward traverse, 326
prepareStatement() method, 327
record retrieval code, 327

SQL injection protection (see
PreparedStatements)

stored procedure invoking, 349
transaction

autoCommit() preference, 322
commit() method, 322, 325
insertRecord() method, 325
main() method, 325
management code, 322
rollback() method, 322, 325
sequential processing, 322
setAutoCommit() method, 325

updatable ResultSet
concurrency, 329
createStatement() method, 329
output, 328
PreparedStatement method, 329
ResultSet.CONCUR_UPDATABLE

constant, 329
ResultSet object, 328
Statement object, 329

TYPE_SCROLL_SENSITIVE, 329
updateRow() method, 330
updateString() method, 329
updateXXX() methods, 329

Data manipulation language (DML), 315
Data structures

code execution
control flow statement, 169
isValidSwitchType() method, 168, 169
private static void playHands, 166
private static void printWinner, 167
public class, 166
public static void main, 167
RockPaperScissors class method, 170
switch statement, 166
SwitchTypeCheckerisValidSwitchType()

method, 169
collection types, 186

intermediate operation, 188
Stock objects, 186
terminal operation, 188

dynamic arrays
arrayList, 182
List<String> method, 182
output, 181
public static boolean screen, 180
public static void screen, 181
StockScreener class method, 180
StockScreener main() method, 182
void main, public static, 181

fixed set constant
abstract and finaljava.lang.Enum class, 161
compiler error/warning, 161
encapsulate constants, 161
enum type, 159
equals() method, 162
FieldType.EMAIL_ADDRESS coding, 160
name() method, 161
ordinal() method, 161
values() and valueOf(String) method, 162

fix-sized arrays
Arrays.toString(int[]) method, 174
defining array, 173
GradeAnalyzer class, 170, 172
GradeAnalyzer main() method, 174
initGrades1() method, 173
initGrades2() method, 174
initGrades3() method, 174
min and max grade, 173
object type array, 172

generic types
Collection interfaces and classes, 176
CollectionremoveAll() method, 179
compile-time feature, 176
diamond, 179

■ INDEX

618

LinkedList<Double> method, 178
LinkedList<Integer>, 178
Listadd(E e)method, 177
List<String>>bMap method, 180
ListrawList, 177
public interface List, 176
wildcard, 178

intelligent constants design
FieldType enum method, 162
FieldType instances, 165
main() method, 165
validate() method, 165

iterable objects
add(List<Stock>) method, 185
collection–based class, 183
iterator() method, 183, 185, 186
main() method, 184
Mapvalues() method, 185
remove() method, 186
StockPortfolio method, 183–184
UnmodifiableIterator class, 186

map iterating, 189
parallelStream() operation, 192

Date, 65
binary literals, 97
ChronoUnit class, 91
compareTo() method, 84, 88
find intervals, 89
format() method, 94
formatting

java.text.SimpleDateFormat class, 94
pattern characters, 95
SimpleDateFormat class, 95–96

getDay() method, 84
getHours() method, 83
getMinutes() method, 83
getMonth() method, 83
getSeconds() method, 83
getTime() method, 83, 91
getTimeInMillis() method, 91
getTimezoneOffset() method, 84
getYear() method, 84
java.util.Calendar class, 82
java.util.concurrent.TimeUnit enum, 90
java.util.Date class, 82
LocalDate class, 76
LocalDate.of() method, 76
LocalDateTime class, 80

Calendar class, 82, 84
Date object, 82
methods, 81

LocalTime class, 78–80
machine-based timestamp, 84
numeric literals, 97

parse() method, 92
setTime() method, 84
TimeUnit enum, 91
TimeUnit.MILLISECONDS, 92
Time Zone, 85
toHours() method, 92
YearMonth and MonthDay class, 78

Date-Time API, 65, 66
Deadlocks, 284
Debugging and unit testing

annotations, 270
Assert.assertEquals method, 270
FindBugs report, 274, 276
garbage collection, 276
JUnit, 269
printStackTrace() method, 267–268
scripting

Apache Ant program, 273
build.path, 273
build.xml file, 272–273
JAVA_HOME environment variable, 271
JDK installation, 271
JUnit and Ant configuration, 271

thread dump, 278
Decorator pattern, 196
DriverManager.getConnection() method, 307

��������� E
ECMAScript6 features, 550
E-mail

Authenticator object, 555
checking, 558–559
getPasswordAuthentication() method, 555
HTML content, 556–557
JavaMail, 553
monitoring, 559–561
multipart message, 555–556
multiple recipients, 557–558
Properties object, 554
Transport() methods, 554
Transport.send() static

method, 555
Enhancements, 35

avoid redundancy, 35
dropWhile() construct, 42–43
error handling, 40
filter logs, 44
HTTP client development, 43
immutable Collection, 45
module creation, 36
ProcessHandle Interface, 40
retrive information in OS, 38
takeWhile() construct, 42
Xlog Decorators, 45

Data structures (cont.)

■ INDEX

619

Event dispatch thread (EDT), 395
Exceptions

AutoCloseable interface, 229
catching, 222
cleanup code, 223
error class, 221
hierarchy, 221
IllegalArgumentException class, 230
InvalidUsernameException, 222
logging, 222
multiple exceptions, 225
rethrowing, 230
RuntimeException class, 222, 229–230
throwing, 224
try/catch syntax, 222
try-with-resources block, 229
uncaught exceptions, 227

executeQuery() method, 311

��������� F
Factory pattern, 106
fcompareTo() method, 51
FilteredRowSet

AuthorFilter, 345–346
evaluate() methods, 345
executeQuery() method, 346
FilteredRowSetImpl class, 346
implementation, 341
implementFilteredRowSet() method, 343, 346
main() method, 343
output, 345
setCommand() method, 346
setFilter() method, 346
WHERE clause, 345–346

Form designer application, 452
cell constraints, 463
change listeners, 461
code implementation, 453
EventHandler, 462
GridPaneControlPanel, 461
GridPane property control panel, 459
ManipulatingLayoutViaGrids, 460
MyForm, 460
property control panel, 454
target grid pane, 463

��������� G
getConnection() method, 307
Graphics

animating shapes
code implementation, 447
instance variables, 450
mouse-drag events, 452

mouse-press event, 451
mouse-release event, 452
path transition, 451
spherical-looking ball, 451

CSS styling (see Cascading Style Sheet (CSS))
grid type layout,452 (see also Form designer

application)
image viewer application, 430

drag and drop operation, 434
instance variables, 435
source code implementation, 430

news ticker and photo viewer application
(see News ticker and photo viewer
application)

��������� H
HelloWorld application

command-line prompt
Application class, 359
Application.launch() method, 359
compilation and running, 359
Group class, 360
HelloWorldMain.java, 359
main() method, 359
Node objects, 360
package and deployment, 359
procedure, 357
Scene object, 359
Shape objects, 360
show() method, 360
Stage object, 359–360
start() method, 359–360

NetBeans IDE
Application class, 359
Application.launch() method, 359
Group class, 360
main() method, 359
Node object, 360
procedure, 356
Scene object, 359
Shape objects, 360
show() method, 360
Stage object, 359–360
start() method, 359–360

��������� I
Image viewer application

drag and drop operation, 434
instance variables

currentIndex, 435
imageFiles, 435
NEXT and PREV, 437

source code implementation, 430

■ INDEX

620

Interactive Development Environment (IDE), 1
command-line interpreter (see Command-line

interpreter)
JDK installation, 1
String conversion

floating-point number, 24
pattern, 24
primitive data types, 25

variable declaration, 14
fields, 14
primitive and String types, 14
static fields, 15
visibility, 14
working principle, 16

Internet Message Access Protocol (IMAP) e-mail
account, 558

I/O streams, 195

��������� J, K
Java, 2

CLASSPATH variable, 9
JAR files, 9
working principles, 10

Enterprise Edition, 2
environment variables, 33

getenv() method, 33
iteration, 33
ReadOneEnvVariable class, 33
working principles, 34

interactive jShell, 20
Javadoc

comments, 30, 32
execution tool, 32
HTML documentation, 31
working principles, 31

Mobile Edition, 2
packages

API, 13
directory structure, 12
naming conflicts, 11
security, 13
working principle, 12

Java Archive (JAR) files, 9
Java Community Process (JCP), 2
Java Database Connectivity (JDBC), 305
JavaFX

background process
cancel() method, 396
ChangeListener, 396
classes, 392
code implementation, 392
controls, 396
createWorker() method, 396
EDT, 395

file copy window, 395
queue up, 396
SwingWorker object, 395
Task object, 396
updateProgress() method, 396

binding expressions
computeValue() method, 385, 388
console application code, 384
Contact object, 388
DoubleBinding class, 385, 388
multiply() method, 388
output, 387
SimpleStringProperty

class, 388
strategies, 384

borders generation, 383
CSS editor text code, 382
HBox layout, 384
ImageView object, 384
setStyle() method, 384
style selectors, 384

change password dialog, 415
code implementation, 411
initModality() method, 415
initOwner() method, 415
JDialog class, 415
stage and scene, 411
start() method, 416

changing text fonts, 363, 365
code implementation, 362
CSS, 364
DropShadow object, 366
FXML file, 366
javafx.scene.effect.DropShadow, 362
javafx.scene.effect.Reflection, 362
javafx.scene.text.Font, 362
reflection, 366
setMaxWidth() method, 366

colors assignment
classes, 372
code implementation, 372
cycle method, 376
eclipse shape, radial gradient, 375
LinearGradient properties, 376
RadialGradient properties, 375
rectangle, semitransparent linear

gradient, 375
rounded rectangle, reflective linear

gradient, 375
shapes, 374

keyboard sequences, 398
classes, 397
code implementation, 397
inner shadow effect, 399
setAccelerator() method, 399

■ INDEX

621

menus creation, 378
bind() method, 379
classes, 376
code implementation, 377
getItems() method, 379
hot keys/keyboard functionality, 378
menu bar, 378, 379
menu items, 379
Menu objects, 379

ObservableList
ArrayList class, 391–392
FXCollections class, 391
GUI application code, 389
ListViews, 391
MVC mechanism, 389
swing components, 391

printing, 416
API classes, 422
application dialog, 421–422
code implementation, 416
getAllPrinter() method, 423
getDefaultPrinter() method, 423
PrintDialog class, 419
PrintJob.createPrinterJob(), 422
printPage() method, 422

Rich Internet applications (RIAs), 355
scene graph, 355
shapes creation, 370

code implementation, 367
cubic curve, 370
CubicCurve() instance, 371
donut shape, 372
javafx.scene.shape.* package, 367
Path elements, 371
Path.subtract() method, 372
setEffect() method, 372
Shape node, 371

Swing content, 423
code implementation, 423
event dispatch thread (EDT), 427
runLater() method, 427
setContent() method, 427
SwingNode object, 424, 426

Swiss Army Knife, 355
tables

application code, 401
ChangeListener, 405
code implementation, 400
getPeople() method, 403
JTable component, 399
ListView control, 399, 404
ObservableList, 405
setProperty() method, 404
TableView control, 399, 403–404
updateItem() method, 404

tabs addition
code implementation, 408
setSide() method, 410
tab orientations, 408
TabPane, 410

text drawing, 360
UI components, layout, 380

code implementation, 380
GridPane class, 381

UI split views, 407
code implementation, 405
dividers position, 408
GUI application, 405
pane control, 405, 407
VBox layout control, 407
vertical split, 407

user experience, 355
user interface creation (see HelloWorld

application)
Java interface, 108
JavaMail, 553
Java Persistence API (JPA), 511
Java Platform Manager, 357
JavaScript code execution, 529

eval() method, 531
getEngineByName() method, 530
Java classes and libraries, 537

Java.type function, 537, 539
ScriptEngineManager, 539

pass Java parameters, 534
returning values, 535

Invocable object, 536
invokeFunction() method, 535
ScriptEngine, 536

ScriptEngineManager(), 529
String interpolation, 533
via command line, 531

jjs command-line tool, 533
jrunscript tool, 533
JSR 223 jrunscript tool, 532

in Unix, 544
JavaServer Faces (JSF), 499

application development, 506
accessor methods, 510
CDI controller class, 507, 510
controller method, 506
encapsulate fields, 507
HTML markup, 508
JSF components, 508
public method, 508

asynchronous views, 519
CDI Scopes, 523
data storage, 511

EJB, 516
entity class, 512, 514

■ INDEX

622

managed beans, 510
templates, 523

client view, 524
facelets, 526
HelloJsf application, 523
tag libraries, 526
tags, 527

view controllers, 517
web application creation, 499

code implementation, 505
configuration, 503
HelloJsf, 500
NetBeans Maven, 500
Payara 5 server, 501
working principles, 503

JavaServer Pages (JSP) framework, 509
java.sql.SQLException, 307
Java Standard Edition (Java SE), 1

Downloads page, 2
verification, 3

java.util.function package, 137
JSON

beginArray() method, 581
createParser() method, 583
in Java SE 9 application, 579
javax.json.Json class, 583
Json.createReader() method, 583
JsonObjectBuilder.beginObject() method, 580
JsonObjectBuilder class, 580
JsonParser, 583
JsonReader object, 582
JsonWriter class, 581
JsonWriter writeObject() method, 581
object events, 583
parsing, 582

��������� L
Lambda expressions

argument list, 138
body, 139
code authorisation, 140
filter criteria, 149–150
functional interface, 141

ActionCode, 139
HelloType, 137
ReverseType, 140

Function<T,R> interface, 140
ivnoke existing methods

Arrays.sort() method, 146
compareByGoals() method, 144
double colon(::) operator, 145
method references, 146

java.util.function package, 141

PassingLambdaFunctions, 155
areaCalc, 156
calculate() method, 155, 157
MainClass, 157

replace anonymous inner
classes, 151, 153

runnable implementation, 150–151
sorting, 147

Collections.sort() method, 148–149
Comparator interface, 148
forEach() method, 149
map() function, 149

syntax, 138
variable access, 153–154

Locale instance, 287
BCP 47 document, 290
constructors, 289
creation, 287
Locale.Builder class, 288
Locale.forLanguageTag() method, 289
locale-sensitive classes, 290
Locale-sensitive services, 304
Locale.setDefault() method, 291–292
matching and filtering methods, 293
setter methods, 290

Logging
exceptions, 234
FileHandler pattern, 234
java.util.logging.LogManager(), 232
levels, 232
loadLogConfiguration() function, 232
Log0.log file code, 233
Logger.isDebugEnabled(), 234
recipeLogger event, 231
SocketHandler, 234
unified JVM Logger, 235
Xlog decorators, 237

��������� M
Matching and filtering methods, locale, 293

filter() method, 294
modes, 295
RFC 4647, 295

Media API
The End animation, 495

code implementation, 496
createTheEnd() method, 497
setOnEndOfMedia() method, 497
translateTransition method, 496

event handler methods, 490
media marker events, 492

closed caption text, 495
onDragDropped event, 492
working principle, 495

JavaServer Faces (JSF) (cont.)

■ INDEX

623

MP3 player, 471
class utilization, 472
code implementation, 472
visualizations, 477
working principle, 478

paused event, 490
video player, 481

attachMouseEvents() method, 485
ChangeListener, 485
class utilization, 482
code implementation, 482
working principle, 486

working principle, 491
Media marker events, 492

closed caption text, 495
onDragDropped event, 492
OnMarker event property, 495
setOnMarker() method, 495

Model-view-controller (MVC), 389
Modules, 605

compile and execution, 606
construction, 605
creation, 607
jar utility options, 610
using jdeps tool, 611
jlink tool, 613
loose coupling, 612
package, 609

MonetaryAmount interface, 74
MP3 player, 471

class utilization, 472
code implementation, 472
visualizations, 477
working principle, 478

AudioSpectrumListener class, 479, 480
instance variables, 478
Media object, 479
MediaPlayer object, 480
mouse-drag event handler, 479
previousLocation variable, 479
setDropCompleted() method, 481
setOnMousePress() method, 481
spectrumDataUpdate() method, 480
StageStyle.TRANSPARENT style, 478

Multipurpose Internet Mail
Extensions (MIME), 555–556

��������� N
Nashorn

access Java array and collection, 540
Java.to() function, 541
Java.type() function, 540

description, 529
ECMAScript 6 features, 551

Java class, 542
JavaFX application, 545
Java interface, 541
load and execute JavaScript, 529

eval() method, 530
getEngineByName() method, 530
ScriptEngineManager(), 529

NetBeans IDE
HelloWorld application

Application class, 359
Application.launch() method, 359
Group class, 360
main() method, 359
Node object, 360
procedure, 356
Scene object, 359
Shape objects, 360
show() method, 360
Stage object, 359–360
start() method, 359–360

installation, 1
JavaBeans-Style classes, 8

accessor methods, 8
getMessage(), 8
HelloMessage(), 8
setMessage(String), 8

Java SE project creation, 3
HelloWorld, 6
naming, 5
Skeleton code, 5

main() method, 9
packages, 7

directory structure, 7
naming conventions, 8

NetBeans Profiler, 277
Networking

accept() method, 587
communicateWithClient() method, 588
createConnection() method, 590
DatagramChannel class, 593
DatagramChannelconfigureBlocking(boolean)

method, 597
DatagramChannelopen() method, 596
flip() method, 597
HTTP request, 602
InetSocketAddress instance, 596
infiniBand, gain performance boosts, 591
InputStreamReader instance, 588
in.readLine() method, 591
java.net.ServerSocket, 585
MulticastChannel interface, 596
NetworkInterface, 596
PrintWriter object, 588
run() method, 597
SDP protocol transport, 592

■ INDEX

624

send() method, 597
server-side application, 585
Socket connection, 588
TCP/IP layer, 590
testConnection() method, 590
UDP, 596
URL (see URL)

News ticker and photo viewer application, 438
classes, 438
clipped region, 443
code implementation, 439
cycle count, 443
EventHandler, 446
JavaFX animation, 443
play() method, 445
setOnFinished() method, 445
Text node, 444
transitionByFading() method, 446
transitions, 443
TranslateTransition, 444
translating and fading, 442

NumberFormat instance, currency
code implementation, 298
getCurrencyInstance() method, 299
setCurrency() method, 299

Numbers, 65
comparison operators, 69
format double and long numbers

DecimalFormat class, 67
decimalformat pattern characters, 69
NumberFormat class, 68

floating-point numbers, 70
monetary values, 71
random number generation

java.util.Random class, 74
Math.random() method, 75
Random setSeed() method, 75

round floating-point numbers/double values, 66
java.lang.Math round() method, 67
roundDoubleToLong() method, 66
roundFloatToInt() method, 66

��������� O
Object-oriented Java

== and != operators, 121, 122
booleantrue and booleanfalse result, 125
ByteArrayOutputStream and

ByteArrayInputStream, 121
class encapsulation

constructPlayer() method, 135
constructPlayer() method, 135
inner class, 131–132, 134

class functionality, 126, 129
class interaction via interface, 116–117
class template definition, 129–130
Cloneable interface, 117, 119
control access, 99–100
deep copies, 121
overridden equals() method, 125
equals() and hashCode() method, 122–124
instance contruction, same class with different

values
builder pattern, 112
buildNewTeam() method, 115
buildPlayerList() method, 115
designateTeamCity() method, 115
Roster class, 114
TeamBuilder interface, 114
Team object, 113
TeamType interface, 112, 113, 115

instance generation, 104–106
interface definition, 108–109, 111
Lisp language, 99
one instance class

enum function, 103
getInstance() accessor method, 102, 103
INSTANCE element, 104
privatestaticfinal field, 103
Singleton pattern, 101–102
Statistics class, 103

private fields, 100–101
reusable objects creation, 106–108
shallowCopyClone() method, 119, 120
String’s hashCode() method, 126
super.clone() method, 121

Oracle’s ojdbc6.jar JDBC driver, 329
Oracle Technology Network (OTN), 1

��������� P, Q
Pokémon® exception, 226
PreparedStatements object

catch block, 321
close() method, 322
executeQuery() method, 321
finally block, 322
PreparedStatement, 319
recipeNumber String, 321
recipeNumber variable, 321
record deletion, 320
record insertion, 319
ResultSet object, 321
scrollable ResultSet, 327
setInt(position, variable) method, 321
SQL control, 319
SQL String, 320–321

Networking (cont.)

■ INDEX

625

substitution variables, 320–321
try-catch block, 321
updatable ResultSet, 329

��������� R
Relational database management systems

(RDBMSs), 305
ResultSet getInt() method, 311
ResultSet getString() method, 311
Rhino, 529

��������� S
Serializing Java objects

convert and traverse, 198
copying file, 205–206
directory creation, 207
directory monitoring

built-in poll mechanism, 212
types,watchEvents, 212
watchKey.pollEvents() method, 212
WatchService.poll, 212

externalizable interface, 200
file moving, 206
Files.createDirectory() method, 208
iterating over files, 208
marker interface, 197
ObjectOutput methods, 200
ObjectOutputStream class, 196
path execution, 205
property files, 212
querying, 209
readExternal(ObjectInput in), 199
readExternal/writeExternal methods, 199
serialization/deserialization mechanism, 199
socket connection

Channels.newOutputStream() method, 204
IP address and port, 204
isDone(),isCancelled() method, 204
ObjectOutputStream.reset() method, 205
ObjectOutputStream.writeUnshared()

method, 205
send/receive objects, 202
serverSocketChannel.accept() method, 204
socketChannel.connect() method, 204

speed vs. size vs. ease of use, 197
String class, 197
transient properties, 197
uncompressing compressed files, 214
writeExternal(ObjectOutput out), 199
XML, 200

Singleton pattern, 103
Sockets direct protocol (SDP), 591
Stack trace, 268

Starvation, 284
Static Code Analyzer (SCA), 275
Streams, 149
Stream Unique Identifier (SUID), 198
Strings

case change
case-sensitive String, 52
toLowerCase() method, 52–53
toUpperCase() method, 53
toUpperCase() method, 52

compare
built-in equals()method, 48
coding, 49
compareToIgnoreCase() method, 48
compareTo()method, 48
comparison operator (==), 50
Java String equals() method, 50
equalsIgnoreCase()method, 48, 51

concatenate
built-in String, 54
combine, 53
concat() method, 53–54
concatenation operator, 54
helper method, 54
StringBuffer class, 54, 55

data type,programming language, 47
dynamic placeholder, 63, 64
file suffix matches

endsWith() method, 62–63
filename variable, 62

helper methods, 48
iterating character String

charAt() method, 57–58
length() method, 58
toCharArray() method, 56, 58

numeric conversion
autoboxing, 55
Integer.parseInt()method, 55
integers, 55
Integer.valueOf()method, 55
NumberFormatExeption, 56
parseInt() method, 56
unboxing, 55
valueOf()and parseInt() methods, 56

replacing text
Pattern.compile() method, 62
replaceAll() method, 61

retrieval problem, 47
startingindex and endingindex, 48
substring() method, 47
text matches

code and pattern, 58, 59
Matcher find() method, 61
Matcher lookingAt() method, 61
Matcher matches() method, 61

■ INDEX

626

matches() method, 60
Pattern.compile() method, 60
Pattern.matches() method, 60
regular expressions, 60
String helper matches(), 58
three-step process, 59

trim whitespace
pattern-searching program, 52
String trim() method, 51, 52

System.out() method, 311

��������� T
Text nodes

changing text fonts, 362
keyboard sequences, 399
text drawing, 360

Thread dump, 278
Throwing, exception, 224
Transmission Control Protocol/Internet Protocol

(TCP/IP) layer, 590

��������� U
Unicode digit character conversion, 285

byte array to Unicode String, 300
charset encodings, 301
getBytes() method, 300

Character.digit() static method, 287
isDigit property, 287
java.lang.Character class, 285
regular expression, 295

demoComplex() method, 297
enRegEx and jaRegEx, 296
replaceAll() method, 296
replaceFirst() method, 296
split() method, 296
String methods, 297

streams and buffers, 302
InputStreamReader, 302
newEncoder()/newDecoder()

method, 302
OutputStreamWriter, 302

URL
generation, 598
parsing

accessor methods, 601
getFile() method, 601
getPath() method, 601
getQuery() and getRef() method, 601
ParseUrl class, 600

User Datagram Protocol (UDP), 596

��������� V, W
Video player, 481

attachMouseEvents() method, 485
ChangeListener, 485
class utilization, 482
code implementation, 482
working principle, 486

attachMouseEvents() method, 487
changed() method, 487
createBackground() method, 487
createSlider() method, 487
media formats, 487
MediaView object, 488
pauseButton and

playButton code, 489
setFullScreen() method, 487
slider.isPressed() flag, 488

VisualVM, 278

��������� X, Y, Z
XML processing

file reading
hasNext() method, 569
javax.xml.stream.XMLStreamReader

interface, 566
nextEvent() method, 569
StAX, 569
XMLEventReader, 567

file writing, 563
java.io.FileOutputStream class, 565
javax.xml.stream.XMLStreamWriter

class, 563
StAX, 565
writeAttribute() method, 566
writeCharacters() method, 566
writeEndElement() method, 566
writeStartDocumentMethod()

method, 565
writeStartElement() method, 566
XMLStreamWriter instance, 565

Java binding creation, 574–575
JAXB, 577
parsing catalog, 578
transformation

file requirements, 570
HTML table, 572
javax.xml.transform package, 569
patients.xml file, 570
XSL document, 571

unmarshall, 575
validation, 573

Strings (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Java 9
	1-1. Creating a Development Environment
	Problem
	Solution
	How It Works

	1-2. Getting to “Hello, World”
	Problem
	Solution
	How It Works
	Packages
	JavaBeans-Style Classes
	The Main Program

	1-3. Configuring the CLASSPATH
	Problem
	Solution
	How It Works

	1-4. Organizing Code with Packages
	Problem
	Solution
	How It Works

	1-5. Declaring Variables and Access Modifiers
	Problem
	Solution
	How It Works

	1-6. Compiling and Executing from the Command-Line or Terminal Interpreter
	Problem
	Solution
	How It Works

	1-7. Developing Within the Interactive jShell
	Problem
	Solution
	How It Works

	1-8. Converting to and from a String
	Problem
	Solution
	How It Works

	1-9. Passing Arguments via Command-Line Execution
	Problem
	Solution
	How It Works

	1-10. Executing a Script via the jShell
	Problem
	Solution
	How It Works

	1-11. Accepting Input from the Keyboard
	Problem
	Solution
	How It Works

	1-12. Documenting Your Code
	Problem
	Solution
	How It Works
	Formatting the Documentation
	Executing the Tool

	1-13. Reading Environment Variables
	Problem
	Solution
	How It Works

	Summary

	Chapter 2: Java 9 Enhancements
	2-1. Avoiding Redundancy in Interface Code
	Problem
	Solution
	How It Works

	2-2. Creating Modules for Simplifying and Code Reuse
	Problem
	Solution
	How It Works

	2-3. Easily Retrieving Information on OS Processes
	Problem
	Solution
	How It Works

	2-4. Handling Errors with Ease
	Problem
	Solution
	How It Works

	2-5. Filtering Data Before and After a Condition with Streams
	Problem
	Solution
	How It Works

	2-6. Developing a Concise HTTP Client
	Problem
	Solution
	How It Works

	2-7. Redirecting Platform Logs
	Problem
	Solution
	How It Works

	2-8. Utilizing Factory Methods to Create Immutable Collections
	Problem
	Solution
	How It Works

	Summary

	Chapter 3: Strings
	Compact Strings: Java 9 String Enhancements
	3-1. Obtaining a Subsection of a String
	Problem
	Solution
	How It Works

	3-2. Comparing Strings
	Problem
	Solution
	How It Works

	3-3. Trimming Whitespace
	Problem
	Solution
	How It Works

	3-4. Changing the Case of a String
	Problem
	Solution
	How It Works

	3-5. Concatenating Strings
	Problem
	Solution 1
	Solution 2
	Solution 3
	How It Works

	3-6. Converting Strings to Numeric Values
	Problem
	Solution 1
	Solution 2
	How It Works

	3-7. Iterating Over the Characters of a String
	Problem
	Solution
	How It Works

	3-8. Finding Text Matches
	Problem
	Solution 1
	Solution 2
	How It Works

	3-9. Replacing All Text Matches
	Problem
	Solution
	How It Works

	3-10. Determining Whether a File Suffix Matches a Given String
	Problem
	Solution
	How It Works

	3-11. Making a String That Can Contain Dynamic Information
	Problem
	Solution 1
	Solution 2
	How It Works

	Summary

	Chapter 4: Numbers and Dates
	4-1. Rounding Float and Double Values to Integers
	Problem
	Solution
	How It Works

	4-2. Formatting Double and Long Decimal Values
	Problem
	Solution
	How It Works

	4-3. Comparing int Values
	Problem
	Solution 1
	Solution 2
	How It Works

	4-4. Comparing Floating-Point Numbers
	Problem
	Solution 1
	Solution 2
	How It Works

	4-5. Calculating Monetary Values
	Problem
	Solution 1
	Solution 2
	How It Works

	4-6. Randomly Generating Values
	Problem
	Solution 1
	Solution 2
	How It Works

	4-7. Obtaining the Current Date Without Time
	Problem
	Solution
	How It Works

	4-8. Obtaining a Date Object Given Date Criteria
	Problem
	Solution
	How It Works

	4-9. Obtaining a Year-Month-Day Date Combination
	Problem
	Solution 1
	Solution 2
	How It Works

	4-10. Obtaining and Calculating Times Based on the Current Time
	Problem
	Solution
	How It Works

	4-11. Obtaining and Using the Date and Time Together
	Problem
	Solution 1
	Solution 2
	Solution 3
	How It Works

	4-12. Obtaining a Machine Timestamp
	Problem
	Solution
	How It Works

	4-13. Converting Dates and Times Based on the Time Zone
	Problem
	Solution
	How It Works

	4-14. Comparing Two Dates
	Problem
	Solution
	How It Works

	4-15. Finding the Interval Between Dates and Times
	Problem
	Solution 1
	Solution 2
	Solution 3
	How It Works

	4-16. Obtaining Date-Time from a Specified String
	Problem
	Solution
	How It Works

	4-17. Formatting Dates for Display
	Problem
	Solution 1
	Solution 2
	How It Works

	4-18. Writing Readable Numeric Literals
	Problem
	Solution
	How It Works

	4-19. Declaring Binary Literals
	Problem
	Solution
	How It Works

	Summary

	Chapter 5: Object-Oriented Java
	5-1. Controlling Access to Members of a Class
	Problem
	Solution
	How It Works

	5-2. Making Private Fields Accessible to Other Classes
	Problem
	Solution
	How It Works

	5-3. Creating a Class with a Single Instance
	Problem
	Solution 1
	Solution 2
	How It Works

	5-4. Generating Instances of a Class
	Problem
	Solution
	How It Works

	5-5. Creating Reusable Objects
	Problem
	Solution
	How It Works

	5-6. Defining an Interface for a Class
	Problem
	Solution
	How It Works

	5-7. Modifying Interfaces Without Breaking Existing Code
	Problem
	Solution
	How It Works

	5-8. Constructing Instances of the Same Class with Different Values
	Problem
	Solution
	How It Works

	5-9. Interacting with a Class via Interfaces
	Problem
	Solution
	How It Works

	5-10. Making a Class Cloneable
	Problem
	Solution
	How It Works

	5-11. Comparing Objects
	Problem
	Solution 1
	Solution 2
	How It Works

	5-12. Extending the Functionality of a Class
	Problem
	Solution
	How It Works

	5-13. Defining a Template for Classes to Extend
	Problem
	Solution
	How It Works

	5-14. Increasing Class Encapsulation
	Problem
	Solution
	How It Works

	Summary

	Chapter 6: Lambda Expressions
	6-1. Writing a Simple Lambda Expression
	Problem
	Solution
	How It Works

	6-2. Enabling the Use of Lambda Expressions
	Problem
	Solution 1
	Solution 2
	How It Works

	6-3. Invoking Existing Methods by Name
	Problem
	Solution
	How It Works

	6-4. Sorting with Fewer Lines of Code
	Problem
	Solution 1
	Solution 2
	How It Works

	6-5. Filtering a Collection of Data
	Problem
	Solution
	How It Works

	6-6. Implementing Runnable
	Problem
	Solution
	How It Works

	6-7. Replacing Anonymous Inner Classes
	Problem
	Solution
	How It Works

	6-8. Accessing Class Variables from a Lambda Expression
	Problem
	Solution
	How It Works

	6-9. Passing Lambda Expressions to Methods
	Problem
	Solution
	How It Works

	Summary

	Chapter 7: Data Sources and Collections
	7-1. Defining a Fixed Set of Related Constants
	Problem
	Solution
	How It Works

	7-2. Designing Intelligent Constants
	Problem
	Solution
	How It Works

	7-3. Executing Code Based on a Specified Value
	Problem
	Solution
	How It Works

	7-4. Working with Fix-Sized Arrays
	Problem
	Solution
	How It Works

	7-5. Safely Enabling Types or Methods to Operate on Objects of Various Types
	Problem
	Solution
	How It Works

	7-6. Working with Dynamic Arrays
	Problem
	Solution
	How It Works

	7-7. Making Your Objects Iterable
	Problem
	Solution
	How It Works

	7-8. Iterating Over Collections
	Problem
	Solution
	How It Works

	7-9. Iterating Over a Map
	Problem
	Solution
	How It Works

	7-10. Executing Streams in Parallel
	Problem
	Solution
	How It Works

	Summary

	Chapter 8: Input and Output
	8-1. Serializing Java Objects
	Problem
	Solution
	How It Works

	8-2. Serializing Java Objects More Efficiently
	Problem
	Solution
	How It Works

	8-3. Serializing Java Objects as XML
	Problem
	Solution
	How It Works

	8-4. Creating a Socket Connection and Sending Serializable Objects Across the Wire
	Problem
	Solution
	How It Works

	8-5. Obtaining the Java Execution Path
	Problem
	Solution
	How It Works

	8-6. Copying a File
	Problem
	Solution
	How It Works

	8-7. Moving a File
	Problem
	Solution
	How It Works

	8-8. Creating a Directory
	Problem
	Solution 1
	Solution 2
	How It Works

	8-9. Iterating Over Files in a Directory
	Problem
	Solution
	How It Works

	8-10. Querying (and Setting) File Metadata
	Problem
	Solution
	How It Works

	8-11. Monitoring a Directory for Content Changes
	Problem
	Solution
	How It Works

	8-12. Reading Property Files
	Problem
	Solution
	How It Works

	8-13. Uncompressing Files
	Problem
	Solution
	How It Works

	8-14. Managing Operating System Processes
	Problem
	Solution
	How It Works

	Summary

	Chapter 9: Exceptions and Logging
	9-1. Catching Exceptions
	Problem
	Solution
	How It Works

	9-2. Guaranteeing a Block of Code Is Executed
	Problem
	Solution
	How It Works

	9-3. Throwing Exceptions
	Problem
	Solution
	How It Works

	9-4. Catching Multiple Exceptions
	Problem
	Solution 1
	Solution 2
	How It Works

	9-5. Catching the Uncaught Exceptions
	Problem
	Solution 1
	Solution 2
	How It Works

	9-6. Managing Resources with try/catch Blocks
	Problem
	Solution
	How It Works

	9-7. Creating an Exception Class
	Problem
	Solution 1
	Solution 2
	How It Works

	9-8. Rethrowing the Caught Exception
	Problem
	Solution
	How It Works

	9-9. Logging Events Within Your Application
	Problem
	Solution
	How It Works

	9-10. Rotating and Purging Logs
	Problem
	Solution
	How It Works

	9-11. Logging Exceptions
	Problem
	Solution
	How It Works

	9-12. Logging with the Unified JVM Logger
	Problem
	Solution
	How It Works

	Summary

	Chapter 10: Concurrency
	10-1. Starting a Background Task
	Problem
	Solution
	How It Works

	10-2. Updating (and Iterating) a Map
	Problem
	Solution
	How It Works

	10-3. Inserting a Key into a Map Only If the Key Is Not Already Present
	Problem
	Solution
	How It Works

	10-4. Iterating Through a Changing Collection
	Problem
	Solution 1
	Solution 2
	How It Works

	10-5. Coordinating Different Collections
	Problem
	Solution 1
	Solution 2
	How It Works

	10-6. Splitting Work into Separate Threads
	Problem
	Solution
	How It Works

	10-7. Coordinating Threads
	Problem
	Solution 1
	Solution 2
	Solution 3
	How It Works

	10-8. Creating Thread-Safe Objects
	Problem
	Solution 1
	Solution 2
	How It Works

	10-9. Implementing Thread-Safe Counters
	Problem
	Solution
	How It Works

	10-10. Breaking Down Tasks into Discrete Units of Work
	Problem
	Solution
	How It Works

	10-11. Updating a Common Value Across Multiple Threads
	Problem
	Solution
	How It Works

	10-12. Executing Multiple Tasks Asynchronously
	Problem
	Solution
	How It Works

	Summary

	Chapter 11: Debugging and Unit Testing
	11-1. Understanding Exceptions
	Problem
	Solution
	How It Works

	11-2. Locking Down Behavior of Your Classes
	Problem
	Solution
	How It Works

	11-3. Scripting Your Unit Tests
	Problem
	Solution
	How It Works

	11-4. Finding Bugs Early
	Problem
	Solution
	How It Works

	11-5. Monitoring Garbage Collection in Your Application
	Problem
	Solution 1
	Solution 2
	How It Works

	11-6. Obtaining a Thread Dump
	Problem
	Solution
	How It Works

	Summary

	Chapter 12: Unicode, Internationalization, and Currency Codes
	12-1. Converting Unicode Characters to Digits
	Problem
	Solution
	How It Works

	12-2. Creating and Working with Locales
	Problem
	Solution
	How It Works

	12-3. Setting the Default Locale
	Problem
	Solution
	How It Works

	12-4. Matching and Filtering Locales
	Problem
	Solution
	How It Works

	12-5. Searching Unicode with Regular Expressions
	Problem
	Solution 1
	Solution 2
	How It Works

	12-6. Overriding the Default Currency
	Problem
	Solution
	How It Works

	12-7. Converting Byte Arrays to and from Strings
	Problem
	Solution
	How It Works

	12-8. Converting Character Streams and Buffers
	Problem
	Solution 1
	Solution 2
	How It Works

	12-9. Setting the Search Order of Locale-Sensitive Services
	Problem
	Solution
	How It Works

	Summary

	Chapter 13: Working with Databases
	13-1. Connecting to a Database
	Problem
	Solution 1
	Solution 2
	How It Works

	13-2. Handling Connection and SQL Exceptions
	Problem
	Solution
	How It Works

	13-3. Querying a Database and Retrieving Results
	Problem
	Solution
	How It Works

	13-4. Performing CRUD Operations
	Problem
	Solution
	How It Works

	13-5. Simplifying Connection Management
	Problem
	Solution
	How It Works

	13-6. Guarding Against SQL Injection
	Problem
	Solution
	How It Works

	13-7. Performing Transactions
	Problem
	Solution
	How It Works

	13-8. Creating a Scrollable ResultSet
	Problem
	Solution
	How It Works

	13-9. Creating an Updatable ResultSet
	Problem
	Solution
	How It Works

	13-10. Caching Data for Use When Disconnected
	Problem
	Solution
	How It Works

	13-11. Joining RowSet Objects When Not Connected to the Data Source
	Problem
	Solution
	How It Works

	13-12. Filtering Data in a RowSet
	Problem
	Solution
	How It Works

	13-13. Querying and Storing Large Objects
	Problem
	Solution
	How It Works

	13-14. Invoking Stored Procedures
	Problem
	Solution
	How It Works

	13-15. Obtaining Dates for Database Use
	Problem
	Solution
	How It Works

	13-16. Closing Resources Automatically
	Problem
	Solution
	How It Works
	Summary

	Chapter 14: JavaFX Fundamentals
	14-1. Creating a Simple User Interface
	Problem
	Solution 1
	Creating a JavaFX Hello World Application in NetBeans

	Solution 2
	Creating a JavaFX Hello World Application in a Text Editor

	How It Works

	14-2. Drawing Text
	Problem
	Solution
	How It Works

	14-3. Changing Text Fonts
	Problem
	Solution 1
	Solution 2
	How It Works

	14-4. Creating Shapes
	Problem
	Solution
	How It Works

	14-5. Assigning Colors to Objects
	Problem
	Solution
	How It Works

	14-6. Creating Menus
	Problem
	Solution
	How It Works

	14-7. Adding Components to a Layout
	Problem
	Solution
	How It Works

	14-8. Generating Borders
	Problem
	Solution
	How It Works

	14-9. Binding Expressions
	Problem
	Solution
	How It Works

	14-10. Creating and Working with Observable Lists
	Problem
	Solution
	How It Works

	14-11. Generating a Background Process
	Problem
	Solution
	How It Works

	14-12. Associating Keyboard Sequences with Applications
	Problem
	Solution
	How It Works

	14-13. Creating and Working with Tables
	Problem
	Solution
	How It Works

	14-14. Organizing the UI with Split Views
	Problem
	Solution
	How It Works

	14-15. Adding Tabs to the UI
	Problem
	Solution
	How It Works

	14-16. Developing a Dialog Box
	Problem
	Solution
	How It Works

	14-17. Printing with JavaFX
	Problem
	Solution
	How It Works

	14-18. Embedding Swing Content in JavaFX
	Problem
	Solution
	How It Works

	Summary

	Chapter 15: Graphics with JavaFX
	15-1. Creating Images
	Problem
	Solution
	How It Works

	15-2. Generating an Animation
	Problem
	Solution
	How It Works

	15-3. Animating Shapes Along a Path
	Problem
	Solution
	How It Works

	15-4. Manipulating Layout via Grids
	Problem
	Solution
	How It Works

	15-5. Enhancing the Interface with CSS
	Problem
	Solution
	How It Works

	Summary

	Chapter 16: Media with JavaFX
	16-1. Playing Audio
	Problem
	Solution
	How It Works

	16-2. Playing Video
	Problem
	Solution
	How It Works

	16-3. Controlling Media Actions and Events
	Problem
	Solution
	How It Works

	16-4. Marking a Position in a Video
	Problem
	Solution
	How It Works

	16-5. Synchronizing Animation and Media
	Problem
	Solution
	How It Works

	Summary

	Chapter 17: Java Web Applications with JavaServer Faces
	17-1. Creating and Configure a Web Project
	Problem
	Solution
	How It Works

	17-2. Developing a JSF Application
	Problem
	Solution
	How It Works

	17-3. Developing a Model for Data
	Problem
	Solution
	How It Works

	17-4. Writing View Controllers
	Problem
	Solution
	How It Works

	17-5. Developing Asynchronous Views
	Problem
	Solution
	How It Works

	17-6. Applying the Correct Scope
	Problem
	Solution
	How It Works

	17-7. Generating and Applying a Template
	Problem
	Solution
	How It Works

	Summary

	Chapter 18: Nashorn and Scripting
	18-1. Loading and Executing JavaScript from Java
	Problem
	Solution
	How It Works

	18-2. Executing JavaScript via the Command Line
	Problem
	Solution 1
	Solution 2
	How It Works

	18-3. Embedding Expressions in Strings
	Problem
	Solution
	How It Works

	18-4. Passing Java Parameters
	Problem
	Solution
	How It Works

	18-5. Passing Return Values from JavaScript to Java
	Problem
	Solution
	How It Works

	18-6. Using Java Classes and Libraries
	Problem
	Solution
	How It Works

	18-7. Accessing Java Arrays and Collections in Nashorn
	Problem
	Solution
	How It Works

	18-8. Implementing Java Interfaces
	Problem
	Solution
	How It Works

	18-9. Extending Java Classes
	Problem
	Solution
	How It Works

	18-10. Creating Executable Scripts in Unix
	Problem
	Solution
	How It Works

	18-11. Implementing JavaFX with Nashorn
	Problem
	Solution 1
	Solution 2
	How It Works

	18-12. Utilizing ECMAScript6 Features
	Problem
	Solution
	How It Works

	Summary

	Chapter 19: E-mail
	19-1. Installing JavaMail
	Problem
	Solution
	How It Works

	19-2. Sending an E-Mail
	Problem
	Solution
	How It Works

	19-3. Attaching Files to an E-Mail Message
	Problem
	Solution
	How It Works

	19-4. Sending an HTML E-Mail
	Problem
	Solution
	How It Works

	19-5. Sending E-Mail to a Group of Recipients
	Problem
	Solution
	How It Works

	19-6. Checking E-Mail
	Problem
	Solution
	How It Works

	19-7. Monitoring an E-Mail Account
	Problem
	Solution
	How It Works

	19-8. Summary

	Chapter 20: JSON and XML Processing
	20-1. Writing an XML File
	Problem
	Solution
	How It Works

	20-2. Reading an XML File
	Problem
	Solution 1
	Solution 2
	How It Works

	20-3. Transforming XML
	Problem
	Solution
	How It Works

	20-4. Validating XML
	Problem
	Solution
	How It Works

	20-5. Creating Java Bindings for an XML Schema
	Problem
	Solution
	How It Works

	20-6. Unmarshalling XML to a Java Object
	Problem
	Solution
	How It Works

	20-7. Building an XML Document with JAXB
	Problem
	Solution
	How It Works

	20-8. Parsing an XML Catalog
	Problem
	Solution
	How It Works

	20-9. Working with JSON
	Problem
	Solution
	How It Works

	20-10. Building a JSON Object
	Problem
	Solution
	How It Works

	20-11. Writing a JSON Object to File
	Problem
	Solution
	How It Works

	20-12. Parsing a JSON Object
	Problem
	Solution
	How It Works

	Summary

	Chapter 21: Networking
	21-1. Listening for Connections on the Server
	Problem
	Solution
	How It Works

	21-2. Defining a Network Connection to a Server
	Problem
	Solution
	How It Works

	21-3. Bypassing TCP for InfiniBand to Gain Performance Boosts
	Problem
	Solution
	How It Works

	21-4. Broadcasting to a Group of Recipients
	Problem
	Solution
	How It Works

	21-5. Generating and Reading from URLs
	Problem
	Solution
	How It Works

	21-6. Parsing a URL
	Problem
	Solution
	How It Works

	21-7. Making HTTP Requests and Working with HTTP Responses
	Problem
	Solution
	How It Works

	Summary

	Chapter 22: Java Modularity
	22-1. Constructing a Module
	Problem
	Solution
	How It Works

	22-2. Compiling and Executing a Module
	Problem
	Solution
	How It Works

	22-3. Creating a Module Dependency
	Problem
	Solution
	How It Works

	22-4. Packaging a Module
	Problem
	Solution
	How It Works

	22-5. Listing Dependencies or Determining JDK-Internal API Use
	Problem
	Solution
	How It Works

	22-6. Providing Loose Coupling Between Modules
	Problem
	Solution
	How It Works

	22-7. Linking Modules
	Problem
	Solution
	How It Works

	Summary

	Index

