The Effect of Myostatin Gene Polymorphisms onSome Biochemist Traits for Blood in Broiler Chicken

  • Adnan Hussein Mohammed College of Agriculture , University of Bagdad
  • Ismail Habeeb Ismail College of Agriculture , University of Baghdad
Keywords: Myostatin, Restriction Enzymes, Biochemical Trails, RFLPs


This study is conducted at the Poultry Farm of Animal Production Department of College of Agriculture, University of Al-Qadisiyah during the period 9/4/2015 - 20/5/2015 and in a laboratory of molecular genetic analysis of the College of Agriculture, University of Baghdad and Almusayab Bridge Company. The objective of this study is to identify the genotypes for Myostatin gene (GDF-8), and its relationship with physiological traits of broiler chicken. Three hundreds of Ross 308 chicks at day-old were used. The experiment continues until the sixth week of age. Three types of restriction enzymes (Aci I, Bbv I and Bbs I) are used The results of this study could be summarized as follows. The polymorphisms of the Myostatin gene achieves using Restriction enzyme (Aci) are GG, GA and AA respectively. The genotype of  Myostatin gene  has no  effect on   biochemical traits  during 21  and  42 day, except which the effect of the genotypes of the Myostatin gene on the serum albumin is highly significant  (P<0.01) during 21 day. And also the form genotype of the Myostatin gene with Restriction enzyme form (Bbs I) are CC, CT and TT respectively. The genotype of Myostatin gene has no effect on the blood biochemical during 21 and 42 day. The results show that the genotype of the Myostatin gene with Restriction enzyme form (Bbv I) are AA and GA respectively. The effect of has no effect on the blood biochemical during 21 and 42 day.


السعدي، رشا كريم محمد. 2002. تأثير المستخلصات النباتية المائية الخام لثلاثة أنواع نباتية (الموز Musa paraadisiaca var L، لأله عباس Mirabilis jalapa L، والمينا الشجرية Lantana camara L في الانقسام المايتوزي. رسالة ماجستير، كلية العلوم، جامعة بغداد.
Baron E.E., A.A.Wenceslau., L.E. Alvares., K.Nones., D.C. Ruy., G.S . Schmidt., E.L. Zanella., L.L. Coutinho and M.C. Ledur (2002). High level of polymorphism in the myostatin chicken gene .proceedings of the 7th World Congress on Genetic .Applied to Livestock Production Montpellier France. 19–23.
Bellinge, R. , D. Liberles., S. Iaschi., P. O’Brien. , G. Tay. (2005). Myostatin and its implications on animal breeding: a review. Anim. Genet. 36. (1): 1-6.
Chandan, P., T. K. Bhattacharya., C. S. Nagaraj., R. N. Chaterjee.,and M. R. Jayashankar. (2014). SNPs in minimal promoter of myostatin (GDF-8) gene and its association with body weight in broiler chicken.Journal of Applied Animal Research. 42, 3: 304–309.
Charlier.C., Coppieters. W., Farnir. F., Grobet. L., Leroy. Pl., Michaux .C., Mni, M., Schwers. A., Vanmanshoven. P., Hanset. R., Georges. M. 1995 .The mh gene causing double muscling in cattle maps to bovine Chromosome 2. Mamm. Genome, Springer-Verlag, N.Y. Inc., New York, NY, USA. 6, 788-792.
Han, J. H, Zhou. R. H, Forrest. J, R, Sedcole. C, M, Frampton. J, G, Hickford. (2010). Effect of myostatin (MSTN) g+6223G>A n on production and carcass traits in new zealand romney sheep. Asian-Aust. J. Anim. Sci. 23(7): 863 – 866.
Kerr, T., E . H .Roalson ., and B .D .Rodgers, (2005). Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol . Dev. 7(5):390-400.
Marchitelli C., M.C. Savarese., A.Crisa, A.Nardone, P.A. Marsan and A.Valentini (2003). Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mammal. Genome. 14. 392-395.
McPherron, A. C., A. M. Lawler.and S. J .Lee. (1997). Regulation of skeletal muscle mass in mice by a new TGF- beta superfamily member. Nature .387:83-90.
Miao, Y., J. Yang., Z. Xu., Lu. Jing. , S. Zhao., and Li. Xinyun. (2015). RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide . Int. J. Mol. Sci. 16. 7976-7994.
Nandedkar, P. V., V. K. Saxena., M. Saxena., K. A. Ahmed., S. Kumar ., R. Singh. , P.Jain., M. R. Jawale and S. B. Nehete. (2014). PCR-RFLP-gene study in musculoskeletal deformed birds. Indian Res. J. Ext. Edu. 14, (4):78-81.
Piek, E., CH. Ten., and P. Digke. (1999) .Specificity, diversity and regulation in TGF-beta superfamily signaling. FASEB J. 13: 2105-2124.
Sabir, J., M. Mutwakil., A. El-Hanafy. A. Al-Hejin., M.Sadek., M .Abou- Alsoud., M.Qureshi., K.Saini .,and M .Ahmed. (2014) .Applying molecular tools for improving livestock performance: From DNA markers tonext generation sequencing technologies. Journal of Food, Agriculture & Environment.12 (2): 541-553.
Sambrook, J., T. Maniatis., and E. Fritsch, (1989). Molecular cloning: A labrotray manual.cold spring harbor labrotray press, Cold Spring Harbor, N.Y.61(1):17-28.
Sazanov, A., D .Ewald. , J .Buitkamp. ,and R. Fries. (1999). A molecular marker for the chicken myostatin gene (GDF8) maps to 7p11. Anim Genet 30:388-9.
Saxena, V.K., A. K. Sachdev., R. Gopal .and A. B. Ramod. (2009).Roles of important candidate genes on broiler meat quality .World's Poul .Sci. J. 65 (1):37-50.
Stella. A., F. Panzetta and G. Gandini. (2007) .Use of linked Loci as individual or haplotype for marker asssisted breed assignment. Animal Genetic. 39: 8- 14.