Recovering cultivation-based identification of Escherichia coli from poultry in Al-Diwaniyah, Iraq

  • Lubna Abd Al-Raheem Shtiwey Department of pathology and poultry disease, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq.
  • Nafea Sabeeh Jasim Department of pathology and poultry disease, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq.

Abstract

Aiming at Escherichia coli-based identification, the current work was intended to recover this microorganism from chickens affected by avian pathogenic Escherichia coli (APEC). To perform this an investigation from July to November -2015, 200 chicken-gut-based specimens were collected from different locations in Al-Diwaniyah City, Iraq. The affected chickens first investigated for macroscopic lesions such as on the external surface of the lungs that belonged to the affected birds. Gut-related parts such as duodenum suffered characteristic features of inflammation-based signs. Then, samples were cultivated on media agars for recovering APEC, detecting of infection rate, identifying active antimicrobial agents for better treatment. The sick chickens suffered various health problems such as intestinal inflammation and air sacculitis. Using MacConkey, TBX agar, and API-20E, the results showed the presence of these pathogenic microorganisms in the infected parts of these chickens.

References

1-E Z Ron. Host specificity of septicemic Escherichia coli: human and avian pathogens., Curr. Opin. Microbiol. 9 (2006) 28–32. doi:10.1016/j.mib.(2005);12.001.
2-J R Johnson, TA Russo. Extraintestinal pathogenic Escherichia coli: "the other bad E coli"., J. Lab. Clin. Med. 139 (2002); 155-62. http://www.ncbi.nlm.nih.gov/pubmed/ 11944026 (accessed May 9, 2018).
3-J R Johnson, TA Russo. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli, Int. J. Med. Microbiol. 295 (2005); 383–404. doi:10.1016/j.ijmm. 2005.07.005.
4-C Ewers, G Li, H Wilking, S Kiessling, K Alt, E-M Antáo, C Laturnus, I Diehl, S Glodde, T Homeier, U Böhnke, H Steinrück, H-C Philipp, LH Wieler. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they?, Int. J. Med. Microbiol. 297 (2007); 163–76. doi:10.1016/j.ijmm.2007.01.003.
5-TJ Johnson, KE Siek, SJ Johnson, LK Nolan. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains., J. Bacteriol. 188 (2006); 745–58. doi:10.1128/JB.188.2.745-758.2006.
6-TJ Johnson, Y Wannemuehler, SJ Johnson, AL Stell, C Doetkott, JR Johnson, KS Kim, L Spanjaard, LK Nolan. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens., Appl. Environ. Microbiol. 74 (2008); 7043–50. doi:10.1128/AEM.01395-08.
7-KE Rodriguez-Siek, CW Giddings, C Doetkott, TJ Johnson, LK Nolan. Characterizing the APEC pathotype., Vet. Res. 36 (2005) 241–56. doi:10.1051/vetres:2004057.
8-AE Heuvelink, JT Zwartkruis-Nahuis, FL van den Biggelaar, WJ van Leeuwen, E de Boer. Isolation and characterization of verocytotoxin-producing Escherichia coli O157 from slaughter pigs and poultry., Int. J. Food Microbiol. 52 (1999); 67–75. http://www.ncbi.nlm.nih.gov/pubmed/10573393 (accessed May 9, 2018).
9-MW Sanderson, JM Gay, DD Hancock, CC Gay, LK Fox, TE Besser. Sensitivity of bacteriologic culture for detection of Escherichia coli O157:H7 in bovine feces., J. Clin. Microbiol. 33 (1995); 2616–9. http://www.ncbi.nlm.nih.gov/pubmed/8567893 (accessed May 9, 2018).
10-AE MA Kutkat, S Nagwa. Effect of Lactobacillus acidophilus on controlling of clostridium perfringens and E. coli infections in native breed chickens, J Egypt Vet Med Assoc. (2002). https://scholar.google.com.eg/citations?user=7SXz0okAAAAJ&hl=ar#d=gs_md_cita-d&p=&u=%2Fcitations%3Fview_op%3Dview_citation%26hl%3Dar%26user%3D7SXz0okAAAAJ%26citation_for_view%3D7SXz0okAAAAJ%3AMXK_kJrjxJIC%26tzom%3D-180 (accessed May 9, 2018).
11-D Fournier, C Chirouze, J Leroy, P Cholley, D Talon, P Plésiat, X Bertrand. Alternatives to carbapenems in ESBL-producing Escherichia coli infections, Médecine Mal. Infect. 43 (2013) 62–66. doi:10.1016/j.medmal.2013.01.006.
12-NA Campbell, JB Reece, Biology, Benjamin Cummings, (2002).
13-A Kazemnia, M Ahmadi, M Dilmaghani. Antibiotic resistance pattern of different Escherichia coli phylogenetic groups isolated from human urinary tract infection and avian colibacillosis., Iran. Biomed. J. 18 (2014) 219–24. http://www.ncbi.nlm.nih.gov/pubmed/25326020 (accessed May 9, 2018).
14-EA Abu-Basha, SM Gharaibeh, A.M. Thabet. In vitro susceptibility of resistant Escherichia coli field isolates to antimicrobial combinations, J. Appl. Poult. Res. 21 (2012); 595–602. doi:10.3382/japr.2011-00500.
Published
2018-06-28
How to Cite
SHTIWEY, Lubna Abd Al-Raheem; JASIM, Nafea Sabeeh. Recovering cultivation-based identification of Escherichia coli from poultry in Al-Diwaniyah, Iraq. Al-Qadisiyah Journal of Veterinary Medicine Sciences, [S.l.], v. 17, n. 1, p. 6-8, june 2018. ISSN 2313-4429. Available at: <http://qu.edu.iq/journalvm/index.php/vm_journal/article/view/462>. Date accessed: 10 dec. 2018. doi: https://doi.org/10.29079/vol17iss1art462.