Anti Fuzzy k-Ideal of Ternary Semiring

Alaa Hussein Mohammed
Al- Qadisiy University
College of Education
Department of Mathematics

Abstract
In this paper, we introduce the notion of anti fuzzy k-ideal of ternary semi ring and study some properties of it.

Introduction
The notion of fuzzy subset of a set was introduced by Zadeh in 1965 [4]. The notion of fuzzy subgroup was made by Rosenfeld in 1971 [1]. Fuzzy ideal in a ring were introduced by W. Liu in 1982 [9]. In 1996, Kim and Park studied fuzzy ideal in semirings [2]. The notion of ternary semi rings introduced by Dutta and Kar in 2003 [8]. In 2007, J. kavikumar and Azme Bin khamis introduced The notion of fuzzy ideals in ternary semirings [3]. R. Biswas given the notion of anti fuzzy in 1999 [5]. The notion of fuzzy k-ideals in ternary semirings was introduced by Sathinee Malee and Ronnason Chinram in 2010 [7].

The main purpose of the paper is to introduce the notion of anti fuzzy k-ideal of ternary semiring and study some properties of it.

1- Preliminaries
In this section we review some basic definition which will be used in this paper.

Definition (1.1) [6] A non empty set R together with a binary operation, called addition and ternary multiplication, is said to be a ternary semi ring if R is an additive commutative semigroup satisfying the following conditions
(i) (abc)de = a(bcd)e = ab(cde),
(ii) (a+b)cd = a(cd) + bcd,
(iii) a(b+c)d = abd + acd,
(iv) ab(c+d) = abc + abd, for all a, b, c, d, e ∈ R

Definition (1.2) [6] Let R be a ternary semiring. If there exists an element 0 ∈ R such that
0 + x = x and 0xy = x0y = xy0, for all x, y ∈ R then “0” is called the zero element or simply the zero of ternary semirings. In this case we say that R is a ternary semiring with zero

Definition (1.3) [6] An additive subsemigroup I of ternary semiring R is called a left (resp., right and lateral) ideal of R if
s, s₂i(resp., i₁s₁, s₂, i₂s₂) ∈ I ∀ s, s₂ ∈ R and i ∈ I
If I is both left and right ideal of R, then I is called a two sided ideal of R.
If I is a left, a right and a lateral ideal of R, then I is called an ideal of R.

Definition (1.4) [4] A function \(\mu \) from a non empty set \(X \) to the interval \([0,1]\) is called a fuzzy subset of \(X \).

Definition (1.5) [4] The complement of a fuzzy subset \(\mu \) of a set \(X \) is denoted by \(\mu^c \) and defined as
\[
\mu^c(x) = 1 - \mu(x), \forall x \in X
\]

Definition (1.6)[3] Let \(\nu \) and \(\mu \) be any two fuzzy subsets of \(X \) then
\[
\nu \cap \mu \quad \text{and} \quad \nu \cup \mu
\]
are fuzzy subset of \(X \) and defined by
\[
(\nu \cap \mu)(x) = \min\{\nu(x), \mu(x)\}
\]
\[
(\nu \cup \mu)(x) = \max\{\nu(x), \mu(x)\}, \forall x \in X
\]

Definition (1.7) [3] A fuzzy subsemigroup \(\mu \) of a ternary semiring \(R \) is called a fuzzy ideal of \(R \) if the function \(\mu : R \rightarrow [0,1] \) satisfying the following conditions:
(i) \(\mu(x + y) \geq \min\{\mu(x), \mu(y)\}, \forall x, y \in R \)
(ii) \(\mu(xyz) \geq \mu(z) \)
(iii) \(\mu(xyz) \geq \mu(x) \)
(iv) \(\mu(xyz) \geq \mu(y), \forall x, y, z \in R \)

A fuzzy set \(\mu \) with conditions (i)and (ii) is called an fuzzy left ideal of \(R \). If a fuzzy set \(\mu \) satisfies (i) and (iii) then it is called a fuzzy right ideal of \(R \). Also if \(\mu \) satisfy (i) and (iv) then it is called a fuzzy lateral ideal of \(R \). If \(\mu \) is fuzzy left ideal, fuzzy right ideal and fuzzy lateral ideal then it is called fuzzy ideal of a ternary semiring \(R \).

Definition (1.8)[7] A fuzzy ideal \(\mu \) of a ternary semiring \(R \) is said to be a fuzzy k-ideal of \(R \) if
\[
\mu(x) \geq \min\{\mu(x + y), \mu(y)\}, \forall x, y \in R
\]

Definition(1.9)[7] Let \(S \) and \(R \) be two ternary semirings. a mapping \(f : S \rightarrow R \) is said to be a homomorphism if
\[
f(x+y)=f(x)+f(y) \quad \text{and} \quad f(xyz)=f(x)f(y)f(z)
\]
, \(\forall x, y, z \in S \)
If \(S \) and \(R \) are ternary semirings with zero 0, then \(f(0)=0 \).

Definition (1.10) [7] Let \(f : S \rightarrow R \) be a homomorphism of ternary semirings and \(\mu \) be a fuzzy subset of \(S \), we define a fuzzy subset \(f(\mu) \) of \(R \) by
\[
f(\mu)(y) = \begin{cases}
\sup_{x \in f^{-1}(y)} & \text{if} & f^{-1}(y) \neq \emptyset \\
0 & \text{otherwise}
\end{cases}
\]
We call \(f(\mu) \) the image of \(\mu \) under \(f \).

Definition (1.11)[7] Let \(R_1 \) and \(R_2 \) be two ternary semirings and \(f \) be a function of \(R_1 \) into \(R_2 \). If \(\mu \) is a fuzzy subset of \(R_2 \), then the preimage of \(\mu \) under \(f \) is a fuzzy subset of \(R_1 \) defined by
\[
f^{-1}(\mu)(x) = \mu(f(x)) \quad \forall x \in R_1
\]

Definition (1.12)[9] Let \(\phi : R_1 \rightarrow R_2 \) be any function. An anti fuzzy ideal \(\mu \) of \(R_1 \) is called \(\phi \)-invariant if \(\phi(x) = \phi(y) \) implies \(\mu(x) = \mu(y) \) where \(x, y \in R_1 \).
2-The Main Results

Definition (2.1) A fuzzy subset μ of a ternary semiring R is said to be an anti fuzzy left (right, lateral) ideal of R if
1- $1 - \mu(x + y) \leq \max \{\mu(x), \mu(y)\}$,
2- $\mu(xy)\leq \mu(z)$, \[\mu(xyz)\leq \mu(x), \mu(xyz)\leq \mu(y)\] for all $x, y, z \in R$.

μ is an anti fuzzy ideal of R if it is anti fuzzy left ideal, anti fuzzy right ideal and anti fuzzy lateral ideal of R.

Definition (2.2) An anti fuzzy ideal ν of a ternary semiring R is said to be a fuzzy k-ideal of R if $\mu(x)\leq \max \{\mu(x+y), \mu(y)\}$, for all $x, y \in R$.

Example (2.3) Let R be the set of nonpositive integer with zero. R is ternary semiring with the usual addition and ternary multiplication.

Let μ a fuzzy subset of R defined by
$\mu(x) = \begin{cases} 0 & \text{if } x \text{ is an even or 0} \\ 1 & \text{if } x \text{ is an odd} \end{cases}$

Then μ is an anti fuzzy k-ideal of R.

Proposition (2.4) Let R be a ternary semiring and μ be a fuzzy subset of R. Then μ is an anti fuzzy k-ideal of R if and only if μ^c is a fuzzy k-ideal of R.

Proof:
Suppose μ be an anti fuzzy k-ideal of R. Let $x, y, z \in R,$
$\mu^c(x + y) = 1\mu^c(x + y), \text{ since } \mu$ is an anti fuzzy k-ideal of R
$\geq 1 - \max \{\mu(x), \mu(y)\}$
$= \min \{1 - \mu(x), 1 - \mu(y)\}$

$= \min \{\mu^c(x), \mu^c(y)\}$,

$\mu^c(xyz) = 1 - \mu(xyz)$ since μ is an anti fuzzy left k-ideal of R
$\geq 1 - \mu(z)$.

Hence μ^c is fuzzy left ideal of R

$\mu^c(xyz) = 1 - \mu(xyz)$
$\geq 1 - \mu(x)$

$= \mu^c(x).$ Hence μ^c is fuzzy right ideal of R

$\mu^c(xyz) = 1 - \mu(xyz)$
$\geq 1 - \mu(y)$

$= \mu^c(y).$ Hence μ^c is fuzzy lateral ideal of R

Then μ^c is a fuzzy ideal of R.

Let $x, y \in R$ Then
$\mu^c(x) = 1 - \mu(x)$
$\geq 1 - \max \{\mu(x+y), \mu(y)\}$
$= \min \{1 - \mu(x+y), 1 - \mu(y)\}$
$= \min \{\mu^c(x+y), \mu^c(y)\}.

Hence μ^c is a fuzzy k-ideal of R.

Conversely, let μ^c be a fuzzy k-ideal of R.

For $x, y, z \in R$, we have
$\mu(x + y) = 1 - \mu^c(x + y)$
$\leq 1 - \min \{\mu^c(x), \mu^c(y)\}$
$= \max \{\mu(x), \mu(y)\}$
$\mu(xyz) = 1 - \mu^c(xyz)$
$\leq 1 - \mu^c(z)$

$= \mu(z).$ Hence μ is an anti fuzzy left ideal of R.

Similarly we can prove that μ is an anti fuzzy right and lateral ideal of R.

Let $x, y \in R$ Then
$\mu(x) = 1 - \mu^c(x)$
\[\mu \leq I - \min\{ \mu^c(x+y), \mu^c(y)\} \]
\[= \max\{\mu(x+y), \mu(y)\} \]
Hence \(\mu \) is an anti fuzzy k-ideal of \(R \).

Proposition (2.5) Let \(\mu \) and \(\nu \) are anti fuzzy k-ideal of ternary semiring \(R \). Then \(\mu \cup \nu \) is also an anti fuzzy k-ideal of ternary semiring \(R \).

Proof

Let \(\mu \) and \(\nu \) be two anti fuzzy k-ideals of a ternary semiring \(R \) and \(x, y, z \in R \). Then we have

\[(\mu \cup \nu)(x+y) = \max\{\mu(x+y), \nu(x+y)\} \]
\[\leq \max\{\max\{\mu(x), \nu(x)\}, \max\{\mu(y), \nu(y)\}\} \]
\[= \max\{\max\{\mu(x), \nu(x)\}, \max\{\mu(y), \nu(y)\}\} \]
\[= \max\{\mu(x), \nu(x)\} \]
\[\leq \max\{\mu(z), \nu(z)\} \]
\[= (\mu \cup \nu)(z), \]

Hence \(\mu \cup \nu \) is an anti fuzzy left ideal of \(R \) similarly we can prove that \(\mu \cup \nu \) is an anti fuzzy right and lateral ideal of \(R \) then \(\mu \cup \nu \) is an anti fuzzy ideal of \(R \).

Let \(x, y \in R \), since \(\mu \) and \(\nu \) are anti fuzzy k-ideal Then

\(\mu(x) \leq \max\{\mu(x+y), \mu(y)\} \) and \(\nu(x) \leq \max\{\nu(x+y), \nu(y)\} \),

\[(\mu \cup \nu)(x) = \max\{\mu(x), \nu(x)\} \]
\[\leq \max\{\max\{\mu(x), \nu(x)\}, \max\{\nu(x+y), \nu(y)\}\} \]
\[= \max\{\max\{\mu(x+y), \nu(x+y)\}, \max\{\mu(y), \nu(y)\}\} \]
\[= \max\{\mu(x+y), (\mu \cup \nu)(y)\} \]

then \(\mu \cup \nu \) is an anti fuzzy k-ideal of \(R \).

Theorem (2.6) Let \(f : R_1 \to R_2 \) be an onto homomorphism of ternary semirings \(R_1 \) and \(R_2 \). If \(\mu \) is an anti fuzzy k-ideal of \(R_2 \), then \(f^{-1}(\mu) \) is an anti fuzzy k-ideal of \(R_1 \).

Proof

Let \(\mu \) be an anti fuzzy k-ideal of \(R_2 \) and let \(x, y, z \in R_1 \).

Then we have

\[f^{-1}(\mu)(x+y) = \mu(f(x+y)), \text{ since } f \text{ is a homomorphism} \]
\[\leq \max\{\mu(f(x)), \mu(f(y))\} \]
\[= \max\{ f^{-1}(\mu)(x), f^{-1}(\mu)(y)\} \]
\[= f^{-1}(\mu)(z). \]

Hence \(f^{-1}(\mu) \) is an anti fuzzy left ideal of \(R_1 \).

Similarly we \(f^{-1}(\mu) \) is an anti fuzzy right and lateral ideal of \(R_1 \) then

\(f^{-1}(\mu) \) is an anti fuzzy ideal of \(R_1 \).

Let \(x, y \in R_1 \). Then

\[f^{-1}(\mu)(x) = \mu(f(x)) \]
\[\leq \max\{\mu(f(x)+f(y)), \mu(f(y))\}, \text{ since } f \text{ is a homomorphism} \]
\[= \max\{\mu(f(x+y)), \mu(f(y))\} \]
\[= f^{-1}(\mu)(x+y), f^{-1}(\mu)(y). \]

Hence \(f^{-1}(\mu) \) is an anti fuzzy k-ideal of \(R_1 \).
Lemma (2.7)[7] Let \(R_1 \) and \(R_2 \) be two ternary semirings and \(\phi : R_1 \rightarrow R_2 \) be a homomorphism. Let \(\mu \) be a \(\phi \)-invariant anti fuzzy ideal of \(R_1 \) if \(x = x \in R_1 \), such that \(\mu x = \phi(a), a \in R_1 \), then \(\phi(\mu)(x) = \mu(a) \).

Proof: If \(r \in \phi^{-1}(x) \), then \(\phi(r) = x = \phi(a) \).

Since \(\mu \) is a \(\phi \)-invariant \(\mu(r) = \mu(a) \), then by definition (1.10), we have \(\phi(\mu)(x) = \sup_{r \in \phi^{-1}(x)} \mu(r) = \mu(a) \).

Hence \(\phi(\mu)(x) = \mu(a) \).

Theorem (2.8) Let \(\phi : R_1 \rightarrow R_2 \) be an onto homomorphism of ternary semirings \(R_1 \) and \(R_2 \). If \(\mu \) is a \(\phi \)-invariant anti fuzzy k-ideal of \(R_1 \), then \(\phi(\mu) \) is an anti fuzzy k-ideal of \(R_2 \).

Proof: Let \(\phi : R_1 \rightarrow R_2 \) be an onto homomorphism and \(\mu \) is \(\phi \)-invariant anti fuzzy k-ideal of \(R_1 \).

Let \(x, y, z \in R_2 \). Since \(\phi \) is surjective then there exist \(a, b, c \in R_1 \) such that \(\phi(a) = x, \phi(b) = y \) and \(\phi(c) = z \).

Since \(\phi \) is a homomorphism then \(x + y = \phi(a) + \phi(b) = \phi(a + b) \) and \(xyz = \phi(a)\phi(b)\phi(c) = \phi(ab) \). Then we have \(\phi(\mu)(x + y) = \mu(a + b) \leq \max\{\mu(a), \mu(b)\} \).

Since \(\mu \) is \(\phi \)-invariant by lemma (2.9), \(\phi(\mu)(xyz) = \mu(abc) \leq \mu(c) \).

Hence \(\phi(\mu)(x) = \mu(a) \).

Hence \(\phi(\mu) \) is an anti fuzzy left ideal of \(R_2 \).

Similarly \(\phi(\mu) \) is an anti fuzzy right and lateral ideal of \(R_2 \).

Let \(x, y \in R_2 \) since \(\phi \) is onto then there exists \(a, b \in R_1 \) such that \(\phi(a) = x \) and \(\phi(b) = y \).

Then \(\phi(\mu)(x) = \mu(a) \leq \max\{\mu(a + b), \mu(b)\} \).

Hence \(\phi(\mu) \) is an anti fuzzy k-ideal of \(R_2 \).

Definition (2.9) An anti fuzzy k-ideal \(\mu \) of a ternary semiring \(R \) is said to be normal if \(\mu(0) = 1 \).

Theorem (2.10) Let \(\mu \) be an anti fuzzy k-ideal of a ternary semiring \(R \) and \(\mu^{*} \) be a fuzzy subset of \(R \) defined by \(\mu^{*}(x) = \mu(x) + 1 - \mu(0) \) for all \(x \in R \).

Then \(\mu^{*} \) is a normal anti fuzzy k-ideal of \(R \).

Proof: Let \(x, y, z \in R \). Then \(\mu^{*}(x + y) = \mu(x + y) + 1 - \mu(0) \), since \(\mu \) is an anti fuzzy k-ideal \(\leq \max\{\mu(x), \mu(y)\} + 1 - \mu(0) \).

Then \(\mu^{*} \) is a normal anti fuzzy k-ideal of \(R \).

Hence \(\phi(\mu) \) is an anti fuzzy left k-ideal then \(\leq \mu(z) + 1 - \mu(0) \).
Hence μ^* is an anti fuzzy left ideal of R similarly we can prove that μ^* is an anti fuzzy right and lateral ideal of R then μ^* is an anti fuzzy ideal of R.

$$\mu^*(x) = \mu(x) + 1 - \mu(0) \leq \max\{\mu(x+y), \mu(y)\} + 1 - \mu(0) = \max\{\mu(x+y) + 1 - \mu(0), \mu(y) + 1 - \mu(0)\}$$

Hence μ^* is a normal anti fuzzy k-ideal of R.

References