Examples of Algorithm

Problem 1: Find the area of a Circle of radius r.

Inputs to the algorithm:
Radius r of the Circle.

Expected output:
Area of the Circle

Algorithm:
Step 1: Start
Step 2: Read input the Radius r of the Circle
Step 3: Area PI*r*r // calculation of area
Step 4: Print Area
Step 5: End

Problem 2: Write an algorithm to read two numbers and find their sum.

Inputs to the algorithm:
First num1.
Second num2.

Expected output:
Sum of the two numbers.

Algorithm:
Step 1: Start
Step 2: Read input the first num1.
Step 3: Read input the second num2.
Step 4: Sum num1+num2 // calculation of sum
Step 5: Print Sum
Step 6: End

Problem 3: Convert temperature Fahrenheit to Celsius

Inputs to the algorithm:
Temperature in Fahrenheit

Expected output:
Temperature in Celsius

Algorithm:
Step 1: Start
Step 2: Read Temperature in Fahrenheit F
Step 3: C 5/9*(F32)
Step 4: Print Temperature in Celsius: C
Step 5: End
Type of Algorithms

The algorithm and flowchart, classification to the three types of control Structures. They are:

1. Sequence
2. Branching (Selection)
3. Loop (Repetition)

These three control structures are sufficient for all purposes. The sequence is exemplified by sequence of statements place one after the other – the one above or before another gets executed first. In flowcharts, sequence of statements is usually contained in the rectangular process box.

□ The branch refers to a binary decision based on some condition. If the condition is true, one of the two branches is explored; if the condition is false, the other alternative is taken. This is usually represented by the ‘if-then’ construct in pseudo-codes and programs. In flowcharts, this is represented by the diamond-shaped decision box. This structure is also known as the selection structure.

Problem1: write algorithm to find the greater number between two numbers

Inputs to the algorithm:
First A.
Second B.

Expected output:
the greater number

Algorithm:
Step1: Start
Step2: Read/input A and B
Step3: If A greater than B then C=A
Step4: if B greater than A then C=B
Step5: Print C
Step6: End
The loop allows a statement or a sequence of statements to be repeatedly executed based on some loop condition. It is represented by the ‘while’ and ‘for’ constructs in most programming languages, for unbounded loops and bounded loops respectively. (Unbounded loops refer to those whose number of iterations depends on the eventuality that the termination condition is satisfied; bounded loops refer to those whose number of iterations is known beforehand.) In the flowcharts, a back arrow hints the presence of a loop. A trip around the loop is known as iteration. You must ensure that the condition for the termination of the looping must be satisfied after some finite number of iterations, otherwise it ends up as an infinite loop, a common mistake made by inexperienced programmers. The loop is also known as the repetition structure.

Problem 1: An algorithm to calculate even numbers between 0 and 99

Inputs to the algorithm:
Sequence of numbers

Expected output:
The calculate of even number

Algorithm:
1. Start
2. I ← 0
3. Write I in standard output
4. I ← I + 2
5. If (I ≤ 98) then go to line 3
6. End

Problem 2: Design an algorithm which gets a natural value, n, as its input and calculates odd numbers equal or less than n. Then write them in the standard output:
1. Start
2. Read n
3. I ← 1
4. Write I
5. I ← I + 2
6. If \(I \leq n \) then go to line 4
7. End

Combining the use of these control structures, for example, a loop within a loop (nested loops), a branch within another branch (nested if), a branch within a loop, a loop within a branch,